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Invariant measures and the compactness of the domain

by Marian Jab loński (Kraków) and Pawe l Góra (Montreal)

Abstract. We consider piecewise monotonic and expanding transformations τ of a
real interval (not necessarily bounded) into itself with countable number of points of dis-
continuity of τ ′ and with some conditions on the variation V[0,x](1/|τ

′|) which need not be
a bounded function (although it is bounded on any compact interval). We prove that such
transformations have absolutely continuous invariant measures. This result generalizes all
previous “bounded variation” existence theorems.

1. Introduction. One of the most important problems in ergodic theory
is the existence of an invariant measure for a dynamical system.

The topic of this paper is the existence of an absolutely continuous in-
variant measure for dynamical systems generated by a piecewise expanding
transformation of an interval (not necessarily bounded). There are many
results in this direction. The first one is Rényi’s existence theorem ([Re]) for
τ : [0, 1] → [0, 1] given by

τ(x) = φ(x) (mod 1),

where φ(x) : [0, 1]
onto
−→ [0, n] for some n ∈ N, φ ∈ C2, |φ′| > λ > 1.

The next significant step was made by Lasota and Yorke [LY] as well
as Kosyakin and Sandler [KS], who proved the existence theorem for τ :
[0, 1] → [0, 1] piecewise C2 and |φ′| > λ > 1.

The Lasota–Yorke theorem has many generalizations. One of them was
given by Wong [Wo], who assumed that τ is piecewise C1 and V[0,1](1/|τ

′|) <
∞. Rychlik [Ry] extended Wong’s theorem to a class of transformations with
countable partition on a bounded interval. Another generalization of the
Lasota–Yorke theorem was given by Keller [Ke] using a kind of generalized
variation.

An extension of the Lasota–Yorke theorem in another direction was given
by Lasota and Jab loński [JL] who assumed that τ is a transformation of R

onto R.
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It seemed that the Lasota–Yorke, Rychlik and Lasota–Jab loński theo-
rems differ essentially from one another, namely in the countability and
finiteness conditions for the corresponding partitions and the compactness
conditions for the interval in question, and the questions were:

(a) Is it possible to state in a natural way a theorem which will imply
the Lasota–Yorke, Wong, Rychlik and Lasota–Jab loński theorems?

(b) A very old question: is it possible to weaken the assumptions con-
cerning τ without loosing the existence of an absolutely continuous invariant
measure?

In 1986 Schmitt [Sch] introduced the following global oscillation condi-
tion.

Let τ : A → A be a transformation of an interval into itself and let J ⊂ A

be a subinterval; then we define the oscillation of τ over J as

oscJ |τ ′| =
maxJ |τ ′| − minJ |τ ′|

minJ |τ ′|
.

Now, let {Ij}
∞
j=1 = P(0) be a partition corresponding to τ such that

a) Ij , j = 1, 2, . . . , are open intervals,
b) Ii ∩ Ij = ∅, i 6= j,
c) m(A \

⋃∞
i=1 Ii) = 0 (the union of Ii is almost equal to A),

d) τ |Ii
is of class C1, i = 1, 2, . . .

The global oscillation of τ is
∑∞

n=1 dn, where

dn = sup
J∈P(n)

oscJ |τ ′|,

and

P(n) =
n
∨

i=0

τ−i(P(0)) =
{

n
⋂

i=0

τ−i(Ij(i)) : Ij(i) ∈ P(0), j(i) ∈ N
n
}

For piecewise C1 transformations with bounded global oscillation and finite
partition corresponding to τ Góra [Gó] proved the existence of an absolutely
continuous invariant measure. Later Jab loński, Góra and Boyarsky [JGB]
proved the following theorem which is a generalization of the results of
Góra’s and Jab loński–Lasota as well as an extension of the result of Rychlik.

Theorem. Let τ : A → A, where A is an interval , satisfy the following

conditions:

(i) There is a family of intervals {Ij}
∞
j=1 such that

(a) Ij is open and Ij ⊂ A,
(b) Ii ∩ Ij = ∅ for i 6= j,
(c) supi≥1m(Ii) <∞,
(d) m(A \

⋃∞
i=1 Ii) = 0,

(ii) τi = τ |Ii
is of class C1,
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(iii) |τ ′i | ≥ λ > 2, i ≥ 1,

(iv) the global oscillation is bounded ,
(v) supi≥1 |ψ1(x)| is integrable on A where ψi = τ−1

i ,

(vi) supx∈A supi≥1 |ψ
′
i(x)|/m(Ii) = k <∞,

(vii)

sup
i≥1

\
|x|>u

|ψ′
i(x)|

m(Ii)
= k(u) → 0 as u→ ∞.

