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On a transmission problem in elasticity

by Christodoulos Athanasiadis and
Ioannis G. Stratis (Athens)

Abstract. The transmission problem for the reduced Navier equation of classical
elasticity, for an infinitely stratified scatterer, is studied. The existence and uniqueness of
solutions is proved. Moreover, an integral representation of the solution is constructed, for
both the near and the far field.

1. Introduction. In this work we are studying the transmission problem
for the reduced Navier equation, in the case where a plane elastic wave is
incident upon a nested body of an infinite number of homogeneous layers.
On the surfaces that describe this tessellation, the transmission conditions
are imposed that express the continuity of the medium, and the equilibrium
of the forces acting on it.

In [15] Sabatier reviews (in the framework of the so-called impedance
equation) available answers to the question whether modelling media by
continuous, or piecewise constant, parameters leads to essential modifica-
tions in the behaviour of scattering problems; see also the references therein.
The general theory of scattering of elastic waves is very well presented by
Kupradze [12], [13], who discusses many interesting quantitative, as well as
qualitative, aspects of elastic wave propagation and scattering. The present
work is strongly affected by the above references. For the description of the
mathematical theory of classical elasticity we also refer to [7].

Uniqueness theorems are, among others, proved by Jones [10] and
Wheeler and Sternberg [16], who also present integral representations for
the displacement field. Existence theorems are presented in [12], [13] by
potential methods, and in [8] by variational methods. Low-frequency elastic
scattering has been studied by Dassios and Kiriaki [6] for the case of a single
scatterer, by Kiriaki and Polyzos [11] for a penetrable body with an impene-
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trable core, and by Jones [9] for a single scatterer, where an explicit formula
for the second level of approximation is obtained. The general framework,
and results about wave propagation in dissipative materials, may be found in
the recent book by Caviglia and Morro [5], where a rich bibliography is also
included; in particular, transmission and scattering problems are studied
there, and many applications of such problems are encountered.

In Section 2, first we formulate the transmission problem. Then we prove
that the corresponding homogeneous transmission problem has as its only
classical solution the trivial one; this is done by a method based on the basic
energy theorem, [12]. Next, by a generalized solutions approach, the exis-
tence and uniqueness of a weak solution to the non-homogeneous transmis-
sion problem is proved. This solution is shown to be classical by a regularity
argument. Such an approach has been used by the authors in [1] for trans-
mission problems in acoustics, in [2] for parabolic and hyperbolic diffraction
problems, and in [3] for elliptic transmission problems.

In Section 3, we construct an integral representation of the solution, in
which the transmission conditions and the radiation conditions are incorpo-
rated, and we study the asymptotic behaviour of the scattered wave in the
radiation region.

Finally, in Section 4, a number of comments have been included on the
relation of our results to previous research. The heavily technical parts of
proofs of results in Sections 2 and 3 are included in the Appendix.

2. The transmission problem. Let Ω be a bounded, convex sub-
set of R

3, with 0 ∈ Ω, and S0 = ∂Ω is supposed to be a 2-dimensional
C2-surface. The exterior, Ω0, of Ω is an infinite homogeneous isotropic elas-
tic medium with Lamé constants λ0, µ0. Ω is considered to be a bonded
nested piecewise homogeneous body, consisting of annuli-like regions Ωj ,
divided by 2-dimensional C2-surfaces Sj , j = 1, 2, . . . , where Sj surrounds
Sj+1. We assume that dist(Sj−1, Sj) > 0 for all j = 1, 2, . . . Let λj , µj be the
Lamé constants in the layer Ωj , j = 1, 2, . . . By the adjective “bonded” it
is meant that the displacement and traction are continuous across each Sj ,
as will be guaranteed by the transmission conditions. Moreover, we assume
that

∑
∞

j=1 |Sj | < ∞, where |Sj | is the measure of Sj . Such a scatterer will
be referred to as an infinitely stratified scatterer . This stratified structure
allows a variety of applications in biology and geophysics.

We consider the standard operators of linear elasticity

∆∗

j := µj∆ + (λj + µj) grad div,(2.1)

Tj := 2µj
∂

∂n
+ λjn̂div +µjn̂ × curl,(2.2)

for all j = 0, 1, 2, . . . , where ∆ denotes the Laplacian.
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Suppose that a time-harmonic plane wave ψ(r) of angular frequency ω
is incident upon a scatterer of the above form, resulting in the emanation
of a scattered wave u0(r). The total exterior field, ψ0(r), in Ω0, is the
superposition of the incident and scattered fields:

(2.3) ψ0(r) = ψ(r) + u0(r).

The longitudinal part u
p
0 and the transverse part us

0 of the scattered field
satisfy the radiation conditions

(2.4) u
γ
0 (r) = o(1)

(2.5) r

[
∂u

γ
0 (r)

∂r
− ikγ,0u

γ
0 (r)

]
= o(1)





as r → ∞,

uniformly for all directions r̂, where kγ,0 denotes the wave number of the
incident γ-wave, γ = p, s, respectively.

