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Hardy class of functions defined by
the Salagean operator

by NorIiO NiwA (Niigata), TosHIYA JIMBO (Nara)
and SHIGEYOSHI OwA (Osaka)

Abstract. We derive some properties of the Hardy class of analytic functions defined
by the Salagean operator.

1. Introduction. Let A be the class of functions f(z) of the form
(1.1) flz)= z+2akzk
k=2

that are analytic in the open unit disk U = {z : |z| < 1}.
For f(z) € A, the Salagean operator D™ (cf. [6]) is defined by

(1.2) D°f(2) = f(2),
(1.3) D'f(z) = Df(2) = zf'(2),
(1.4) D"f(z) = D(D" 'f(z)) (neN={1,2,3...}).

A function f(z) belonging to A is said to be starlike of order « if it
satisfies
2f'(2)
(1.5) Re{ B }>a (ze€U)
for some o (0 < o < 1). We denote by S*(a) the subclass of A consisting
of functions which are starlike of order « in U.
A function f(z) € A is said to be convex of order « if it satisfies

21"(2)
f'(z)
for some o (0 < o < 1). Also we denote by K («) the subclass of A consisting

of all such functions. Note that f(z) € K(«) if and only if zf'(z) € S*(«)
for0 <a<1.

(1.6) Re{1+ }>a (ze€U)
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Let H? (0 < p < 00) be the class of all analytic functions in U such that
(1.7) 1 fllp = rlil?_ My(r, f) < oo,

where (cf. [1])
2m

1/p
(1.8) M, (r, f) (% S | f(ret®)|P d9> (0 < p < o0),
) L f) = )
mi}i‘f(z)‘ (p = 0).

|2

2. Some lemmas. To discuss our problems for the Hardy class H?, we
need the following lemmas.

LEMMA 1 ([7]). If f(2) € K(«), then f(z) € S*(3), where

1—-2a
et (e # 1/2),
(2.1) B=p) =4 227D
210g 2 (a=1/2).

This result is sharp.
LEMMA 2 ([2]). If f(z) € S*(a) and is not of the form

(2.2) f(z) = -

(1— zeit)2(-a)’
then there exists § = 6(f) > 0 such that f(z)/z € HO+1/(2(=a)),
LEMMA 3 ([5]). If p(2) is analytic in U with p(0) = 1 and

, 1—2log2
(2.3) Re(p(z) + zp'(2)) > 30 —log2) (ze€U),
then Re(p(z)) >0 (z € U).
REMARK. We have
1-2log2
m - 0-629 “ e

LEMMA 4 ([1]). Every analytic function p(z) with positive real part in U
is in HP for all 0 < p < 1.

LeMMA 5 ([4)). If f(2) € A satisfies 2" f(z) € HP (0 < p < 00) for a real
r, then f(z) € HP (0 < p < c0).

LEMMA 6 ([1)). If f'(z) € HP for some p (0 < p < 1), then f(z) €
H (q=p/(1-p)).

LEMMA 7 ([3]). Let w(2) be analytic in U with w(0) = 0. If |w(z)| attains
its mazimum value on the circle |z| =r (0 <r < 1) at a point zg, then

zow'(z0) = kw(zo),  where k is real and k > 1.
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3. Hardy class. Our first result for the Hardy class is
THEOREM 1. Let f(z) € A satisfy

(3.1) Re{%{x)}>ao (zeU)

for some apg (0 < ag < 1), and let

(3.2) ;= 2(2111‘2“2?2_i (AR,
STog? (@j1 =1/2),

forj=1,...,n. If D"~ f(z) is not of the form

(3.3) Dif(z) = -

(1 — zeit)2(1-ay)”
then there exists 6 > 0 such that D"~ f(z) € HO+t1/(0~a;))
Proof. Note that
(34) D" f(z) = D(D"f(2)) = 2(D" f(2))’
= 2(D"7Hf(2)) + 24D f(2))"
and
(3.5) D"f(z) = 2(D" 7 f(2))".
This implies that
DL f (2 2(D™ L F(2))

o) re{ Tt} e {1 Ty f 2
so that D"~ !f(z) € K(ag). Therefore, an application of Lemma 1 leads to

D"l f(2) € K(ag) = D" 1 f(2) € S*(ay)
& D" 2 f(2) € K(ay)
= D"2f(2) € §* ()

& D" f(2) € K(aj_1)
= D" f(z) € S*(ay).
Further, by using Lemmas 2 and 5, we know that there exists § > 0 such
that D7 f(z) € HOH1/(2(=a5)) o
Taking j = n in Theorem 1, we have

