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A note on convergence of semigroups

by Adam Bobrowski (Lublin)

Abstract. Convergence of semigroups which do not converge in the Trotter–Kato–
Neveu sense is considered.

1. Introduction. The classical Trotter–Kato–Neveu theorem ([23],
pp. 44–46, [34], p. 502, [55], p. 269, [48], p. 87, [20], p. 83, [46]) states that a
sequence {Tn(t) : t ≥ 0}, n ≥ 1, of equibounded semigroups (‖Tn(t)‖ ≤M)
converges strongly and almost uniformly with respect to t ∈ R

+ := [0,∞)
iff their resolvents Rλ,n converge strongly and the image RangeRλ of the
limit pseudoresolvent is dense in the Banach space L they act in.

If L′ := RangeRλ 6= L, the assertion of the theorem remains valid for
f ∈ L′ ([38], [16], [23], p. 34, or [10–11]), but in general for f 6∈ L′ the limit
limn→∞ Tn(t)f may exist neither in the strong nor in the weak topology
([9], p. 319). This is due to the fact that the convergence of the resolvents
of the semigroups {Tn(t) : t ≥ 0} alone is equivalent to the convergence of

Lipschitz continuous once-integrated semigroups
Tt
0
Tn(s) ds, rather than the

semigroups themselves ([38], p. 29, Prop. (2-22) or [11, 15]), or as noted by
J. Kisyński (personal communication), to the convergence of all sequences
of the form

T∞
0
φ(t)Tn(t)f dt where φ ∈ L1(R+) and f ∈ L (cf. also [8], Th.

4.1, and Th. 3 below).
On the other hand, a considerable number of instances of semigroups

have been found converging for all f ∈ L in spite of the fact that L′ 6= L
([9–10]). No source of this phenomenon, general enough to cover all impor-
tant examples, seems to be known; in [9–10] different arguments were used
for each case separately. The similarity of this phenomenon to the loss of
regularity during the process of convergence, as studied e.g. in [1–3, 14, 27,
53], is merely superficial, for the phenomenon in question is not related to
weaker stability conditions, the semigroups remaining equibounded, but to
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the sole fact that L′ 6= L. The limit semigroup fails to belong to either of
the known classes of semigroups, as presented in [32], since the domain of
its infinitesimal generator is not dense in L (however, compare [9] with [12,
19, 41–43]). Our knowledge of general properties of such a convergence is
also rather limited.

This paper aims at answering some related questions. First of all, we
prove that if the convergence holds for all f 6∈L′, then it is almost uniform
in (0,∞) (Proposition 2). Furthermore, we provide a necessary and suffi-
cient condition for the existence of such a limit in terms of Abel summa-
bility (Proposition 3), and a natural sufficient condition for semigroups in
question to be equidifferentiable (Proposition 4), which, thanks to Pazy’s
characterization of generators of differentiable semigroups, can be expressed
in terms of the resolvents of {Tn(t) : t ≥ 0}. Since the convergence of the
resolvents of semigroups is necessary for the convergence of the semigroups,
this gives a complete characterization of the convergence of equidifferentiable
semigroups.

Section 3 is devoted to applications to the convergence of ergodic av-
erages and asymptotic stability of bounded semigroups. It is shown that,
in contrast to convergence in the Trotter–Kato–Neveu sense, theorems con-
cerning the almost uniform (in t ∈ (0,∞)) convergence of semigroups can
be applied to prove results on the asymptotic behaviour of the semigroups,
such as asymptotic stability or asymptotic decay.

For instance, it is proved that the existence of the limit limt→∞ T (t)f
for a holomorphic semigroup {T (t) : t ≥ 0} is equivalent to the existence of
limε→0 ε(ε−A)−1f where A is the generator of the semigroup.

Throughout the paper it is assumed that approximating semigroups and
the limit semigroup act in the same Banach space. Although such a setting is
not customary in approximation theory (see e.g. [48], p. 94), it fits well the
applications presented in Section 3. It was chosen for simplicity with the
hope that the reader will himself look for straightforward generalizations
when needed.

2. The main results. Suppose we are given a sequence of equibounded
semigroups {Tn(t) : t ≥ 0}, ‖Tn(t)‖ ≤ M, with respective generators An,
acting in a complex Banach space L. Assume furthermore that

(2.1) lim
n→∞

(λ−An)−1f =: Rλf exists for all f ∈ L and Reλ > 0.

This is equivalent to the apparently weaker assumption that the above limit
exists for a fixed λ with Reλ > 0 (see e.g. [48], p. 87, Th. 4.3).

We are interested in convergence of {Tn(t) : t ≥ 0} (not necessarily
almost uniform in R

+).
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Let us begin by noting that, in contrast to the case of the Trotter–Kato–
Neveu theorem, the existence of the limit in question is not a property of
the limit pseudoresolvent. This is proved by the following simple example.