The mathematical description of the above situation leads to a trans-
mission problem of the following form: Find u satisfying

∆∗

0(ψ+ u0) + ω2(ψ+ u0) = 0 in Ω0,(2.6)

∆∗

juj + ω2uj = 0 in Ωj , j = 1, 2, . . . ,(2.7)

ψ+ u0 = u1

T0(ψ+ u0) = T1u1

}
on S0,(2.8)

uj = uj+1

Tjuj = Tj+1uj+1

}
on Sj , j = 1, 2, . . . ,(2.9)

together with the radiation conditions (2.4), (2.5), where uj denotes the
restriction of u to Ωj , j = 0, 1, 2, . . .

It is well known that the incident field ψ satisfies ∆∗

0ψ+ω2ψ = 0 in Ω0.
Therefore, the above transmission problem can be written as

∆∗

juj + ω2uj = 0 in Ωj , j = 0, 1, 2, . . . ,(2.10)

u1 − u0 = ψ
T1u1 − T0u0 = T0ψ

}
on S0,(2.11)

uj+1 = uj

Tj+1uj+1 = Tjuj

}
on Sj , j = 1, 2, . . . ,(2.12)

together with (2.4) and (2.5).

This transmission problem will be denoted by (NHTP) in the sequel,
while the corresponding homogeneous transmission problem, i.e. when (2.12)
holds for all j = 0, 1, 2, . . . , will be denoted by (HTP).

We are now in a position to prove

Theorem 2.1. (HTP) has only the trivial solution.
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P r o o f. Let Ω0,R = {r : r < R}, R > 0, be a ball in R
3, circumscribed

around Ω. By the energy theorem, [12], applied in Ω0,R − Ω, we have

(2.13)
∂

∂t
(U0 + K0) =

\
r=R

(
∂v

∂t
· T0v

)
ds −

\
S0

(
∂v

∂t
· T0v

)
ds

where v(r, t) = Re[u(r) exp(−iωt)], u(r) being a solution of (HTP).

Similarly, in Ω1, we have

(2.14)
∂

∂t
(U1 + K1) =

\
S0

(
∂v

∂t
· T1v

)
ds −

\
S1

(
∂v

∂t
· T1v

)
ds.

By the transmission conditions, we have

(2.15) T0v = T1v on S0,

and, hence, we arrive at

(2.16)
∂

∂t
(U0 + K0) +

∂

∂t
(U1 + K1)

=
\

r=R

(
∂v

∂t
· T0v

)
ds −

\
S1

(
∂v

∂t
· T1v

)
ds,

where U0, K0 denote the potential and kinetic energy, respectively, in Ω0,R,
and U1, K1 in Ω1.

By repeated application of the energy theorem in Ωj , j = 2, 3, . . . , we
finally get

(2.17)
∂

∂t
(U0 + K0) +

∞∑

j=1

∂

∂t
(Uj + Kj) =

\
r=R

(
∂v

∂t
· T0v

)
ds

whence, using Lemma A.1 (see Appendix), we have

(2.18)
∂

∂t

[
(U0 + K0) +

∞∑

j=1

(Uj + Kj)
]

=
\

r=R

(
∂v

∂t
· T0v

)
ds.

By Lemma A.2 (Appendix), from (2.18) it follows that u0(r) = 0 in Ω0.
We now proceed to show that u1(r) = 0 in Ω1. This having been accom-
plished, u2(r) will be equal to zero in Ω2, too, etc. By (A35) (Appendix)
and the transmission conditions on S0, we are led to the problems

(2.19)





∆u
p
1 + k2

p,1u
p
1 = 0 in Ω1,

u
p
1 = 0

T1u
p
1 = 2µ1

∂u
p
1

∂n
+ nλ1 div u

p
1 = 0

}
on S0
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and

(2.20)





∆us
1 + k2

s,1u
s
1 = 0 in Ω1,

us
1 = 0

T1u
s
1 = 2µ1

∂us
1

∂n
+ µ1(n × curlus

1) = 0

}
on S0.

Direct computation shows that

(2.21) T1u
p
1 =

3∑

q=1

Cq
∂u

p
1

∂xq

and

(2.22) T1u
s
1 =

3∑

q=1

Dq
∂us

1

∂xq

where Cq =
(
c
(q)
im

)
, i,m = 1, 2, 3, is given by c

(q)
ii = nq(2µ1 + λ1δiq) and

c
(q)
im = niλ1δmq, δiq being the Kronecker symbol, and n = (n1, n2, n3), and

Dq = (d
(q)
im), i,m = 1, 2, 3, is given by d

(q)
ii = nq(1 + δiq)µ1 and d

(q)
im =

nmµ1δiq.
In view of (2.21), (2.22), the problems (2.19), (2.20) are set in the stan-

dard form of Cauchy problems, for systems of second order elliptic equations.
By the form of Cq, Dq, q = 1, 2, 3, it is apparent that (2.21), (2.22) do not
represent tangential derivatives to S0. Therefore we may use Holmgren’s
uniqueness theorem: since the initial data of (2.19), (2.20) are equal to zero,
u

p
1 (resp. us

1) must be equal to zero in Ω1∩Vp (resp. Ω1∩Vs), where Vp (resp.
Vs) is a neighbourhood of any point of S0. Since u

p
1 (resp. us

1) is analytic
in Ω1, by the unique continuation principle, it follows that u

p
1 ≡ 0 (resp.

us
1 ≡ 0) in Ω1. Hence u ≡ 0 in Ω1, and the proof is complete.