Then there is an absolutely continuous τ -invariant finite measure.

The statement of the above theorem is independent of the finiteness
of the corresponding partitions and the compactness of A and implies the
Góra and Jab loński–Lasota theorems as well as an analogue of the Rychlik
theorem.

However, there are transformations with unbounded oscillation which
have finite absolutely continuous invariant measures. The following example
provide us with such a transformation.

Example 1. Let x0 be such that
x0\
0

(

2 + δ −
1

ln t

)

dt = 1,

and let

τ(x) =











x\
0

(

2 + δ −
1

ln t

)

dt 0 ≤ x ≤ x0,

A(x− x0) (mod 1) x ∈ [x0, 1], A > 2,

where δ > 0. Then τ : [0, 1] → [0, 1], 1/|τ ′| is of bounded variation and the
global oscillation is ≈

∑

1/n and thus unbounded. By the Lasota–Yorke
theorem τ has an absolutely continuous invariant probability measure.

In this paper we prove an analogue of the Jab loński–Góra–Boyarsky the-
orem under some assumptions on the variation V[0,x](1/|τ

′|) instead of the
boundedness of the oscillation. In particular, these assumptions imply that
VI(1/|τ ′|) is bounded for any compact interval I. In Section 3, modifying
τ from Example 1, we will construct a transformation which satisfies as-
sumptions of Theorem 1 of Section 2 but does not satisfy the assumptions
of any other existence theorem. This means that Theorem of [JGB] and the
result of this paper are not equivalent and that Theorem 1 is an essential
generalization of all previous “bounded variation” existence theorems.

Let us recall here the definition of the space BV(A), which will be used
below:

BV(A) = {f ∈ L1(A) : ∃g ∈ L1(A), g = f a.e., VAg <∞}.
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2. Main result. Let τ :
⋃∞

i=1 Ii → A be a transformation satisfying the
following conditions:

(1) Ii, i = 1, 2, . . . , are open intervals, Ii ⊂ A,
(2) Ii ∩ Ij = ∅ for i 6= j,
(3) supi≥1m(Ii) = L <∞, where m is the Lebesgue measure on R,
(4) A is an interval, not necessarily bounded, and m(A \

⋃∞
i=1 Ii) = 0,

(5) τi = τ|Ii
is of class C1, i = 1, 2, . . . ,

(6) |τ ′i | ≥ λ > 2, i = 1, 2, . . . ,
(7) There exist constants M, δ, γ1, γ2, γ3 such that 2/λ+ γ1 + γ2 + γ3 < 1

and
(a) for any i ∈ J1, where J1 = {i ∈ N : VIi

(1/|τ ′|) ≤ Mm(Ii)}, and
for any points x, x′ ∈ Ii with |x− x′| < δ, we have

V[x,x′]
1

|τ ′|
< γ1;

(b) 2
∑

i∈J2
VIi

|(1/τ ′)| < γ2, where J2 = N \ J1,

(c)
∑

i∈J3
(|ψ′

i(τ(ai))| + |ψ′
i(τ(bi))|) < γ3, where

J3 = {i ∈ N : |ψ′
i(τ(ai))| > M ·m(Ii) or |ψ′

i(τ(bi))| > M ·m(Ii)},

and ψi = τ−1
i .

(8) There exist W1,W2 ⊂ N, W1 ∩W2 = ∅, W1 ∪W2 = N, such that the
functions supk∈W1

|ψ′
k(x)|/m(Ik) and

∑

k∈W2
|ψ′

k(x)| are integrable.

Theorem 1. Let τ :
⋃∞

i=1 Ii → A be a transformation satisfying condi-

tions (1)–(8). Then there exists a finite absolutely continuous measure µ on

A invariant with respect to τ .

Remark. The theorem remains true if an iterate τk of τ satisfies condi-
tions (1)–(8). In particular, it is enough to assume λ > 1 in condition (6) if
the iterate τk satisfies (7) and (8).

Lemma 1. Let τ satisfy conditions (1)–(8). Then there exist constants

0 < α < 1 and C > 0 such that

VAPτf ≤ αVAf + C‖f‖1.