Example 1 (cf. [9], p. 319). Let {T (t) : t ≥ 0} be a C0 contraction
semigroup acting in a Banach space L′, and let

L := L′ × C,

∥∥∥∥
(
f

z

)∥∥∥∥
L

= ‖f‖L′ + |z|.

The semigroups

Tn(t)

(
f

z

)
=

(
T (t)f

e−ntz

)
and Sn(t)

(
f

z

)
=

(
T (t)f

eintz

)

acting in L have the resolvents

Rλ,n

(
f

z

)
=

(
(λ−A)−1f

1
λ+nz

)
and R′

λ,n

(
f

z

)
=

(
(λ−A)−1f

1
λ−inz

)
,

respectively, and the same limit pseudoresolvent

Rλ

(
f

z

)
=

(
(λ−A)−1f

0

)

where A is the generator of {T (t) : t ≥ 0}. On the other hand, however,

lim
n→∞

Tn(t)

(
f

z

)
=

(
T (t)f

0

)
, z ∈ C, f ∈ L, t > 0,

while the corresponding limit of {Sn(t) : t ≥ 0} exists only on L′ × {0}.
Thus, by taking the limit of the resolvent we loose information, at least

partially. The operator A in the Banach space L of all convergent sequences
(fn)n≥1, fn ∈ L, defined by [35, 38]

(2.2)
D(A) = {(fn)n≥1 ∈ L : fn ∈ D(An), (Anfn)n≥1 ∈ L},
A(fn)n≥1 = (Anfn)n≥1,

provides us with much more data. The space L is equipped with the usual
supremum norm ‖(fn)n≥1‖L = supn∈N ‖fn‖L.

By assumption (2.1), one can define a pseudoresolvent Rλ in L by

Rλ(fn)n≥1 = (Rλ,nfn)n≥1 for Reλ > 0.

It can be checked that

Rλ(λ−A)(fn)n≥1 = (fn)n≥1 for all (fn)n≥1 ∈ D(A),

(λ−A)Rλ(fn)n≥1 = (fn)n≥1 for all (fn)n≥1 ∈ L.
Thus, by equicontinuity of {Tn(t) : t ≥ 0} we have

(2.3) ‖(λ−A)−n‖ ≤M/(Reλ)n for Reλ > 0.
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The operator A is therefore closed, and by the Arendt theorem [4] (see also
[11, 13, 41–43] for simple alternative proofs), it is the infinitesimal generator
of a Lipschitz continuous integrated semigroup {U(t) : t ≥ 0}. One can prove
that

U(t)(fn)n≥1 =
( t\

0

Tn(s)fn ds
)

n≥1
for all (fn)n≥1 ∈ L.

Furthermore, the operator A0, the part of A in L′ = D(A) (that is, D(A0) =
{(fn)n≥1 ∈ D(A) : A(fn)n≥1 ∈ L′}, A0 = A|D(A0)) is the infinitesimal
generator of a strongly continuous semigroup {T0(t) : t ≥ 0} acting in L′:

L′ = D(A) = Range(λ−A)−1 = {(fn)n≥1 : lim
n→∞

fn ∈ RangeRλ},

T0(t)(fn)n≥1 = (Tn(t)fn)n≥1 for (fn)n≥1 ∈ L′.

Observe that the ranges above do not depend on λ with Reλ > 0. The
straightforward proof of these facts may be found in [11].

The following theorem was proved in [12].

Theorem 1. Let A be a closed operator in a Banach space L such that

(2.3) is satisfied. Let L′⊂L be a subspace and {T0(t) : t ≥ 0} be the strongly

continuous semigroup acting in L′ generated by A0, the part of A in L′. The

following statements are equivalent :

(i) there exists a unique strongly measurable semigroup {T (t) : t ≥ 0}
(discontinuous at t = 0 iff L′ 6= L) such that

Rλf̃ = (λ−A)−1f̃ =

∞\
0

e−λtT (t)f̃ dt for f̃ ∈ L, λ > 0,

(ii) for all f̃ in a dense subset of L and t > 0 the limit

(2.4) lim
λ→∞

λT0(t)Rλf̃ (λ real)

exists,

(iii) the above limit exists for all f̃ ∈ L,
(iv) for all f̃ ∈ L, λ > 0, and t > 0,

T0(t)Rλf̃ ∈ D(A0).

Furthermore, the semigroup {T (t) : t ≥ 0} in (i) is given by

(2.5) T (t)f̃ = lim
λ→∞

λT0(t)Rλf̃ (λ real ).

Proposition 1. The semigroups {Tn(t) : t ≥ 0} converge for all f ∈ L
iff for the operator A defined by (2.2) there exists a semigroup {T (t) : t ≥ 0},
acting in L, described in Theorem 1.
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P r o o f. (The “if” part) By Theorem 1(i) we have (f̃ = (fn)n≥1)

∞\
0

e−λtT (t)(fn)n≥1 dt = (λ−A)−1(fn)n≥1 = (Rλ,nfn)n≥1

=
( ∞\

0

e−λtTn(t)fn dt
)

n≥1

and, by injectivity of the Laplace transform, T (t)(fn)n≥1 = (Tn(t)fn)n≥1.
In particular, for all f ∈ L, (Tn(t)f)n≥1 belongs to L, i.e. limn→∞ Tn(t)f
exists.