We now proceed to the solvability of (NHTP).
It is convenient to reformulate (NHTP) into a transmission problem con-

sisting of non-homogeneous equations and homogeneous transmission con-
ditions, of the form

(2.23)





∆∗

jwj + ω2wj = fj in Ωj , j = 0, 1, 2, . . . ,

wj+1 = wj

Tj+1wj+1 = Tjwj

}
on Sj , j = 0, 1, 2, . . . ,

w0 satisfies (2.4) and (2.5).

The problem (2.23) will be denoted by (NHTP) in the sequel.
The transformation of (NHTP) into (NHTP) is performed as follows:

Let

(2.24) w0 = u0 + ξ0 in Ω0,
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where ξ0 is the unique solution of the problem

(2.25)





∆∗

0ξ0 + ω2ξ0 = 0 in Ω0,
T0ξ0 = T0ψ on S0,
ξ0 satisfies (2.4) and (2.5).

Let, moreover,

(2.26) wj = uj − ξj in Ωj , j = 1, 2, . . . ,

where

(2.27) ξj(r) = ξ(r), r ∈ Ωj , j = 1, 2, . . . ,

and ξ is the extension of ψ− ξ0 from S0 to Ω, defined by

(2.28) ξ(r) = ψ(r) − ξ0(r), T1ξ(r) = 0, r ∈ S0,

and

(2.29) ξj+1(r) = ξj(r), Tj+1ξj+1(r) = Tjξj(r), r ∈ Sj , j = 1, 2, . . .

Note that since ψ−ξ0 ∈ (C2(S0))
3, it is evident that ξ ∈ (C2(Ω\

⋃
∞

j=1 Sj)∩

C(Ω))3. Therefore, the function f defined by

(2.30) f(r) =

{
0, r ∈ Ω0,
−(∆∗

jξj(r) + ω2ξj(r)), r ∈ Ωj , j = 1, 2, . . . ,

is continuous in R
3.

Let µ(r) = µj , λ(r) = λj , w(r) = wj(r), r ∈ Ωj , j = 0, 1, 2, . . . , and
define

E(v,u) = λ(r) div v(r) div u(r)(2.31)

+ µ(r)

3∑

m,q=1

∂vm(r)

∂xq

(
∂um(r)

∂xq
+

∂uq(r)

∂xm

)

and

(2.32) R(Ω0) := {u0 ∈ (H1
loc(Ω0))

3 : u0 = u
p
0 + us

0, u
γ
0 = o(1) and

∂u
γ
0/∂r − ikγ,0u

γ
0 = o(1/r) as r → ∞, for γ = p, s}.

Definition 2.1. A function w ∈ (H1(Ω))3∩R(Ω0) is called a generalized

solution of a problem of the form (NHTP), for f ∈ (L2(Ω))3, iff

(2.33)
\

R3

E(ϕ,w) dx − ω2
\

R3

w(r) ·ϕ(r) dx = −
\
Ω

f(r) ·ϕ(r) dx

for every ϕ ∈ (H1(R3))3 such that ϕ(r) = O(1/r2) as r → ∞.

By standard regularity arguments (cf. [1], [3], [8]), the following result
can be proved.
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Theorem 2.2. Let w be a generalized solution of (NHTP). If f ∈
(C(Ω))3, then w ∈ (C2(R3\

⋃
∞

j=1 Sj)∩C(R3))3, i.e. w is a classical solution

of (NHTP).

We are now in a position to prove

Theorem 2.3. (NHTP) has a unique classical solution.

P r o o f. It suffices to prove that (NHTP) has a unique classical solution.
As in the standard theory, (NHTP) may be written in the form

(2.34) w + Aw = F,

where A : (H1(Ω))3 ∩ R(Ω0) → (H1(Ω))3 ∩ R(Ω0) is a compact oper-
ator [8], and F is the standard extension—given by the Riesz Representa-
tion Theorem—of f in (H1(R3))3. The corresponding homogeneous equation
is

(2.35) w + Aw = 0

and the corresponding adjoint homogeneous equation is

(2.36) w∗ + A∗w∗ = 0.

Employing a line of argument analogous to that of [7], we may see that
the Fredholm Alternative may be implemented for (2.34)–(2.36). By Theo-
rem 2.1, (2.35)—and hence (2.36) too—has only the trivial solution. There-
fore, (2.34) has a unique generalized solution, which—since f ∈ (C(Ω))3

by (2.30)—is a classical solution, by Theorem 2.2, thus completing the
proof.

3. Integral representations of the exterior field and the scatter-

ing amplitudes. In order to construct an integral representation for the
total exterior field, near or far, of the scatterer, we make use of the fun-
damental dyadic solution of equation ∆∗u + ω2u = 0 in Ω0, given in [6]
by

(3.1) G̃0(r, r
′)

=
exp(ikp,0R)

(λ0 + 2µ0)kp,0R

[(
kp,0 +

3i

R
−

3

kp,0R2

)
R̂ ⊗ R̂−

(
i

R
−

1

kp,0R2

)
Ĩ

]

−
exp(iks,0R)

µ0ks,0R

[(
ks,0 +

3i

R
−

3

ks,0R2

)
R̂ ⊗ R̂ −

(
ks,0 +

i

R
−

1

ks,0R2

)
Ĩ

]
,

where Ĩ = ê1 ⊗ ê1 + ê2 ⊗ ê2 + ê3 ⊗ ê3 is the identity dyadic, and R = r− r′.