P r o o f. For f ∈ BV(A) the series below are convergent and we have

VAPτf = VA

∞
∑

i=1

f(ψi(x))|ψ′
i(x)|(9)

≤
∞
∑

i=1

Vτ(Ii)(f ◦ ψi(x))|ψ′
i(x)|

+

∞
∑

i=1

(|f(ai)| · |ψ
′
i(τ(ai))| + |f(bi)| · |ψ

′
i(τ(bi))|) = S1 + S2,



Invariant measures 17

where Ii = (ai, bi). Since Vτ(Ii)|ψ
′
i| = VIi

(1/|τ ′|) < ∞ we can assume
ψ′

i(τ(ai)) = 0 (ψ′
i(τ(bi)) = 0) if τ(ai) = ±∞ (τ(bi) = ±∞).

For every h : [a, b] → R with V[a,b]h <∞ there is c ∈ [a, b] such that

h(c) ≤
1

m([a, b])

b\
a

|h| dm.

For such c,

|h(a)| ≤ |h(c)| + V[a,c]h and |h(b)| ≤ |h(c)| + V[c,b]h.

Therefore, for each i ≥ 1 and appropriate ci ∈ [ai, bi], we have

(10) |f(ai)| · |ψ
′
i(τ(ai)) + |f(bi)| · |ψ

′
i(τ(bi))|

≤ (|f(ci)| + V[ai,ci]f) |ψ′
i(τ(ai))| + (|f(ci)| + V[ci,bi]f)|ψ′

i(τ(bi))|

≤
|ψ′

i(τ(ai))|

m([ai, bi])

bi\
ai

|f | dm+
|ψ′

i(τ(bi))|

m([ai, bi])

bi\
ai

|f | dm +
1

λ
V[ai,bi]f.

Let J4 = N \ J3. By (10) and (7)(c) we obtain

S2 =
∞
∑

i=1

(|f(ai)| · |ψ
′
i(τ(ai))| + |f(bi)| · |ψ

′
i(bi))|)(11)

≤
∑

i∈J4

(

|ψ′
i(τ(ai))|

m([ai, bi])

bi\
ai

|f | +
|ψ′

i(τ(bi))|

m([ai, bi])

bi\
ai

|f | +
1

λ
VIi

f

)

+
∑

i∈J3

(sup
A

|f |(|ψ′
i(τ(ai))| + |ψ′

i(τ(bi))|))

≤ 2M‖f‖1 +
1

λ
VAf +

(

‖f‖1

m(A)
+ VAf

)

· γ3

=

(

1

λ
+ γ3

)

VAf +

(

2M +
γ3

m(A)

)

‖f‖1.

We have used the inequality supA |f | ≤ ‖f‖1/m(A) +VAf (with ‖f‖1/m(A)
= 0 if m(A) = ∞) which holds for functions in BV(A).

Now we estimate S1. Let δ be as in (7) and yk = τi(xk), where xk ∈ Ii.
If m(Ii) ≤ δ, we have

(12) Vτ(Ii)(f ◦ ψi)|ψ
′
i|

= sup
τ(Ii)

n
∑

k=1

|(f ◦ ψi)(yk)|ψ′
i(yk)| − (f ◦ ψi)(yk−1)|ψ′

i(yk−1)| |

≤ sup
τ(Ii)

n
∑

k=1

|(f ◦ ψi)(yk)|ψ′
i(yk)| − (f ◦ ψi)(yk−1)|ψ′

i(yk)| |
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+ sup
τ(Ii)

n
∑

k=1

|(f ◦ ψi)(yk−1)|ψ′
i(yk)| − (f ◦ ψi)(yk−1)|ψ′

i(yk−1)| |

≤
1

λ
VIi
f + sup

Ii

n
∑

k=1

|f(xk−1)|

∣

∣

∣

∣

1

|τ ′(xk)|
−

1

|τ ′(xk−1)|

∣

∣

∣

∣

≤
1

λ
VIi
f + (sup

Ii

|f |) sup
Ii

n
∑

k=1

∣

∣

∣

∣

1

|τ ′(xk)|
−

1

|τ ′(xk−1)|

∣

∣

∣

∣

,

where “supτ(Ii)” and “supIi
” indicate the suprema over all finite partitions

of τ(Ii) and Ii respectively.

We now consider separately i ∈ J1 and i ∈ J2. If i ∈ J1, then by
assumption (7)(a), we can estimate the left hand side of (12) as follows:

(13) Vτ(Ii)(f ◦ ψi)|ψ
′
i|

≤
1

λ
VIi
f + (inf

Ii

|f | + VIi
f)VIi

1

|τ ′|

≤
1

λ
VIi
f +

(

1

m(Ii)

\
Ii

|f |

)

· VIi

1

|τ ′|
+ VIi

f · VIi

1

|τ ′|

≤

(

1

λ
+ γ1

)

VIi
f +M

\
Ii

|f |.