(The “only if” part) If for f ∈ L, (Tn(t)f)n≥1 belongs to L, then so
does (Tn(t)fn)n≥1 for all (fn)n≥1 ∈ L. For t ≥ 0 define T (t) : L → L and
T0(t) : L→ L, by

T (t)(fn)n≥1 = (Tn(t)fn)n≥1, T0(t)f = lim
n→∞

Tn(t)f.

It is evident that T (t+s) = T (t)T (s) and T0(t+s) = T0(t)T0(s) for s, t ≥ 0.
Furthermore, t 7→ T0(t)f , being the pointwise limit of continuous, and thus
measurable, functions, is itself strongly measurable ([32], p. 72, Th. 3.5.4).
Therefore, by [32], p. 305, Th. 10.2.3, it is strongly continuous for t > 0.

We now prove the same statement for {T (t) : t ≥ 0}. Note that by the
Pettis theorem ([32], p. 72, Th. 3.5.3) a Banach space valued function is
strongly measurable iff it is weakly measurable and almost separably-valued.
Fix (fn)n≥1 ∈ L and let f = limn→∞ fn. The vectors T0(w)f where w is
rational form a dense set in Z = {g ∈ L : g = T0(t)f, t > 0}. Let Z
be the set of all sequences (fn)n≥1 which are ultimately constant of the
form T0(w)f and initially of the form fn = Tn(wn)fn, where the wn are
rational.

Note that Z is countable and that its closure contains the set W =
{(hn)n≥1 : (hn)n≥1 = T (t)(fn)n≥1, t > 0}. Indeed, for t, ε > 0 there is
n0 ∈ N such that for n > n0, ‖Tn(t)fn − T0(t)f‖ < ε. Consequently, there
is a rational w such that ‖Tn(t)fn − T0(w)f‖ < ε for n ≥ n0, and since we
may find rational numbers w1, . . . , wn0

such that ‖Tn(t)fn −Tn(wn)fn‖ < ε

for n ≤ n0 one sees that h̃ = (hn)n≥1 where hn = Tn(wn)fn or hn = T0(w)f

if n ≤ n0 or n > n0, respectively, belongs to Z and ‖T (t)(fn)n≥1 − h̃‖ < ε,
as desired.

Furthermore, t 7→ T (t) is weakly measurable. Indeed, any functional
Ψ ∈ L∗ may be represented in the form Ψ(fn)n≥1 = ψ0(f) +

∑∞
n=1 ψn(fn)

where f = limn→∞ fn, ψi ∈ L∗, and
∑∞

n=0 ‖ψn‖L∗ <∞, which implies that
t 7→ Ψ [(Tn(t)fn)n≥1] is a pointwise limit of measurable functions. Thus, we
get the strong measurability of {T (t) : t ≥ 0} from Pettis’s theorem.
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Finally,

∞\
0

e−λtT (t)(fn)n≥1 dt =
(∞\

0

e−λtTn(t)fn dt
)

n≥1
= (Rλ,nfn)n≥1

= (λ−A)−1(fn)n≥1

and the proposition follows.

Corollary 1. For all t > 0 and (fn)n≥1 ∈ L we have T (t)(fn)n≥1 ∈ L′,
and , consequently , T0(t)f ∈ L′ for all f ∈ L and t > 0.

P r o o f. This follows directly from (2.5) and Proposition 1.

Proposition 2. If the limit limn→∞ Tn(t)f exists for all f ∈ L, then

it is uniform in t ∈ (0,∞). Furthermore, for f ∈ L′, the limit is almost

uniform in t ∈ [0,∞).

P r o o f. The semigroup {T (t) : t ≥ 0}, being measurable, is strongly
continuous for t > 0, and thus uniformly continuous on any compact subin-
terval of (0,∞). The same applies to {T0(t) : t ≥ 0}. Fix f ∈ L and r > 1.
For any ε > 0, there exists a δ such that

‖T (t)(f)n≥1 − T (s)(f)n≥1‖ < ε/3, ‖T0(t)f − T0(s)f‖ < ε/3,

whenever |s− t| < δ and 1/r ≤ s, t ≤ r. Therefore, for such s, t and all n ≥ 1
we get, recalling that T (t)(fn)n≥1 = (Tn(t)fn)n≥1,

‖Tn(t)f − T0(t)f‖ ≤ ‖Tn(t)f − Tn(s)f‖ + ‖Tn(s)f − T0(s)f‖(2.6)

+ ‖T0(s)f − T0(t)f‖
≤ 2

3ε+ ‖Tn(s)f − T0(s)f‖.
Set si = 1/r + iδ/2, i = 1, . . . , [(2/δ)(r − 1/r)] where [·] is integer part. For
any t ∈ [1/r, r], there exists an i such that |si − t| < δ. Since one can choose
an n0 such that supi ‖Tn(si)f − T0(si)‖ < ε/3 for n ≥ n0, by (2.6) we get

sup
t∈[1/r,r]

‖Tn(t)f − T0(t)f‖ < ε for n ≥ n0,

as desired.