As always, for the observation vector r, we suppose that its measure,
r, is greater than the radius of the smallest sphere circumscribable around
the scatterer. Since r′ is inside the scatterer Ω, there exists θ > 0 such that
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R ≥ θ−1. In what follows, by grad G̃0(r, r
′) we mean grad

r
′ G̃0(r, r

′). First
we state the following lemma whose proof may be found in the Appendix.

Lemma 3.1. The series

∞∑

j=1

\
Sj−1

uj(r
′) · (Tj−1 − Tj)G̃0(r, r

′) ds(r′),(3.2)

∞∑

j=1

(
1 −

µj

µ0

) \
Ωj

uj(r
′) · G̃0(r, r

′) dv(r′),(3.3)

∞∑

j=1

(
λj −

λ0

µ0
µj

) \
Ωj

uj(r
′) · grad div G̃0(r, r

′) dv(r′)(3.4)

converge uniformly.

We denote by σ1(r), σ2(r) and σ3(r) the series (3.2), (3.3) and (3.4) of
Lemma 3.1, respectively. Then we can prove the following theorem.

Theorem 3.1. The total exterior field of the transmission problem

(NHTP) has the integral representation

(3.5) ψ0(r) = ψ(r) +
1

4π
σ1(r) +

ω2

4π
σ2(r) +

ω2

4π
σ3(r).

P r o o f. As is well known [6], the scattered field u0(r) has, in an infinite
medium, the following integral representation:

(3.6) u0(r) =
1

4π

\
S0

[u0(r
′) · T0G̃0(r, r

′) − G̃0(r, r
′) · T0u0(r

′)] ds(r′).

The incident wave ψ is a solution of ∆∗u + ω2u = 0, which has no singu-
larities in R

3. So, Betti’s third formula implies that

(3.7)
\

S0

[ψ(r′) · T0G̃0(r, r
′) − G̃0(r, r

′) · T0ψ(r′)] ds(r′) = 0.

From (2.3), (3.6) and (3.7) we conclude

(3.8) ψ0(r) = ψ(r)+
1

4π

\
S0

[ψ0(r
′) ·T0G̃0(r, r

′)−G̃0(r, r
′) ·T0ψ0(r

′)] ds(r′).

Inserting the transmission conditions (2.11) on S0 to (3.8), we obtain

ψ0(r) = ψ(r)(3.9)

+
1

4π

\
S0

[u1(r
′) · T0G̃0(r, r

′) − G̃0(r, r
′) · T1u1(r

′)] ds(r′).
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Applying successively Betti’s third formula for uj and G̃0 in Ωj , and using
the transmission conditions (2.12), we get, for j = 1, . . . , N ,

(3.10) ψ0(r) = ψ(r) +
1

4π

N∑

j=1

\
Sj−1

uj(r
′) · (Tj−1 − Tj)G̃0(r, r

′) ds(r′)

+
1

4π

\
SN

[uN (r′) · TN G̃0(r, r
′) − G̃0(r, r

′) · TNuN (r′)] ds(r′)

+
1

4π

N∑

j=1

\
Ωj

[uj(r
′) · ∆∗

j G̃0(r, r
′) − G̃0(r, r

′) · ∆∗

juj(r
′)] dv(r′).

From the definition of ∆∗

j , it is easy to show that

(3.11) ∆∗

j G̃0(r, r
′) = −ω2 µj

µ0
G̃0(r, r

′) +

(
λj −

λ0

µ0
µj

)
grad div G̃0(r, r

′).

Substituting (3.11) into (3.10), letting N → ∞, and taking into account the
convergence of the series in Lemma 3.1, we complete the proof.

As far as the scattering amplitudes are concerned, we have the following
asymptotic relations, analogous to those of Barrat and Collins [4].

Theorem 3.2. The scattered field of the transmission problem (NHTP)
has the asymptotic behaviour

(3.12) u0(r) = gp(r̂, k̂)h(kp,0r) + gs(r̂, k̂)h(ks,0r) + O(1/r2), r → ∞,

where the scattering amplitudes gp,gs are given by

gp(r̂, k̂) =
1

4π(λ0 + 2µ0)

{ ∞∑

j=1

[
2(µj−1 − µj)(H̃p,j : r̂ ⊗ r̂)(3.13)

+ (λj−1 − λj) SI(H̃p,j)

+ ω2(r̂ ·Fp,j)

[
1 −

µj

µ0
− k2

p,0

(
λj −

λ0

µ0
µj

)]]}
r̂,

gs(r̂, k̂) =
1

4πµ0

{ ∞∑

j=1

[
(µj−1 − µj)(3.14)

× [̂r · H̃s,j + H̃s,j · r̂− 2(H̃s,j : r̂⊗ r̂)r̂]

+ ω2

(
1 −

µj

µ0

)
Fs,j · (Ĩ − r̂⊗ r̂)

]}
.

