
ANNALES

POLONICI MATHEMATICI

LXIX.1 (1998)

On the disc-convexity of complex Banach manifolds

by Do Duc Thai and Nguyen Le Huong (Hanoi)

Abstract. The Banach hyperbolicity and disc-convexity of complex Banach manifolds
and their relations are investigated.

Introduction. The disc-convexity of complex Banach manifolds is one
of the forms of complex convexity. It has been the object of interest for some
time. Especially it was a useful tool to study the extension of holomorphic
maps (see [6], [11], [13], . . . ).

Our aim in this article is to investigate the disc-convexity of complex
Banach manifolds and the relations between the Banach hyperbolicity and
disc-convexity of complex Banach manifolds.

We now describe more precisely the content of the paper.
In Section 1 we prove the existence of hyperbolic neighbourhoods of com-

pact subsets in Banach manifolds which contain no complex lines (Proposi-
tion 1.2). As an easy corollary we prove the openness of Banach hyperbol-
icity for proper holomorphic maps between Banach analytic spaces (Propo-
sition 1.6). These results are generalizations of the finite-dimensional case
considered by Brody [1], Urata [16] and Zăıdenberg [18].

The above-mentioned hyperbolic neighbourhoods play a central role in
our approach to disc-convexity of complex Banach manifolds.

In Section 2 we study in detail the disc-convexity of complex Banach
manifolds. More precisely: we give an example of a hyperbolic and disc-
convex domain S in C

2 which is not taut (Proposition 2.2). We prove
that every pseudoconvex and Brody hyperbolic (Banach) manifold is disc-
convex and has the Hartogs extension property (Theorem 2.3 and Propo-
sition 2.5). Let f : X → Y be a proper holomorphic map into a Ba-
nach analytic space Y . If all the f -fibres are hyperbolic and Y is disc-
convex, then so is X (Theorem 2.6); an example is given which shows
the necessity of hyperbolicity of all the f -fibres (Remarks 2.7.1, 2.7.2).
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For a complex space X of finite dimension define S0X = X, S1X =

singX, . . . , SiX = singSi−1X. Then X is disc-convex iff S̃iX is for all
i ≥ 0 (Theorem 2.8).

Finally, the authors would like to thank the referee for many valuable
comments.

1. Existence of hyperbolic neighbourhoods of compact subsets

which contain no complex lines. We first give the following.

1.1. Definition. Let X be a Banach Ck-manifold. We say that X has

Ck-partitions of unity if for every open cover {Ui}i∈I of X there exists a
family of functions {αi}i∈I ⊂ Ck(X) satisfying:

(i) suppαi ⊂ Ui for every i ∈ I and the family {suppαi}i∈I is locally
finite.

(ii)
∑

i∈I αi(x) = 1 for every x ∈ X.

The family {αi}i∈I is called a Ck-partition of unity subordinate to the
cover {Ui}i∈I . For details concerning smooth partitions of unity on Banach
analytic manifolds we refer the readers to [15], [19]. Let X be a Banach
analytic space in the sense of Mazet [8]. We denote by dX the Kobayashi
pseudodistance on X. In contrast to the finite-dimensional case, there exists
a Banach manifold X on which the Kobayashi pseudodistance is a distance
but it does not define the topology of X. We say that X is hyperbolic if dX

is a distance defining the topology of X.
We now give the main result of this section.

1.2. Proposition. Let Z be a compact subset in a Banach manifold X
having C1-partitions of unity such that Z contains no complex lines, i.e.

every holomorphic map ϕ from C into X with ϕ(C) ⊂ Z is constant. Then

there exists a hyperbolic neighbourhood of Z in X.

Let {(Ui, ϕi)}i∈I be an atlas of X such that ϕi is an isomorphism from
Ui onto an open ball in Banach space for every i ∈ I. By hypothesis, there
exists a C1-partition of unity {hi}i∈I subordinate to the cover {Ui}i∈I .

Let π : TX → X be the tangent bundle of X. For each u ∈ TX, put

‖u‖ =
∑

hi(πu)‖Dϕi(πu)(u)‖.

Denote by ̺X the integral distance on X associated with ‖ · ‖.

1.3. Lemma. ̺U defines the topology in U , where U is the unit ball in a

Banach space B.