Analogously, the last assertion of the proposition follows from the fact
that the semigroups {T (t)|L′ : t ≥ 0} and {T0(t)|L′ : t ≥ 0} are strongly
continuous for t ≥ 0.

Thus, in all the examples presented in [9–10], the limit is actually almost
uniform in t ∈ (0,∞). In some cases, like the generalized telegraph equa-
tion with small parameter, this result is not easily seen from the original
arguments as presented in [9].
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Example 2. Suppose that A is a closed operator such that

(λ−A)−1f =

∞\
0

e−λtT (t)f dt for all f ∈ L

where {T (t) : t ≥ 0} is a semigroup of equibounded operators, measurable
yet in general discontinuous at 0. Consider the Yosida approximation eAλt

where Aλ = λ2(λ − A)−1 − λ. Since the semigroup {T (t) : t ≥ 0}, being
measurable, is strongly continuous for t > 0 ([32], p. 305, Th. 10.2.3), it
follows from [32], Th. 6.3.3 (or [49]) that limλ→∞ eAλtf = T (t)f, and the
limit is almost uniform in t ∈ (0,∞).

A special case of a semigroup generated by a sectorial operator was
considered in [10]; the proof was based on an approximation theorem for
uniformly holomorphic semigroups given in [9] (see Proposition 5 below).

Proposition 3 (cf. [37], p. 359, Lemma 2.11). Suppose that (2.1) holds.

The sequences (Tn(t)f)n≥1 converge for all f ∈ L iff the semigroups {Tn(t) :
t ≥ 0} are uniformly Abel summable for t > 0 in the sense that

(2.7) lim
λ→∞

sup
n≥1

‖Tn(t)λ(λ−An)−1f − Tn(t)f‖

= lim
λ→∞

sup
n≥1

∥∥∥
∞\
0

λe−λsTn(t+ s)f ds− Tn(t)f
∥∥∥ = 0.

P r o o f. We first prove the “if” part. Let A be defined by (2.2). Since

(2.8) (Tn(t)λ(λ−An)−1f)n≥1 = T0(t)λRλ(f)n≥1

(see Theorem 1), (2.7) implies that the limit (2.4) exists for constant se-
quences. Furthermore, the sequences converging to 0 belong to L′ and thus
satisfy an even stronger condition:

lim
λ→∞

sup
n∈N

‖λ(λ−An)−1fn − fn‖L

= lim
λ→∞

‖λ(λ−A)−1(fn)n≥1 − (fn)n≥1‖L = 0,

which follows from the strong continuity of {T0(t) : t ≥ 0} on L′. Therefore,
(ii) of Theorem 1 is satisfied because the constant sequences and sequences
converging to 0 form a dense subset of L. Theorem 1 and Proposition 1
complete the proof of the “if” part.

Conversely, if (Tn(t)f)n≥1 converges for t > 0 and f ∈ L, then, by
Proposition 1, the family {T (t) : t ≥ 0} where T (t)(fn)n≥1 = (Tn(t)fn)n≥1

is the semigroup generated by the operator A in the sense of Theorem 1.
Applying (iii) to a constant sequence f̃ = (fn)n≥1 = (f)n≥1 we get (2.7).
Indeed, for all n, Tn(t)λ(λ − An)−1f → Tn(t)f as λ → ∞, and, by (2.8),
the existence of the limit (2.4) (in the space L equipped with the supremum
norm) implies that the convergence is uniform in n ∈ N.
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Note that if (2.7) holds for any fixed t0 > 0 then it holds for all t > t0, but
not necessarily for t < t0. This explains to some extent how discontinuity at
t = 0 of the limit semigroup comes into existence.

A few remarks on differentiable semigroups are now in order since our
next proposition is devoted to the convergence of equidifferentiable semi-
groups. Recall that the semigroup {T (t) : t ≥ 0} generated by an operator
A is said to be differentiable iff T (t)f ∈ D(A) for all f ∈ L and t > 0.
Differentiable semigroups were studied e.g. by Hille [31], Yosida [54], and
Pazy [47] (see also [48], p. 57, Th. 4.8), who gave necessary and sufficient
conditions for an operator A to generate a differentiable semigroup.

Furthermore, there exists a close connection between differentiable semi-
groups and the well-known class of analytic semigroups: any holomorphic
(analytic) semigroup is differentiable, and a differentiable semigroup is ana-
lytic iff there exists a constant C > 0 such that ‖AT (t)‖ ≤ C/t for all t > 0
([48], p. 61, Th. 5.2). Let us also mention the recent paper by M. Renardy
[50] who presented an interesting example showing that the class of differ-
entiable semigroups is not stable under bounded perturbations. The paper
[21] is devoted to the same subject.