The quantities appearing above are given by (γ = p, s)

H̃γ,j = k2
γ,0

\
Sj−1

uj(r
′) ⊗ n̂ exp(−ikγ,0r̂ · r

′) ds(r′),(3.15)
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Fγ,j = ikγ,0

\
Ωj

uj(r
′) exp(−ikγ,0r̂ · r

′) dv(r′),(3.16)

SI(H̃γ,j) is the scalar invariant of the dyadic H̃γ,j, and the double inner
product appearing in (3.13), (3.14) is defined as

(3.17) (a ⊗ b) : (c ⊗ d) = (a · d)(b · c).

The function gp has the outgoing radial direction r̂, and denotes the scat-
tering amplitude of the longitudinal wave up. Also the function gs has a
tangential direction, and denotes the scattering amplitude of the transverse
wave us.

The proof of Theorem 3.2 follows by substituting (A63)–(A67) (Ap-
pendix) into (3.5).

4. Concluding remarks. For the proof of the existence of solutions of
the transmission problem, we have used a generalized solutions approach.
The standard approach, i.e. the implementation of potential theory, leads,
in our case, to an infinite system of integral equations. Even in the case of
a finite number of layers, the generalized solutions method does not present
disadvantages as far as the length of the proof is concerned, in comparison
to the standard method.

Consider the case

λj = λj+1, µj = µj+1, j = q, q + 1, . . . , q ∈ N0.

If q = 0, no scattering occurs through Sj .
If q = 1, the scatterer consists of only one layer. In this case, the problem

has been quantitatively treated in [6]. Let gr, gθ, gϕ denote the normalized
spherical scattering amplitudes which describe the effect of the scatterer
in the directions r̂, θ̂, ϕ̂, respectively [6]. Their relation to the scattering

amplitudes of Section 3 is given by gp = gr r̂ and gs = gθθ̂+ gϕϕ̂.
The proofs of existence and uniqueness of solutions of the transmission

problems in the above cases of q = 0 and q = 1 can be found in [12], and
are performed by the potential theory method.

If q = 2, the scatterer consists of only two layers. This case has been
quantitatively studied in [11].

The quantitative treatment of the case where 3 ≤ q < ∞ is performed
in [14] for low frequencies. A remark on the solvability of this transmission
problem by the standard approach may be found in [10].
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Appendix

Lemma A.1. Let Uj , Kj be the potential and kinetic energy , respectively ,
in Ωj. Then

∞∑

j=1

∂

∂t
(Uj + Kj) =

∂

∂t

[ ∞∑

j=1

(Uj + Kj)
]
.

P r o o f. Let u(r) be a solution of (HTP). Since

(A1) v(r, t) = Re[u(r) exp(−iωt)],

if we set (as in [12])

(A2)
u(r) = A(r) + iB(r),

A(r) = (A1(r), A2(r), A3(r)), B(r) = (B1(r), B2(r), B3(r)),

we get

(A3) v(r, t) = A(r) cos ωt + B(r) sin ωt.

Let

(A4) a(r) = divA(r), b(r) = divB(r)

and

(A5)

Amq(r) =
1

2

(
∂Am(r)

∂xq
+

∂Aq(r)

∂xm

)
,

Bmq(r) =
1

2

(
∂Bm(r)

∂xq
+

∂Bq(r)

∂xm

)
, m, q = 1, 2, 3.

Then

(A6) div v(r, t) = a(r) cos ωt + b(r) sin ωt

and

(A7) vmq(r, t) = Amq(r) cos ωt + Bmq(r) sin ωt.

We therefore have

U + K =
\
Ω

{
1

2
λ(a(r) cos ωt + b(r) sin ωt)2(A8)

+ µ

3∑

m,q=1

(Amq(r) cos ωt + Bmq(r) sin ωt)2

+ ω

3∑

m=1

(Bm(r) cos ωt − Am(r) sin ωt)2
}

dx

and
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(A9)
∂

∂t
(U + K)

=
\
Ω

{
λω(a(r) cos ωt + b(r) sin ωt)(b(r) cos ωt − a(r) sin ωt)

+ 2µω

3∑

m,q=1

(Amq(r) cos ωt + Bmq(r) sin ωt)

× (Bmq(r) cos ωt − Amq(r) sin ωt)

− ω2
3∑

m=1

(Bm(r) cos ωt − Am(r) sin ωt)(Bm(r) sin ωt + Am(r) cos ωt)
}
dx.

The above will be considered in each Ωj , j = 1, 2, . . . , and then a superscript
“(j)” will appear in the quantity involved.

Let λ∗ = supj λj and µ∗ = supj µj . We assume that (in accordance to
what is expected by physical considerations) λ∗, µ∗ < ∞. Let, moreover,

(A10)





A
(j)
∗∗ (r) = max

m,q
A(j)

mq(r), r ∈ Ωj ,

B
(j)
∗∗ (r) = max

m,q
B(j)

mq(r), r ∈ Ωj ,

and

(A11)





A
(j)
∗ (r) = max

m
A(j)

m (r), r ∈ Ωj ,

B
(j)
∗ (r) = max

m
B(j)

m (r), r ∈ Ωj ,

for m, q = 1, 2, 3, and j = 1, 2, . . . Then, by (A8),

|Uj + Kj | ≤
1

2
λ∗

\
Ωj

(|a(j)(r)| + |b(j)(r)|)2 dx(A12)