P r o o f. By [12] we have

‖x− y‖ = sup{|x∗(x) − x∗(y)| : x∗ ∈ B∗, ‖x∗‖ ≤ 1}
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≤ sup{|f(x− y)| : f ∈ H∞(U), f(0) = 0, ‖f‖ ≤ 1}

=
e2cU (x,y) − 1

e2cU (x,y) + 1
,

where B∗ denotes the dual space of B and cU denotes the Carathéodory
distance on U . On the other hand, for the differential Carathéodory metric
γU of U we have by [19],

cU (x, y) ≤ inf
{ 1\

0

γU (σ̇(t)) dt : σ ∈ Ωx,y(U)
}

≤ inf
{ 1\

0

‖σ̇(t)‖ dt : σ ∈ Ωx,y(U)
}

= ̺U (x, y)

for all x, y ∈ U , where Ωx,y is the set of C1-paths joining x and y in U . Thus
̺U defines the topology of U .

1.4. Lemma. Assume that X is a Banach manifold having C1-partitions

of unity. Then ̺X defines the topology of X.

P r o o f. Let {xn} ⊂ X and ̺X(xn, x) → 0. Take j0 such that x ∈ Uj0

and hj0(x) 6= 0. For each n ≥ 1 take σn ∈ Ωxn,x(X) such that

̺X(xn, x) ≥
1\
0

‖σ̇n(t)‖ dt − 1/n

=

1\
0

∑

j

hj(σn(t))‖Dϕj(σn(t))(σ̇n(t))‖ dt − 1/n

≥
1\
0

hj0(σn(t))‖Dϕj0(σn(t))(σ̇n(t))‖ dt − 1/n.

Assume that xn 6→ x. Then there exists an open neighbourhood V of x in
Uj0 such that xn 6∈ V for all n ≥ 1 and inf{hj0(y) : y ∈ V } = ε > 0. For
every n ≥ 1, put εn = sup{r > 0 : σn([0, r]) ⊂ V } > 0. We have

̺X(xn, x) ≥
1\
0

hj0(σn(t))‖Dϕj0 (σn(t))(σ̇n(t))‖ dt − 1/n

≥ ε

εn\
0

hj0(σn(t))‖Dϕj0(σn(t))(σ̇n(t))‖ dt − 1/n

≥ ε

εn\
0

‖Dϕj0(σn(t))(σ̇n(t))‖ dt − 1/n
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= ε

1\
0

‖Dϕj0(βn(s))(β̇n(s))‖ ds − 1/n

≥ ̺ϕj0
(Uj0

)(ϕj0(βn(1)), ϕj0 (x)) − 1/n

where s = t/εn and βn(s) = σn(εns) for s ∈ [0, 1]. It follows that
̺ϕj0

(Uj0
)(ϕj0(βn(1)), ϕj0 (x))) → 0. By Lemma 1.3, ϕj0(βn(1)) → ϕj0(x).

Hence βn(1) → x. This is a contradiction because βn(1) = σn(εn) ∈ ∂V for
every n ≥ 1.

1.5. Lemma. Let X be a Banach manifold having C1-partitions of unity

such that

sup{‖f ′(0)‖ : f ∈ Hol(∆,X)} <∞,

where Hol(∆,X) denotes the space of holomorphic maps from the open unit

disc ∆ in C into X. Then X is hyperbolic.

P r o o f. Let dX(xn, x) → 0. For each n ≥ 1 there exists a holomorphic
chain (fn

1 , . . . , f
n
kn
, an

1 , . . . , a
n
kn

) joining xn and x such that

kn∑

j=1

d∆(0, an
j ) → 0.

By the hypothesis we have

a = sup{‖f ′(z)‖ : f ∈ Hol(∆,X), |z| < r} <∞,

where 0 < r < 1 is chosen such that |an
j | < r for j = 1, . . . , kn. Then

̺X(pn
i , p

n
i−1) ≤

1\
0

‖(fn
j σ

n
i )′(t)‖ dt ≤ a

1\
0

‖σ̇n
i (t)‖ dt = ad∆(0, an

i ),

where pn
i = fn

i (an
i ) and σn

i (z) = an
i z. Thus ̺X(xn, x) → 0. By Lemma 1.4

we have xn → x.

Proof of Proposition 1.2. By Lemma 1.5 it suffices to show that there
exists a neighbourhood W of Z in X such that

sup{‖f ′(0)‖ : f ∈ Hol(∆,W )} <∞.