The necessary and sufficient conditions for an operator A to generate
a differentiable semigroup, due to A. Pazy, are presented in the following
theorem.

Theorem 2. Let A be the infinitesimal generator of a strongly contin-

uous semigroup {T0(t) : t ≥ 0} satisfying ‖T0(t)‖ ≤ M. The semigroup is

differentiable iff for all b > 0 there exist constants ab ∈ R and Cb > 0 such

that

(2.9) ̺(A) ⊃ Σb := {λ : Reλ > ab − b log |Imλ|}
and

(2.10) ‖Rλ(A)‖ ≤ Cb|Imλ| for λ ∈ Σb, Reλ ≤ 0.

Corollary 2. Let A satisfy (2.3). If the semigroup {T0(t) : t ≥ 0} gen-

erated by the operator A0 is differentiable then the semigroup {T (t) : t ≥ 0}
described in statement (i) of Theorem 1 exists.

P r o o f. Since RangeRλ(A) ⊂ L′, it is obvious that our assumptions
imply statement (iv) of Theorem 1, and the corollary follows.

Proposition 4. If the semigroups {Tn(t) : t ≥ 0} are equidifferentiable

in the sense that for all b > 0 there exist constants ab ∈ R and Cb > 0 such

that for all n ∈ N,

̺(An) ⊃ Σb := {λ : Reλ > ab − b log |Imλ|}
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and

(2.11) ‖Rλ,n‖ ≤ Cb|Imλ| for λ ∈ Σb, Reλ ≤ 0, n ≥ 1,

then (2.1) holds iff limn→∞ Tn(t)f exists for all t > 0 and f ∈ L. Further-

more, for f ∈ L′ = RangeRλ the limit is almost uniform in t ∈ [0,∞).

P r o o f. From Rλ,nf =
T∞
0
e−λtTn(t)f dt, Reλ > 0, f ∈ L, it is evident

that (2.1) is necessary for the convergence of Tn(t).
Conversely, suppose that (2.1) holds. The “only if” part consists of 3

steps.

Step 1. Fix b > 0. Consider a purely imaginary λ0 ∈ Σb. We shall prove
that limn→∞Rλ0,nf exists for all f ∈ L, and thus λ0 ∈ ̺(A) where A is
defined by (2.2). Setting s = 1/(4|Im λ0|Cb) and λ1 = λ0 + s yields, by
(2.11),

Rλ1,n =

∞∑

k=0

(−s)kRk+1
λ0,n, ‖Rλ1,n‖ ≤ ‖Rλ0,n‖

∞∑

k=0

1

4k
≤ 4

3
|Imλ0|Cb.

Thus, Rλ0,n =
∑∞

k=0 s
kRk+1

λ1,n, the series
∑∞

k=0(1/3)
k being a majorant to

the series on the right-hand side. This implies the convergence of Rλ0,n,
since Reλ1 > 0.

Accordingly, setting Rλ0
(fn)n≥1 = (Rλ0,nfn)n≥1 we get a bounded op-

erator in L, with ‖Rλ0
‖ ≤ Cb|Imλ0|, which is both the right and left inverse

of λ0 −A.
Step 2. Keep b > 0 fixed. Let Sb = Σb ∩ {λ : Reλ ≤ 0}. Since ̺(A) is

open in C, S′
b = Sb ∩ ̺(A) is open in Sb. We now show that S′

b = Sb. Since
Sb is connected and S′

b is non-empty (by Step 1), it is enough to prove that
S′

b is closed in Sb. This is actually a classical argument (see e.g. [48], p. 87,
[23], p. 12, Lemma 2.3).

For λ ∈ Sb and (fn)n≥1 ∈ D(A),

(2.12) ‖(λ−A)(fn)n≥1‖L = sup
n∈N

‖(λ−An)fn‖L ≥ 1

Cb|Imλ| ‖(fn)n≥1‖L.

Since A is closed, the set Range(λ−A) is closed (see e.g. [23], p. 11, Lemma
2.2). Suppose λn → λ, λn ∈ S′

n, λ ∈ Sb. We need to prove that λ ∈ ̺(A).
By (2.12) it is enough to show that Range(λ− A) is dense in L and, thus,
it equals L.

For g̃ ∈ L put g̃n = (λn −A)−1g̃ to obtain (cf. [23], p. 12)

(2.13) ‖g̃− (λ−A)g̃n‖ = ‖(λ−λn)g̃n‖ ≤ Cb|Imλn| · |λ− λn| · ‖g̃‖ −→
n→∞

0,

which completes the proof.