+ 3µ∗

\
Ωj

(|A
(j)
∗∗ (r)| + |B

(j)
∗∗ (r)|)2 dx

+ 3ω
\

Ωj

(|A
(j)
∗ (r)| + |B

(j)
∗ (r)|)2 dx

≤ λ∗

{ \
Ωj

|a(j)(r)|2 dx +
\

Ωj

|b(j)(r)|2 dx
}

+ 6µ∗

{ \
Ωj

|A
(j)
∗∗ (r)|2 dx +

\
Ωj

|B
(j)
∗∗ (r)|2 dx

}

+ 6ω
{ \

Ωj

|A
(j)
∗ (r)|2 dx +

\
Ωj

|B
(j)
∗ (r)|2 dx

}
,
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whence

|Uj + Kj | ≤ λ∗{‖a(j)‖2
L2(Ωj) + ‖b(j)‖2

L2(Ωj)}(A13)

+ 6µ∗{‖A
(j)
∗∗ ‖

2
L2(Ωj)

+ ‖B
(j)
∗∗ ‖

2
L2(Ωj)}

+ 6ω{‖A
(j)
∗ ‖2

L2(Ωj)
+ ‖B

(j)
∗ ‖2

L2(Ωj)}.

By (A4), (A5) and the definition of the L2 and H1 norms, (A13) gives

(A14) |Uj + Kj | ≤ c{‖A(j)‖2
(H1(Ωj))3

+ ‖B(j)‖2
(H1(Ωj))3

}

where c is a constant independent of j, depending only on λ∗, µ∗, ω.
Now, by the structure of our scatterer Ω, we have

(A15)
∞∑

j=1

‖ϕ(j)‖2
(H1(Ωj))3

= ‖ϕ(j)‖2
(H1(Ω))3 ,

whence

(A16)

∞∑

j=1

‖A(j)‖2
(H1(Ωj))3 = ‖A‖2

(H1(Ω))3 = ‖Reu‖2
(H1(Ω))3 ,

∞∑

j=1

‖B(j)‖2
(H1(Ωj))3 = ‖B‖2

(H1(Ω))3 = ‖Imu‖2
(H1(Ω))3 ,

thus proving the uniform convergence of the series
∑

∞

j=1(Uj + Kj).

As far as
∑

∞

j=1(∂/∂t)(Uj +Kj) is concerned, the same conclusion holds.
To prove it, we note that by (A9) we have

∣∣∣∣
∂

∂t
(Uj + Kj)

∣∣∣∣ ≤ 2ωλ∗

\
Ωj

(|a(j)(r)|2 + |b(j)(r)|2) dx(A17)

+ 12ωµ∗

\
Ωj

(|A
(j)
∗∗ (r)|2 + |B

(j)
∗∗ (r)|2) dx

+ 6ω2
\

Ωj

(|A
(j)
∗ (r)|2 + |B

(j)
∗ (r)|2) dx

and then we argue as from (A12) onwards.

Lemma A.2. The relation

∂

∂t

[
(U0 + K0) +

∞∑

j=1

(Uj + Kj)
]

=
\

r=R

(
∂v

∂t
· T0v

)
ds

implies that u0(r) = 0 in Ω0.

P r o o f. Let

u
p
0(r) = wp(r) + izp(r),(A18)

us
0(r) = ws(r) + izs(r).(A19)
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In what follows we make use of a number of asymptotic estimates for wγ ,
zγ , Twγ +kγc2

γz
γ , Tzγ −kγc2

γw
γ , γ = p, s, and wp ·ws, zp ·zs, wp ·zs, ws ·zp

(where cγ is the phase velocity of the longitudinal (γ = p) and transverse
(γ = s) wave) that can be found in [12], pp. 50–52.

Let vp, vs be the potential and solenoidal components of v, respectively;
then

(A20) v = vp + vs

and—in accordance to (A6)—we have

(A21) vγ(r, t) = wγ(r) cos ωt + zγ(r) sin ωt, γ = p, s.

Hence

∂v

∂t
· T0v =

∑

γ=p,s

∑

δ=p,s

∂vγ

∂t
· T0v

δ(A22)

=
∑

γ=p,s

kγc2
γω(zγ(r) cos ωt − wγ(r) sin ωt)2 + o(1/R2).

Therefore (2.18) becomes

(A23)
∂

∂t

[
(U0 + K0) +

∞∑

j=1

(Uj + Kj)
]

=
∑

γ=p,s

kγc2
γω
\

r=R

(zγ cos ωt − wγ sin ωt)2 ds + o(1).

Using (A9) we have

(A24)
∂

∂t

[
(U0 + K0) +

∞∑

j=1

(Uj + Kj)
]

=
\

Ω0,R

λ0ω(a(0)(r) cos ωt + b(0)(r) sin ωt)

× (b(0)(r) cos ωt − a(0)(r) sin ωt) dx

+
\

Ω0,R

2µ0ω

3∑

m,q=1

(A(0)
mq(r) cos ωt + B(0)

mq(r) sin ωt)

× (B(0)
mq(r) cos ωt − A(0)

mq(r) sin ωt) dx

−
\

Ω0,R

ω2
3∑

m=1

(B(0)
m (r) cos ωt − A(0)

m (r) sin ωt)
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× (B(0)
m (r) sin ωt + A(0)

m (r) cos ωt) dx

+

∞∑

j=1

{ \
Ωj

λjω(a(j)(r) cos ωt + b(j)(r) sin ωt)

× (b(j)(r) cos ωt − a(j)(r) sin ωt) dx

+
\

Ωj

2µjω
3∑

m,q=1

(A(j)
mq(r) cos ωt + B(j)

mq(r) sin ωt)

× (B(j)
mq(r) cos ωt − A(j)

mq(r) sin ωt) dx

−
\

Ωj

ω2
3∑

m=1

(B(j)
m (r) cos ωt − A(j)

m (r) sin ωt)

× (B(j)
m (r) sin ωt + A(j)

m (r) cos ωt) dx
}

.