If not, for each n we can find fn ∈ Hol(∆,Wn) such that ‖f ′
n(0)‖ = rn ↑

∞, where {Wn} is decreasing neighbourhood basis of Z in X. By the
parametrization lemma of Brody [1] there exists for each n a holomorphic
map ϕn from (rn/2)∆ into Wn such that ‖ϕ′

n(0)‖ = 1 and

‖ϕ′
n(z)‖ ≤

r2n
r2n − |z|2

for |z| < rn/2.

This yields ‖ϕ′
n(z)‖≤ 4/3 for |z|<rn/2 and hence {ϕn} is equicontinuous.

By the compactness of Z and since Z=
⋂
Wn, it follows that {ϕn} contains
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a subsequence {ψn} converging to ψ∈Hol(C,X) with ψ(C)⊂ Z. Obviously,
ψ 6= const. This is impossible because Z contains no complex lines.

1.6. Proposition. Let θ : X → Y be a proper holomorphic map from

a Banach manifold X having C1-partitions of unity into a Banach analytic

space Y . Assume that θ−1(y0) is hyperbolic for some y0 ∈ Y . Then there

exists an open neighbourhood U of y0 in Y such that θ−1(U) is Banach

hyperbolic.

P r o o f. By Proposition 1.2, there exists a hyperbolic neighbourhoodW
of θ−1(y0) in X.

Suppose that there is no neighbourhood U of y0 in Y such that θ−1(U)
⊂ W . Consider a decreasing sequence {Un} of neighbourhoods of y0 which
is convergent to y0. Then for each n ≥ 1 there are yn ∈ Un and xn ∈ θ−1(yn)
such that xn 6∈W . Since the set K = {yn : n ≥ 1} ∪ {y0} is compact, so is

θ−1(K) =
⋃

n≥1

θ−1(yn) ∪ θ−1(y0).

Thus {xn} contains subsequence {xnk
} convergent to x0. It follows that

θxnk
→ θx0, i.e. ynk

→ θx0. Hence θx0 = y0, i.e. x0 ∈ θ−1(y0) ⊂ W . Thus
xnk

∈W for all k≥N . This is impossible, because xn 6∈W for each n≥1.

1.7. Remark. From a result of Ramis [9, Théorème II.2.1.1, p. 36], we
can deduce the existence of finite proper holomorphic maps between Banach
analytic spaces.

Let S be an analytic subset of codimension p in a Banach space E. Then
we can decompose E = B ⊕ C

p so that the restriction π|S of the canonical
projection π : E → B is a finite proper holomorphic map from S onto B (at
least locally).

2. Disc-convexity of Banach analytic spaces. We first give the
following.

2.1. Definitions. For every 0 < r < 1 and s > 0 we define

∆s = {z ∈ C : |z| < s}, ∆1 = ∆, ∆r1 = {z ∈ C : r < |z| < 1}.

We say that a Banach analytic space X is disc-convex if every sequence
{fn} ⊂ Hol(∆,X) converges in Hol(∆,X) whenever {fn|∆r1

} converges
in Hol(∆r1,X) for some r < 1, where Hol(X,Y ) denotes the space of all
holomorphic maps from X into Y with the open-compact topology. It is
well known that, by the Montel theorem, a taut (finite-dimensional) complex
space is disc-convex and hyperbolic. The converse is not true in general.

Let u(z) be a negative subharmonic function on ∆. In addition, suppose
u(z) is bounded from below and discontinuous at 0 and limz→0 u(z) < u(0).
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In C
2 we consider the Hartogs domain

S = {(z,w) ∈ C
2 : |z| < 1, |w| < e−u(z)}

(see Shabat [10] or Diederich and Sibony [2]).
We have the following.

2.2. Proposition. The domain S is hyperbolic and disc-convex but not

taut.

P r o o f. Clearly S is bounded and by the Hartogs theorem, S is a domain
of holomorphy. Then S is a hyperbolic disc-convex manifold.

Now assume that S is taut. Put − limz→0 u(z)=R > −u(0). Take β∈R

and a sequence {zn} ⊂ ∆ converging to 0 such that

lim
n→∞

(−u(zn)) = R > lnβ > −u(0).

Without loss of generality we can suppose that

−u(zn) > lnβ > −u(0) for all n ≥ 1.