If i ∈ J2, then in a standard way, we have

(14) Vτ(Ii)(f ◦ ψi)|ψ
′
i| ≤

1

λ
VIi

f + sup
A

|f |VIi

1

|τ ′|
.

If m(Ii) > δ, then there is a partition ai = c0 < c1 < . . . < cni
= bi such

that

(15)
δ

2
≤ |cj − cj−1| < δ for j = 1, . . . , ni.

We have

Vτ(Ii)(f ◦ ψi)|ψ
′
i| =

ni
∑

j=1

Vτ(cj−1,cj) (f ◦ ψi)|ψ
′
i|.

In the same way as in (12) we obtain

(16) Vτ(cj−1,cj)(f ◦ψi)|ψ
′
i| ≤

1

λ
V[cj−1,cj ]f + ( sup

[cj−1,cj ]

|f |)V[cj−1,cj ]
1

|τ ′|
= Rij .

Once again we consider separately i ∈ J1 and i ∈ J2. If i ∈ J1, then similarly
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to (13) we have

Rij ≤
1

λ
V[cj−1,cj ]f +

(

1

m([cj−1, cj ])

cj\
cj−1

|f |

)

V[cj−1,cj ]

∣

∣

∣

∣

1

|τ ′|

∣

∣

∣

∣

(17)

+ V[cj−1,cj ]f · V[cj−1,cj ]
1

|τ ′|

≤
1

λ
V[cj−1,cj ]f +

2VIi
|1/τ ′|

δ

cj\
cj−1

|f | + V[cj−1,cj ]f · γ1

≤

(

1

λ
+ γ1

)

V[cj−1,cj ]f +
2ML

δ

cj\
cj−1

|f |

(the last inequality is a consequence of (15)). Summing up over j’s we get

(18) Vτ(Ii)(f ◦ ψi)|ψ
′
i| ≤

(

1

λ
+ γ1

)

VIi
f +

2ML

δ

\
Ii

|f |.

If i ∈ J2, then similarly to (14) we have

(19) Rij ≤
1

λ
V[cj−1,cj ]f + sup

A

|f | · V[cj−1,cj ]
1

|τ ′|

Summing up over j’s we obtain

(20) Vτ(Ii)(f ◦ ψi)|ψ
′
i| ≤

1

λ
VIi
f + sup

A

|f | · VIi

1

|τ ′|
.

Summing up (13) over all i ∈ J1 such that m(Ii) ≤ δ, (14) over all i ∈ J2

such that m(Ii) ≤ δ, (18) over i ∈ J1 with m(Ii) > δ and (20) over i ∈ J2

with m(Ii) > δ, and using assumption (7)(b) we obtain

S1 ≤

(

1

λ
+ γ1

)

VAf + sup
A

|f | · γ2 + max

(

2ML

δ
,M

)

‖f‖1(21)

≤

(

1

λ
+ γ1 + γ2

)

VAf +

(

γ2

m(A)
+ max

(

2ML

δ
,M

))

‖f‖1.

Finally, by (11) and (21), we get

VAPτf ≤

(

2

λ
+ γ1 + γ2 + γ3

)

VAf

+

(

2M +
γ3

m(A)
+

γ2

m(A)
+ max

(

2ML

δ
,M

))

‖f‖1.

Setting α = 2/λ + γ1 + γ2 + γ3 < 1 and C = 2M + γ3/m(A) + γ2/m(A) +
max(2ML/δ,M) we obtain the assertion of the lemma.
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Lemma 2. If τ satisfies (1)–(8) and B ⊂ L1(A) is such that

VAf + ‖f‖1 ≤ D

for some D, then PτB is weakly compact.

P r o o f. For given f ∈ B we can choose points zk ∈ Ik such that
∑

k

m(Ik)|f(zk)| ≤
\
A

|f(x)| dx.

We have

|Pτf | ≤ Pτ |f | =
∑

k

|f(ψk(x))| · |ψ′
k(x)| =

∑

k

|ψ′
k(x)|

m(Ik)
m(Ik)|f(ψk(x))|

=
∑

k∈W1

|ψ′
k(x)|

m(Ik)
m(Ik)|f(ψk(x))| +

∑

k∈W2

|ψ′
k(x)| · |f(ψk(x))|

≤ sup
k∈W1

|ψ′
k(x)|

m(Ik)

∑

k∈W1

m(Ik)|f(ψk(x))| + sup
A

|f |
∑

k∈W2

|ψ′
k(x)|.