We note that the RHS of (A24) changes sign. Indeed, we have

(A25)
∂

∂t

[
(U0 + K0) +

∞∑

j=1

(Uj + Kj)
]∣∣∣

t=0
= Q0 +

∞∑

j=1

Qj

where

(A26) Q0 =
\

Ω0,R

{
λ0ωa(0)(r)b(0)(r) + 2µ0ω

3∑

m,q=1

A(0)
mq(r)B

(0)
mq(r)

− ω2
3∑

m=1

A(0)
m (r)B(0)

m (r)
}

dx

and

(A27) Qj =
\

Ωj

{
λjωa(j)(r)b(j)(r) + 2µjω

3∑

m,q=1

A(j)
mq(r)B

(j)
mq(r)

− ω2
3∑

m=1

A(j)
m (r)B(j)

m (r)
}

dx

and we also have

(A28)
∂

∂t

[
(U0 + K0) +

∞∑

j=1

(Uj + Kj)
]∣∣∣

t=π/(2ω)
= −

(
Q0 +

∞∑

j=1

Qj

)
.

Suppose now that Q0 +
∑

∞

j=1 Qj 6= 0; without loss of generality we may as-
sume it to be positive. Since the RHS of (A23) is non-negative for sufficiently
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large R, (A23) and (A28) imply that for γ = p, s,

(A29) lim
R→∞

\
r=R

|wγ |2 ds = 0

uniformly, over all directions. But it is well known ([12], p. 53) that wγ(r)
is a solution of Helmholtz’s equation

(A30) ∆wγ + k2
γ,0w

γ = 0, γ = p, s.

By Rellich’s lemma ([12], p. 53), we obtain

(A31) wγ(r) ≡ 0, γ = p, s.

But then, on account of (A23),

(A32)
∂

∂t

[
(U0 + K0) +

∞∑

j=1

(Uj + Kj)
]

=

2∑

γ=1

kγ,0c
2
γω cos2 ωt

\
r=R

|zγ |2 ds + o(1)

and the change of sign of the LHS implies

(A33) lim
R→∞

\
r=R

|zγ |2 ds = 0, γ = p, s,

whence, as above,

(A34) zγ ≡ 0, γ = p, s.

Hence

(A35) u
p
0(r) = us

0(r) = 0

and since u = up + us we have

(A36) u0(r) = 0,

which is the desired result.
In the case Q0 +

∑
∞

j=1 Qj = 0, (A29) and (A33) follow immediately
from (A23), and the proof follows as above.

Proof of Lemma 3.1. It is well known [12] that the solutions of the
reduced Navier equation in a bounded domain are bounded. Hence there
exists b > 0 such that

‖uj(r
′)‖ ≤ b for r′ ∈ Ωj , j = 1, 2, . . . ,(A37)

‖G̃0(r, r
′)‖D ≤ b for r′ ∈ Ωj , j = 1, 2, . . . , r ∈ Ω0,(A38)

where the norm, ‖ · ‖D, of a dyadic is defined as ‖v⊗w‖2
D =

∑3
i,j=1(viwj)

2.
In order to apply the surface stress operator

(A39) Tj = 2µj n̂ · grad +λjn̂div +µjn̂× curl
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to G̃0(r, r
′), it is necessary to evaluate the gradient of G̃0(r, r

′) with respect
to the variable r′. We have

(A40) grad G̃0(r, r
′)

= −
exp(ikp,0R)

(λ0 + 2µ0)R
[Mp,1(R)R̂ ⊗ R̂⊗ R̂ + Mp,2(R)R̂ ⊗ Ĩ + Mp,3(R)Ĩ ⊗ R̂]

+
exp(iks,0R)

µ0R
[Ms,1(R)R̂ ⊗ R̂ ⊗ R̂

+ (Ms,2(R) − Ms,4(R))R̂ ⊗ Ĩ + Ms,3(R)Ĩ ⊗ R̂],

where

Mγ,1(R) = ikγ,0 −
6

R
−

15i

kγ,0R2
+

15

k2
γ,0R

3
,(A41)

Mγ,2(R) =
2

R
+

6i

kγ,0R2
−

6

k2
γ,0R

3
,(A42)

Mγ,3(R) =
1

R
+

3i

kγ,0R2
−

3

k2
γ,0R

3
,(A43)

with γ = p, s for the longitudinal and transverse wave respectively, and

(A44) Ms,4(R) = iks,0 −
1

R
.

Since R ≥ θ−1, there exist Bγ,q, q = 1, 2, 3, and Bs,4 such that

(A45) |Mγ,q(R)| ≤ Bγ,q and |Ms,4(R)| ≤ Bs,4.