Let θ : ∆β → ∆β be a biholomorphic map such that θ(0) = e−u(0). Then
the map f : ∆ → ∆β , where f(z) = θ(βz) for all z ∈ ∆, is biholomorphic
and f(∆) ⊂ ∆e−u(zn) for all n ≥ 1.

Consider holomorphic maps gn : ∆ → S, z 7→ (zn, f(z)), for all n ≥ 1.
We have limn→∞ gn(z) = (0, f(z)) for all z ∈ ∆ and limn→∞ gn(0) =
(0, f(0)) 6∈ S. Since S is taut, (0, f(z)) 6∈ S for all z ∈ ∆. Hence |f(z)| ≥
e−u(0) = f(0) for all z ∈ ∆. This is impossible.

2.3. Theorem. Let X be a pseudoconvex Banach manifold having C1-

partitions of unity. Suppose that X contains no complex lines. Then X is

disc-convex.

P r o o f. Assume that a sequence {fn} ⊂ Hol(∆,X) is such that {fn|∆r1
}

converges, uniformly on compact sets, to a map f in Hol(∆r1,X). Let {fnk
}

be any subsequence of {fn}. Put K =
⋃∞

k=1 fnk
(∂∆s), where r < s < 1.

By the hypothesis and by the maximum principle it follows that
(K)∧PSH(X) is compact and

∞⋃

k=1

fnk
(∆s) ⊂ (K)∧PSH(X).

Again by Proposition 1.2, there is a hyperbolic neighbourhood W of
(K)∧PSH(X) in X. This implies that the family {fnk

} is equicontinuous. On

the other hand, since {fnk
(λ)} is relatively compact for each λ ∈ ∆s, by the

Ascoli theorem the family {fnk
: k ≥ 1} is relatively compact in Hol(∆s,X).

Thus there exists a subsequence {fnkl
} of {fnk

}∞k=1 which converges, uni-
formly on compact sets, to the map F in Hol(∆,X). The equality F |∆r1

= f
determines F uniquely, hence independently of the choices of the subse-
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quences {fnk
}. It follows that {fn} converges, uniformly on compact sets,

to the map F in Hol(∆,X).

We now recall the following definition.

2.4. Definition. Let X be a Banach analytic space. We say that X
has the Hartogs extension property (briefly HEP) if every holomorphic map
from a Riemann domain over a Banach space having a Schauder basis into
X can be extended to the envelope of holomorphy of that map.

The following assertion is deduced immediately from Theorem 2.3 and
the result of B. D. Tac [13].

2.5. Proposition. Let X be a pseudoconvex Banach manifold having

C1-partitions of unity. If X contains no complex line then X has HEP.

2.6. Theorem. Let π : X → Y be a proper holomorphic map from a

Banach manifold X having C1-partitions of unity onto a Banach analytic

space Y such that the fibre π−1(y) is hyperbolic for all y ∈ Y . If Y is

disc-convex , then so is X.

P r o o f. Assume that {fn} ⊂ Hol(∆,X) is a sequence such that {fn|∆r1
}

converges, uniformly on compact sets, to a map f in Hol(∆r1,X). Let {fnk
}

be any subsequence of {fn}. Put gk = π ◦ fnk
for all k ≥ 1. Since Y is

disc-convex, {gk} converges uniformly to a map G in Hol(∆,X).

Consider the family V of all pairs (V, F ), where V is an open subset
of ∆ containing ∆r1 and F ∈ Hol(V,X) is such that there exists a subse-
quence {fnkl

|V } of {fnk
|V } converging, uniformly on compact sets, to F in

Hol(V,X). We define an order relation in the family V by (V1, F1) ≤ (V2, F2)
if V1 ⊂ V2 and for every subsequence {fnkl

|V1
} of {fnk

|V1
} converging, uni-

formly on compact sets, to F1 in Hol(V1,X), the sequence {fnkl
|V2

} contains
a subsequence converging, uniformly on compact sets, to F2 in Hol(V2,X).

Assume that {(Vα, Fα)}α∈Λ is a well-ordered subset of V. Put V0 =⋃
α∈Λ Vα. Define a map F0 ∈ Hol(V0,X) by F0|Vα

= Fα for all α ∈ Λ. Take
a sequence {(Vi, Fi)}

∞
i=1 ⊂ {(Vα, Fα)}α∈Λ such that

(V1, F1) ≤ (V2, F2) ≤ . . . and
∞⋃

i=1

Vi = V0.