Step 3. By Steps 1 and 2, Sb ⊂ ̺(A) for all b > 0 and

(2.14) ‖(λ−A)−1‖ ≤ Cb|Imλ|.
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Since the operator A0, the part of A in L′ = D(A), satisfies (λ− A0)
−1 =

(λ − A)−1
|L′
, Theorem 2 and the estimate (2.14) prove that the semigroup

generated by A0 is differentiable. By Corollary 2, for the operator A de-
fined by (2.2) the semigroup described in Theorem 1(i) exists. Proposition 1
completes the proof.

Proposition 5 ([9], Proposition 4). Let {Tn(t) : t ≥ 0} be strongly con-

tinuous equibounded semigroups with ‖Tn(t)‖ ≤ M . Suppose that they are

uniformly holomorphic, i.e. the resolvent sets of the corresponding infinites-

imal generators contain not only the half plane Reλ > 0 but also a sector

|arg λ| < π/2 + ω where ω > 0, and that , for any δ > 0,

‖(λ−An)−1‖ ≤Mδ/|λ| for |arg λ| < π/2 + ω − δ,

with ω independent of n and Mδ independent of λ. Then Tn(t) converges

for f ∈ L and t > 0 iff (2.1) holds.

P r o o f. The necessity of (2.1) is proven as in Proposition 2. The suffi-
ciency argument also follows the lines of Proposition 2: for fixed δ > 0 the
set S′

δ = Sδ ∩ ̺(A) where Sδ = {λ : |arg λ| < π/2 + ω − δ} is both closed
and open in Sδ (cf. (2.13)—replace Cb|Imλn| by Mδ/|λn|). Condition (2.1)
implies that S′

δ is non-empty and thus equals Sδ. Consequently, Sδ ⊂ ̺(A)
and

‖(λ−A)−1(fn)n≥1‖ = ‖((λ−An)−1fn)n≥1‖ ≤ Mδ

|λn|
‖(fn)n≥1‖ for λ ∈ Sδ.

The semigroup generated by A0 is therefore holomorphic (see e.g. [34],
p. 488, or [48], p. 60) and, in particular, differentiable. Thus, the arguments
at the end of Proposition 4 can be applied.

Remark 1. One can prove the above proposition by using the explicit
formula for {Tn(t) : t ≥ 0}, i.e. by employing the Dunford integral—this
was done in [9]. One may also obtain it as a corollary of Proposition 4
by proving that uniformly holomorphic semigroups are equidifferentiable.
Note, however, that while the last idea seems to be natural, the calculations
it leads to, though straightforward, are rather long.

3. Convergence theorems and asymptotic analysis. In this sec-
tion we study the asymptotic behaviour of semigroups, as viewed from the
standpoint of the related approximation theory briefly presented in the fore-
going part of the paper. First of all, note that in dealing with the asymptotic
behaviour of a semigroup {T (t) : t ≥ 0} of equibounded operators it seems
natural to use the sequence {Tn(t) : t ≥ 0} of semigroups defined by

(3.1) Tn(t) = T (nt),
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as a tool allowing the use of approximation theorems for semigroups. How-
ever, this idea fails to be fruitful if we restrict ourselves to applications of
the Trotter–Kato–Neveu–Kurtz theorem. (We add Kurtz’s name here since
he was, to the best of our knowledge, the first to mention the effect of the
convergence of the integrals

Tt
0
Tn(s)f ds even when the semigroups them-

selves do not converge, as described in Theorem 3 below—see [38], p. 29.)
The reason is that, as will become clear from the proof presented below,
the Trotter–Kato–Neveu–Kurtz theorem may be viewed as a special case of
Proposition 6 (below) plus a density argument leading to the convergence of
the semigroups themselves; Proposition 6 states that the Laplace transforms
of a sequence of equibounded functions converge iff the functions converge
in the mean. In the case of the semigroups (3.1) the density argument works
only for the kernel of the generator of the semigroup {T (t) : t ≥ 0} and is
of little use. Therefore, the Trotter–Kato–Neveu–Kurtz theorem leads only
to mean ergodic theorems.

On the other hand, the theorems presented in the preceding section
turn out to be of different nature and when applying them we can use the
semigroups (3.1).

Proposition 6. Let Fn(t) be equibounded measurable functions defined

on [0,∞) with values in a Banach space L. The following are equivalent :

(i) limn→∞
T∞
0
e−λtFn(t) dt exists for all λ > 0,

(ii) limn→∞
Tt
0
Fn(s) ds exists for all t > 0,

(iii) limn→∞
T∞
0
φ(t)Fn(t) dt exists for all φ ∈ L1(R+).

P r o o f. Since eλ(s) := e−λs (λ > 0) and 1[0,t) (t > 0) form total sub-
sets of L1(R+), all the conditions above are equivalent to the strong con-
vergence of the equibounded operators Sn : L1(R+) → L where Snφ =T∞
0
φ(t)Fn(t) dt, ‖Sn‖ ≤ ess sup ‖Fn(t)‖.

Remark 2. Since limn→∞
Tt
0
Fn(s) ds are Lipschitz continuous with the

same constant the limit in (ii) is almost uniform in [0,∞) and the limit
function is Lipschitz continuous as well.