In the triadic (A40) we take the scalar and the vector invariants between
the first two vectors. So, we have

div G̃0(r, r
′) = −

exp(ikp,0R)

(λ0 + 2µ0)R
[Mp,1(R) + Mp,2(R) + 3Mp,3(R)]R̂,(A46)

curl G̃0(r, r
′) = −

exp(ikp,0R)

(λ0 + 2µ0)R
Mp,2(R)R̂ × Ĩ(A47)

+
exp(iks,0R)

µ0R
(Ms,2(R) − Ms,4(R))R̂ ⊗ Ĩ .

Application of the surface stress operator Tj−1 − Tj to G̃0(r, r
′) gives

(Tj−1 − Tj)G̃0(r, r
′) = 2(µj−1 − µj)n̂ div G̃0(r, r

′)(A48)

+ (λj−1 − λj)n̂ div G̃0(r, r
′)

+ (µj−1 − µj)n̂ × curl G̃0(r, r
′).

From (A40), (A45), (A46) and (A47) we have

‖n̂ · grad G̃0(r, r
′)‖D ≤ C1,(A49)
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‖n̂ div G̃0(r, r
′)‖D ≤ C2,(A50)

‖n̂× curl G̃0(r, r
′)‖D ≤ C3,(A51)

where

C1 =
θ

λ0 + 2µ0

3∑

q=1

Bp,q +
θ

µ0
Bs,q,(A52)

C2 =
θ

λ0 + 2µ0

3∑

q=1

Bp,q,(A53)

C3 =
θ

λ0 + 2µ0
4Bp,2 +

θ

µ0
(Bs,2 + Bs,4).(A54)

Using (A48)–(A51) we obtain the following estimate:

(A55) ‖(Tj−1 − Tj)G̃0(r, r
′)‖D ≤ 4µ∗C1 + 2λ∗C2 + 2µ∗C3 ≡ B,

where µ∗ = supj µj and λ∗ = supj λj , j = 1, 2, . . . So, we have

(A56)
∥∥∥
\

Sj−1

uj(r
′) · (Tj−1 − Tj)G̃0(r, r

′) ds(r′)
∥∥∥ ≤ bB|Sj−1|.

From (A56), taking into account that
∑

∞

j=0 |Sj | < ∞, and using the Weier-
strass M-test, we establish the uniform convergence of the series (3.2).

Also, from (A37), (A38) we have

(A57)

∥∥∥∥
(

1 −
µj

µ0

) \
Ωj

uj(r
′) · G̃0(r, r

′) dv(r′)

∥∥∥∥ ≤

(
1 +

µ∗

µ0

)
b2|Ωj |.

Since, by the structure of the scatterer, we have
∑

∞

j=1 |Ωj | = |Ω|, the series
(3.3) converges uniformly.

Finally, since

(A58) grad div G̃0(r, r
′)

=
exp(ikp,0R)

(λ0 + 2µ0)R

[(
ikp,0 −

1

R

) 3∑

q=1

Mp,q(R) +
d

dR
Mp,q(R)

]
R̂ ⊗ R̂,

we see that there exists B′ > 0 such that

(A59) ‖grad div G̃0(r, r
′)‖D ≤ B′.

So, we have

(A60)

∥∥∥∥
(

λj −
λ0

µ0
µj

) \
Ωj

uj(r
′) · [grad div G̃0(r, r

′)] dv(r′)

∥∥∥∥

≤ (λ∗ + (λ0/µ0)µ
∗)bB′|Ωj |,

which ensures the uniform convergence of the series (3.4).
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Some useful asymptotic formulae. In the radiation region, using the
asymptotic relations

R/R = r̂ + O(1/r), r → ∞,(A61)

R = r − r̂ · r′ + O(1/r), r → ∞,(A62)

we obtain the following asymptotic formulae for r → ∞:

G̃0(r, r
′) =

ikp,0

λ0 + 2µ0
exp(−ikp,0r̂ · r

′)h(kp,0r)r̂⊗ r̂(A63)

+
iks,0

µ0
exp(−iks,0r̂ · r

′)h(ks,0r)(Ĩ − r̂ ⊗ r̂)

+ O(1/r2),

grad G̃0(r, r
′) =

k2
p,0

λ0 + 2µ0
exp(−ikp,0r̂ · r

′)h(kp,0r)r̂⊗ r̂⊗ r̂(A64)

+
k2
s,0

µ0
exp(−iks,0r̂ · r

′)h(ks,0r)r̂⊗ (Ĩ − r̂⊗ r̂)

+ O(1/r2),

div G̃0(r, r
′) =

k2
p,0

λ0 + 2µ0
exp(−ikp,0r̂ · r

′)h(kp,0r)r̂ + O(1/r2),(A65)

curl G̃0(r, r
′) =

k2
s,0

µ0
exp(−iks,0r̂ · r

′)h(ks,0r)r̂ × Ĩ + O(1/r2),(A66)

grad div G̃0(r, r
′) = −

ik3
p,0

λ0 + 2µ0
exp(−ikp,0r̂ · r

′)h(kp,0r)r̂⊗ r̂(A67)

+ O(1/r2),

where h(x) = eix/(ix) is the zeroth order spherical Hankel function of the
first kind.
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