By assumption, there is a subsequence {f1
k |V1

} of {fnk
|V1

} converging to
F1 in Hol(V1,X). Consider the sequence {f1

k |V2
}. As above, it contains a

subsequence {f2
k |V2

} converging to F2 in Hol(V2,X). Continuing this process
we can find sequences {f i

k} such that {f i
k} ⊂ {f i−1

k } for all i ≥ 2 and {f i
k|Vi

}
converges to Fi in Hol(Vi,X). Then the sequence {f i

i } converges to F0 in
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Hol(V0,X). Thus (V0, F0) ∈ V and hence, the subset {(Vα, Fα)}α∈Λ has an
upper bound.

By the Zorn lemma, the family V has a maximal element (V, F ). Let
{Fnkl

|V } be a subsequence of {fnk
|V } converging uniformly to F in

Hol(V,X). We now prove that V is closed in ∆.

Indeed, take z0 ∈ V . By Proposition 1.6, there is an open neighbourhood
U of G(z0) in Y such that π−1(U) is hyperbolic. Since {gk} converges
uniformly to G in Hol(∆,Y ), there is an open neighbourhood W of z0 in
∆ such that gk(W ) ⊂ U for all k ≥ N . Hence fnk

(W ) ⊂ π−1(U) for all
k ≥ N . Since π is a proper map, {fnkl

(z) : l ≥ 1} is relatively compact in

π−1(U) for all z ∈W . By the equicontinuity of {fnkl
} for dπ−1(U), the family

{fnkl
: l ≥ 1} is relatively compact in Hol(W,π−1(U)). By the maximality

of the element (V, F ), we have W ⊂ V and hence, V = ∆.

Thus the sequence {fnkl
} converges, uniformly on compact sets, to the

map F in Hol(∆,X). The equality F |∆r1
= f determines F uniquely, hence

independently of the choices of the subsequences {fnk
}. It follows that {fn}

converges, uniformly on compact sets, to F in Hol(∆,X).

2.7. Remark. 1. The following counterexample shows that the condi-

tion of hyperbolicity of all fibres in Theorem 2.6 cannot be replaced by the

condition of disc-convexity of all fibres. Consider the canonical holomor-
phic map θ from the Hopf surface X = C \ {0}/(z ∼ 2z) onto CP 1. Then
θ−1(y) ∼= C \ {0}/(z ∼ 2z). Since the universal cover of C \ {0}/(z ∼ 2z) is
a Stein manifold, every fibre θ−1(y) ∼= C \ {0}/(z ∼ 2z), which is an elliptic
curve, satisfies the condition of disc-convexity.

We check that there exists a non-empty open subset V of CP 1 (V 6= CP 1)
such that θ−1(V ) is not disc-convex.

Otherwise consider the commutative diagram

Ω X

C
2

CP 1

j
��

f
//

θ
��

g
//

in which Ω = C
2 \ {0}; f : Ω → X is the canonical map; Ω̃ is the local

envelope of biholomorphy of f over C
2, the envelope of holomorphy of C

2 \
{0}; g : C

2 → CP 1 is the meromorphic extension of θf ; and j, θ are
canonical maps.

It is easy to see that f̃ : Ω̃ → X is locally pseudoconvex, i.e. for every
x ∈ X there is a pseudoconvex neighbourhood U of x in X such that f̃−1(U)

is pseudoconvex. By hypothesis, θf̃ : Ω̃ → CP 1 is locally pseudoconvex.
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Since X is homogeneous compact, as follows from [4], e : Ω → Ω̃ and
hence f : Ω → X extends holomorphically to C

2. This is impossible.

2. The disc-convexity is not closed under proper holomorphic maps. In-
deed, let Z = {(z, [w]) ∈ C × C \ {0}/(z ∼ 2z) : ziwj = zjwi, 1 ≤ i, j ≤ 2}
and θ : Z → C

2 be the canonical projection. We have

θ−1(z) =

{
C

2 \ {0}/(z ∼ 2z) if z = 0,
C \ {0}/(z ∼ 2z) if z 6= 0.

Clearly, θ−1(z) is disc-convex for each z 6= 0 but θ−1(0) is not disc-convex.

We now investigate the disc-convexity of the normalizations of complex
spaces.

2.8. Theorem. Let X be a (finite-dimensional) complex space. Then

X is disc-convex if and only if S̃iX is disc-convex for all i ≥ 0, where

S0X = X, S1X = S(X) is the singular locus of X, and SiX = S(Si−1X)
for all i ≥ 2.