COROLLARY 1. Let f(z) € A satisfy (3.1) for some ap (0 < ap < 1),
and let o, be as in (3.2). If f(z) is not of the form (3.3), then there exists
§ > 0 such that f(z) € HOTY/(0—an),



28 N. Niwa et al.

Next, we derive

THEOREM 2. Let f(z) € A satisfy

DHLf(2) 1—2log?2
(3.7) Re{ . }>2(1—log2) (z€U).
Then there exists p; (j =1,...,n+1) such that D"t f(2) € HPi  where
1
3.8 —_— k=1,...,7).
( ) P < j_ E+1 ( ) a])
Proof. Define
(3.9) p(z) = D" f(2)/z.
Then p(z) is analytic in U and p(0) = 1. Since
Dt f(2) 1—2log2

A — L = / et =

(3.10) Re{ . } Re(p(z) + 2p'(2)) > 20 —log2)’

Lemma 3 gives
(3.11) Re(p(2)) =Re{D" f(2)/2} >0 (2 €U).
Since D"f(2)/z = (D" 1f(2))’, an application of Lemma 4 implies that
(D" 1f(2)) € HP', so by Lemma 6,

D" f(z) € H”  (p2 =p1/(1—p1)).
Further, since D" 1f(z) = z(D" 2f(z))’, using Lemma 5, we obtain
(D"2f(z2)) € HP2. Continuing this process, we conclude that D"~7+2 f(z)

€ HPi-* and 0 < pj_; < 1/2. Thus, finally we have D"~ *1 f(z) € HPi (0 <
pj < 1). This completes the proof. m

Letting j = n + 1 in Theorem 2, we have
COROLLARY 2. Let f(z) € A satisfy (3.7). Then there exists p,y1 such
that f(z) € HP»+', where
1

—_— k=1,... 1).
n—Fk+2 ( oamtl)

Pr <

4. Hardy class of bounded functions. Our next theorem for the
Hardy class of bounded functions is

THEOREM 3. Let f(z) € A satisfy

D2 f(2) Sag — 2a¢ — 1
for some ag (1/3 < ap < 1/2), or
D2 f(2) ap — 203 + 1
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for some ag (1/2 < ag < 1). If D77 f(2) is not of the form (3.3), then there
exists 6 > 0 such that D" f(z) € HOTY/(COU=)) (j =1,... n), where a;
is given by (3.2).
Proof. Define the function w(z) by
DM f(z) 14 (1—2ap)w(z)
= 1).
Then w(z) is analytic in U and w(0) = 0. It follows from (4.3) that
D2 f(2) w(z) 2w’ (2)
4.4 —— L - 1= — =) 2(1 -
- R () [ CEREER
N (1 —=2ap)(1 —w(2)) (2w (2)
14 (1 —2ap)w(z) '
Suppose that there exists a point zg € U such that
max [w(2)] = o) =1 (w(z0) # 1)

|2]<[20

(4.3)

Then Lemma 7 yields w(z) = €' and
zow' (20) = kw(zg) (k> 1).
Therefore, we have

D2 f(20) B 1‘ _ ‘ w(zo) zow' (z0)
Dt f(20) 1 — w(z) w(z)

(1 —2a0)(1 — w(z0)) (Zow'(zo)> ‘

(4.5)

‘2(1 —ag) +

1+ (1= 2a0)w(z0) \ w(zo)
e’ (1 - 2a0)(1 — €')
=|—7=12(1 — k+k .
‘1—619 (1—ao)+k+ 14 (1 —2ag)e
21 —ao) +k k|l —2ay|
1 —e 11+ (1 —2ap)e?|
S 2(1—ag) +k k[l —2q
- 2 20 '
For 1/3 < ap < 1/2, we have
Dn+2 ) 2 1
(4.6) flz0) > Sap — 205 7
D+ f(z0) 20
and for 1/2 < ag < 1, we have
n+2 _ 2
(47) D f(Z()) 1> Q) 2040 + 1
D+l f(z) 2a

Since the above contradicts our assumptions (4.1) and (4.2), we conclude
that |w(z)| < 1 for all z € U. This implies that
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Dn+1f(z)
RG{W}>CXU (ZGU)
Note that (4.8) is equivalent to D" f(z) € S*(ap). In the same manner,
in the proof of Theorem 1, we conclude that D"77 f(z) € S*(a;). Thus,
applying Lemmas 2 and 5, we can complete the proof. m

(4.8)

If we put j = n in Theorem 3, then we have

COROLLARY 3. Let f(z) € A satisfy the condition (4.1) for some
ap (1/3 < ap < 1/2) or (4.2) for some ag (1/2 < ap < 1). If f(2) is not
of the form (3.3), then there exists § > 0 such that f(z) € HOTY/(0=an)),
where ay, is given by (3.2).
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