Both the above proposition and its proof are actually special cases of
[29], pp. 166–168. Theorems of this type are generally ascribed to C. Lizama
[40], yet Lizama’s Theorem 1.2 is a special case of Lemma 2.11 in the well-
known paper by T. G. Kurtz [37] (if the boundedness assumption in the
lemma is replaced by that of exponential growth, which is of no importance
for the proof; see also [14], Proposition 1, for a more handy version). It
is also interesting to compare Kurtz’s result mentioned in the introduction
([38], p. 29, Proposition 2.22) with Arendt’s theorem on generation of once-
integrated Lipschitz continuous semigroups (cf. [11]).
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Theorem 3. Let {Tn(t) : t ≥ 0} be equibounded semigroups. For fixed

f ∈ L, the following conditions are equivalent :

(i) limn→∞(λ−An)−1f =: Rλf exists for all λ > 0,

(ii) limn→∞
T∞
0
φ(t)Tn(t)f dt =: T (φ)f exists for all φ ∈ L1(R+),

(iii) limn→∞
Tt0
0
Tn(t)f dt =: T (1[0,t0))f exists for all t0 > 0.

Furthermore, the limit limn→∞ Tn(t)f exists almost uniformly in [0,∞) iff

f ∈ L′ := R where R = {f ∈ L : f = T (φ)g for some g ∈ L and φ ∈
L1(R+)}.

P r o o f. Conditions (i) through (iii) are equivalent by Proposition 6 (put
Fn(t) = Tn(t)f).

Moreover, the semigroup of right translations in L1(R+) is of class C0

and, thus, for fixed φ ∈ L1(R+), the function [0,∞) ∋ t 7→ φt ∈ L1(R+)
where φt(x) = φ(x − t) for x > t and 0 elsewhere, is continuous. Suppose
f = T (φ)g. Put gn =

T∞
0
φ(t)Tn(t)g dt. We have

Tn(t)gn =

∞\
0

φ(s)Tn(t+ s)g ds =

∞\
0

φt(s)Tn(s)g ds = Tn(φt)g,

and

sup
t∈[0,t0]

‖Tn(t)g − T (φt)g‖

≤ sup
t∈[0,t0]

‖Tn(t)g − Tn(t)gn‖ + sup
t∈[0,t0]

‖Tn(t)gn − T (φt)g‖

≤M‖g − gn‖ + sup
t∈[0,t0]

‖Tn(φt)g − T (φt)g‖.

The last expression tends to 0, since Tng → Tg and the φt ∈ L1(R+)
(t ∈ [0, t0]) form a compact set. By a continuity argument, the convergence
holds on the whole of L′.

Conversely, if limn→∞ Tn(t)f =: u(t) exists almost uniformly in t ∈
[0,∞), then u is continuous, u(0) = f, and

u(0) = lim
t→0

1

t

t\
0

u(s) ds = lim
t→0

1

t
lim

n→∞

t\
0

Tn(s)f ds

= lim
t→0

1

t
lim

n→∞
Tn(1[0,t))f = lim

t→0
T

(
1

t
1[0,t)

)
f,

which completes the proof.

Remark 3. One can show that φ 7→ T (φ) is a representation of the
convolution algebra L1(R+) in the algebra of bounded operators on the
Banach space which consists of those f ∈ L for which the limits (ii) above
exist. Therefore, according to the theorem due to Hewitt et al. [17–18, 28,
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30], R = R, and the density argument used at the end of the proof of
Theorem 3 is redundant. We have avoided using the result mentioned above
to make the proof as elementary as possible.

Proposition 6 also yields a simple mean ergodic theorem which we now
prove.

Proposition 7. Suppose F : [0,∞) → L is bounded and measurable.

The following are equivalent :

(i) limλ→0 λ
T∞
0
e−λtF (t) dt exists,

(ii) limt→∞
1
t

Tt
0
F (s) ds exists,

(iii) limλ→0 λ
T∞
0
φ(λt)F (t) dt exists for all φ ∈ L1(R+).

P r o o f. One may apply Proposition 6 directly to Fn(t) = F (ant) where
an → ∞ and establish equivalence of (i)–(iii) by straightforward calcula-
tions. Let us, however, quote Davies ([20], p. 123): “Equivalence of (i) and
(ii) is established by noting that each implies that limλ→0 λ

T∞
0
φ(λt)F (t) dt

exists for all φ ∈ L1(R+), by density argument” (cf. the proof of Proposi-
tion 6).

Example 3 ([20], p. 123). If {T (t) : t ≥ 0} is a semigroup of equibounded
operators, then, for every f ∈ L, the function F (t) = T (t)f is bounded
and measurable, and therefore, the limit limλ→0 λ

T∞
0
e−λtT (t)f dt exists iff

limt→∞
1
t

Tt
0
T (s)f ds does.

For a discussion of convergence rates in ergodic theorems for semigroups
see [25].