P r o o f. Let X be a (finite-dimensional) disc-convex space. Then SiX

is disc-convex for every i ≥ 0. By Theorem 2.6, S̃iX, the normalization of
SiX, is also disc-convex for every i ≥ 0.

Now assume that S̃iX is disc-convex for every i ≥ 0. Given g ∈
Hol(∆,X), take i ≥ 0 such that g(∆) ⊂ SiX but g(∆) 6⊂ Si+1X. Con-
sider the diagram

∆×SiX S̃iX S̃iX

∆ SiX

g̃
//

θi

��

πi

��
g

//

Since πi is finite and proper, so is θi. By the normality of ∆ and by the
integrity lemma [3], it follows that θi : ∆ ×SiX SiX → ∆ is an analytic
covering map. This yields that card θ−1

i (z) = 1 for every z∈∆. Hence from

the normality of ∆ we deduce that g̃ ◦ θ−1
i : ∆→ S̃iX is holomorphic.

Let {ϕj} ⊂ Hol(∆,X) be a sequence such that the sequence {ϕj |∆r1
}

converges, uniformly on compact sets, to a map f in Hol(∆r1,X) for some
0 < r < 1. Let {ϕjn

} be any subsequence of {ϕj}. Put ϕjn
= fn for all

n ≥ 1. Then we can find i ≥ 0 and a subsequence {fnk
} of {fn} such that

fnk
(∆) ⊂ SiX but fnk

(∆) 6⊂ Si+1X for all k ≥ 1. Since SiX is closed in X,
f(∆r1) ⊂ SiX.
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Consider the commutative diagram

∆×SiX S̃iX S̃iX

∆ SiX

f̃nk //

θi

��

πi

��
fnk //

Reasoning as above, we deduce that gk = f̃nk
◦ θ−1

i : ∆→ S̃iX is holomor-
phic for every k ≥ 1. Take any point z ∈ ∆r1. By the results of Brody [1],
Urata [16] and Zăıdenberg [18], there is a complete hyperbolic neighbour-
hood U of f(z) in SiX such that π−1

i (U) is complete hyperbolic. Since the
sequence {fnk

|∆r1
} converges uniformly to the map f in Hol(∆r1, S

iX),
there is an open neighbourhood V of z in ∆r1 such that fnk

(V ) ⊂ U for all
k ≥ N . Hence gk(V ) ⊂ π−1

i (U) for all k ≥ N .
Suppose that the sequence {gk|V } contains a subsequence which is com-

pactly divergent.Without loss of generality we may assume that {gk|V } itself
is compactly divergent. Let K and L be two compact subsets in V and U re-
spectively. Since π−1

i (L) is compact, there is k0 such that gk(K)∩π−1
i (L)=∅

for all k > k0. This implies that fnk
(K) ∩ L = ∅ for all k > k0, and hence

the sequence {fnk
|V } is compactly divergent. This is impossible.

Thus {gk|V } contains a subsequence which is uniformly convergent in

Hol(V, S̃iX). Repeating the proof of Theorem 2.6 we can find a subse-
quence {gkl

} of {gk} such that {gkl
|∆r1

} converges uniformly to a map G

in Hol(∆r1, S̃iX). Since S̃iX is disc-convex, {gkl
} converges uniformly to a

map G̃ ∈ Hol(∆, S̃iX) in Hol(∆, S̃iX). Hence {fnkl
} converges uniformly

to πi ◦G̃ = F in Hol(∆,X). The equality F |∆r1
= f determines F uniquely,

hence independently of the choices of the subsequences {ϕjn
}. It follows that

{ϕj} converges, uniformly on compact sets, to the map F in Hol(∆,X).

Note that the analogous result for the tautness of normalizations of com-
plex spaces was proved in [14].
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Ergeb. Math. Grenzgeb. 53, Springer, 1970.
[10] B. Shabat, Introduction to Complex Analysis, Part II, Functions of Several Vari-

ables, Transl. Math. Monographs 110, Amer. Math. Soc., 1992.
[11] B. Sh i f fman, Extension of holomorphic maps into hermitian manifolds, Math.

Ann. 194 (1971), 249–258.
[12] N. S ibony, Prolongement des fonctions holomorphes bornées et métrique de Cara-
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