Moreover, by assumption (3),
∑

k∈W1

m(Ik)|f(ψk(x))| ≤
∑

k∈W1

m(Ik)(|f(ψk(x)) − f(zk)| + |f(zk)|)

≤ LVAf + ‖f‖1 ≤ (L+ 1)D,

and

sup
A

|f | ≤
‖f‖1

m(A)
+ VAf ≤ D

(

1

m(A)
+ 1

)

.

Hence, assumption (8) implies uniform integrability of the set PτB.

Proof of Theorem 1. For every f of bounded variation with ‖f‖1 < ∞
we have, by Lemma 1,

VAPn
τ f ≤ αnVAf + (αn−1 + αn−2 + . . .+ 1) · C · ‖f‖1.

Thus for every n,

VAPn
τ f ≤

C

1 − α
‖f‖1,

and ‖Pn
τ f‖1 ≤ ‖f‖1.

So, by Lemma 2, the set Pτ{P
n
τ f}

∞
n=0 = {Pn

τ f}
∞
n=1 is weakly compact

in L1(A). Since the set of functions of bounded variation is dense in L1(A),
using the Kakutani–Yosida Theorem we conclude that for every f ∈ L1(A)

the sequence 1
n

∑n−1
j=0 Pj

τf converges in L1(A) to a function Qf ∈ L1(A),
and Qf is invariant under Pτ . This completes the proof of Theorem 1.
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3. Comparison with Jab loński–Lasota’s and Rychlik’s theo-

rems. For the convenience of the reader we restate the Jab loński–Lasota
theorem.

Theorem (Jab loński–Lasota). Let {Ii}
∞
i=1 be a partition of R and τ :

R → R be a transformation such that :

(i) Ii is an open set for each i ∈ N;

(ii) Ii ∩ Ij = ∅ for j 6= i;

(iii) R \
⋃

Ii is a countable set ;

(iv) supi m(Ii) = L <∞ (the partition must actually be infinite);

(v) for any i, τi is differentiable and its derivative τ ′i is locally Lipschitz ;

(vi) |τ ′i(x)| ≥ λ > 1, x ∈
⋃

Ii;

(vii) τi(Ii) = R (a “piecewise onto” condition);

(viii) |τ ′′i (x)|/(τ ′i(x))2 ≤M1 <∞ (requires the existence of τ ′′ on each Ii);

(ix) w(x) = supi |ψ
′
i(x)|/m(Ii) is integrable on R.

Then the transformation τ has a finite absolutely continuous invariant mea-

sure.

We will need the following lemma.

Lemma 3. If τ satisfies conditions (i)–(ix) of the last theorem, then any

iteration τk of τ also satisfies these conditions.

P r o o f. We give the proof for k = 2. The general case follows by induc-
tion.

The transformation τ2 satisfies conditions (i)–(vii) trivially.

It is easy to see that {Iij = Ii∩τ
−1
i (Ij)}∞i,j=1 is the partition correspond-

ing to τ2. Since

(τ2)′′

((τ2)′)2
=

τ ′′ ◦ τ · (τ ′)2

(τ ′ ◦ τ)2 · (τ ′)2
+

τ ′ ◦ τ · τ ′′

(τ ′ ◦ τ)2 · (τ ′)2
=

τ ′′ ◦ τ

(τ ′ ◦ τ)2
+

1

τ ′ ◦ τ
·
τ ′′

(τ ′)2

≤M + 1 ·M = 2M

for x ∈ Iij , τ2 also satisfies (viii). Thus it remains to prove that τ2 satis-
fies (ix).

First, recall that for any i ≥ 1 we have

supx∈Ii
|ψ′

i(x)|

infx∈Ii
|ψ′

i(x)|
≤ K

for some constant K > 0 (see [JGB], Section 3).

The transformation τ2 restricted to Iij is equal to τj ◦ τi. Its inverse
ψij : R → Iij is given by

ψij = (τj ◦ τi)
−1 = τ−1

i ◦ τ−1
j = ψi ◦ ψj .
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We have

m(Iij) =
\
Ij

|ψ′
i| dm = |ψ′

i(ξ)| ·m(Ij),

for some ξ ∈ Ij . Thus, for any x ∈ R,

|ψ′
ij(x)|

m(Iij)
=

|ψ′
i(ψj(x))| · |ψ′

j(x)|

|ψ′
i(ξ)| ·m(Ij)

≤ K ·
|ψ′

j(x)|

m(Ij)
,

and, consequently,

sup
i,j

|ψ′
ij(x)|

m(Iij)

is an integrable function. This completes the proof of the lemma.

Now, we prove that the assumptions of the Jab loński–Lasota theorem
[JL] imply the assumptions of Theorem 1, i.e. that Theorem 1 is a general-
ization of [JL].

Let τ satisfy conditions (i)–(ix) of the Jab loński–Lasota theorem. By
Lemma 3, for every k, τk also satisfies (i)–(ix) and there is k such that
(τk)′ ≥ λ > 2 for x ∈ Ik

i , where {Ik
i }

∞
i=1 is the partition corresponding to

τk. Therefore, in view of the Remark, we can assume that τ ′ ≥ λ > 2.
Now, most of the conditions of Theorem 1 follow trivially from (i)–(ix).

We only have to prove condition (7).
Notice that if τ ′′ exists on the intervals Ii, i = 1, 2, . . . , then for any

t, s ∈ Ii we have
∣

∣

∣

∣

1

|τ ′(t)|
−

1

|τ ′(s)|

∣

∣

∣

∣

=
|τ ′′(ξ)|

(τ ′(ξ))2
|t− s|

for some ξ between t and s. By assumption (viii), this implies that

(22) V[x,x′]
1

|τ ′|
≤M1 · |x− x′|,

for any interval [x, x′] ⊂ Ii, i ≥ 1. By inequality (22), τ satisfies conditions
(7)(a) and (7)(b) with M = M1, J2 = ∅, γ2 = 0, γ1 arbitrarily small, and
δ = γ1/M .

Fix an i ≥ 1 for a moment. Using (14) again we obtain

VIi
|ψ′

i| ≤M1 ·m(Ii).

Hence, since τi(Ii) = R (see (vii)), both the numbers |ψ′
i(τ(ai))|, |ψ

′
i(τ(bi))|

are equal to 0. Thus, J3 = ∅ and condition (7)(c) is satisfied trivially.
Now, we discuss the relationship between our result and that of Rychlik

([Ry]). Rychlik’s result is formulated in a very general way, but in the interval
case, the transformation τ : A → A is such that m(A) < ∞, sup g < 1 and
VAg <∞, where, g|S = 0, g = 1/|τ ′| on

⋃∞
i=1 Ii, S = R\

⋃∞
i=1 Ii and {Ii}

∞
i=1

is the partition corresponding to τ .
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Similarly to the previous considerations we can assume that Rychlik’s
transformation satisfies |τ ′| ≥ λ > 2 (an analogue of Lemma 3 is contained
in Corollary 1 of [Ry] and can easily be proved directly.) Since conditions
(1)–(6) are simple consequences of Rychlik’s assumptions we only have to
prove (7) and (8).

Rychlik’s assumption VA(1/|τ ′|) <∞ implies that

∑

i≥1

VIi

1

|τ ′|
<∞

and
∑

i≥1

(|ψ′
i(τ(ai))| + |ψ′

i(τ(bi))|) <∞.

For arbitrarily small γ2 and γ3 we can find i0 ≥ 1 such that the i0-tails of
the above series are less than γ2 and γ3 respectively. For the finite family
{Ii}

i0
i=1 we can easily find M , δ and γ1 such that condition (7) is satisfied.

To prove (8) we use Rychlik’s assumption m(A)<∞. Let W2 = N. Then
we have\

A

∑

k≥1

|ψ′
k(x)| dm(x) ≤

∑

k≥1

\
A

|ψ′
k(x)| dm(x) =

∑

k≥1

m(Ik) = m(A),

hence the condition (8) is satisfied.

On the other hand, it is not too difficult to show that our conditions
imply Rychlik’s. So, in fact, for the bounded interval case, both sets of
conditions are equivalent.

The following simple example provides us with a transformation which
satisfies the assumptions of Theorem 1 but does not satisfy the assumptions
of any other theorem mentioned above.

Example 2. Let τ : R → R be defined as follows. Let, as in Example 2,
x0 be such that

x0\
0

(

2 + δ −
1

ln t

)

dt = 1,

and let

τ(x) =































x\
0

(

2 + δ −
1

ln t

)

dt, 0 ≤ x ≤ x0,

A(x− x0), x ∈ [x0, 1], A > 2,

τ(x) = 2 tan

(

π

2
x

)

, x ∈ R \ (Z ∪ [0, 1]),

where δ > 0.
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