Example 4 (cf. [22]). Suppose T is a power-bounded operator in L (i.e.
supn∈N ‖Tn‖ < ∞), and define the L(L,L)-valued function by F (t) = T [t]

(see [6], p. 22) where [·] is integer part. The function F is bounded and

λ

∞\
0

e−λtF (t) dt = λ

∞∑

n=0

Tn
n+1\

n

e−λt dt(3.2)

= (1 − e−λ)

∞∑

n=0

(e−λT )n = (eλ − 1)(eλ − T )−1,

and

1

t

t\
0

F (s) ds =
1

t

[t]\
0

F (s) ds +
1

t

t\
[t]

F (s) ds

=
[t]

t

I + T + . . .+ T [t]−1

[t]
+
t− [t]

t
T [t].
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This proves, by Proposition 7, that limn→∞(I + T + . . .+ Tn−1)/n exists iff
limλ→1(λ− 1)(λ−T )−1 exists (both limits in the L(L,L) norm). A parallel
result in the strong topology is established in the same way. The condition
corresponding to (iii) of Proposition 7 is that the limit

lim
λ→0

λ

∞∑

n=0

Tn
n+1\

n

φ(λt) dt = lim
λ→0

∞∑

n=0

Tn

λ(n+1)\
λn

φ(t) dt

exists for all φ ∈ L1(R+).

Now, let {T (t) : t ≥ 0} be a continuous semigroup of equibounded oper-
ators with infinitesimal generator A. Define the semigroups {Tn(t) : t ≥ 0}
by (3.1). The corresponding infinitesimal generators An and resolvents are
given by

(3.3) An = nA, (λ−An)−1 =
1

n

(
λ

n
−A

)−1

.

Lemma 1 (cf. [20], Th. 5.1, p. 123). Under the above assumptions and

notations, the subspace L′ defined in Theorem 3 equals KerA.

P r o o f. If f = T (eλ)g, where eλ(t) = e−λt, λ > 0, g ∈ L, then

f = lim
n→∞

1

n

(
λ

n
−A

)−1

g.

The operator A is closed. Thus, since gn := 1
n
(λ

n
− A)−1 belongs to D(A)

and

Agn =
λ

n
gn − 1

n
g → 0 as n→ ∞,

it follows that f ∈ D(A) and Af = 0; to prove that KerA ⊂ L′ is equally
simple. Finally, since KerA is closed and L′ is the closure of the linear span
of {f : f = T (eλ)g}, the proof is complete.

Proposition 8. For fixed f ∈ L, the following limits exist simultane-

ously :

(i) lim
t→∞

1

t

t\
0

T (s)f ds = g,

(ii) lim
n→∞

1

t

t\
0

Tn(s)f ds = h (for all t > 0),

(iii) lim
n→∞

1

n

(
1

n
−A

)−1

f.

Furthermore, g = h.
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P r o o f. For (ii) and (iii) the conclusion follows from (3.3) and Theorem 3.
Let (i) exist. Then, for each t > 0,

1

t

t\
0

Tn(s)f ds =
1

t

t\
0

T (ns)f ds =
1

nt

nt\
0

T (u)fdu −→
n→∞

g.

Conversely, let (ii) exist and let t = [t] + t′. We have

1

t

t\
0

T (s)f ds =
[t]

t

1

[t]

[t]\
0

T (s)f ds+
1

t

t\
[t]

T (s)f ds;

thus
∥∥∥∥

1

t

t\
0

T (s)f ds− lim
n→∞

1\
0

Tn(s)f ds

∥∥∥∥

≤
∥∥∥∥

[t]

t

1

[t]

[t]\
0

T (s)f ds− h

∥∥∥∥ +
t− [t]

t
M‖f‖ −→

t→∞
0.

Our results show that concerning the existence of the limit limn→∞ T (t)f,
all we can get using (3.1) and the Trotter–Kato–Neveu–Kurtz theorem is
Proposition 8 above; indeed, by Lemma 1, in this case L′ = KerA, and
therefore besides the convergence of the averages 1

t

Tt
0
T (s)f ds one obtains

merely the trivial information that limn→∞ T (t)f exists when f is a fixed
point of the semigroup. We have, however, the following proposition.

Proposition 9. Let {T (t) : t ≥ 0} be a semigroup of equibounded oper-

ators generated by an operator A. The following two statements are equiva-

lent :

(i) for all f ∈ L the limit limt→∞ T (t)f exists,

(ii) the semigroups {Tn(t) : t ≥ 0}, where Tn(t) = T (nt), converge on L
almost uniformly in t ∈ (0,∞).

Furthermore, if (i) or (ii) holds, then there exists a projection P : L→
L′ = KerA (cf. [20], p. 123, Th. 5.1, [23], p. 39, Lemma 7.3), and the

semigroup T0(t)f := limn→∞ Tn(t)f is given by T0(t)f = Pf.

P r o o f. Since (i)⇒(ii) is immediate it is enough to prove the converse.

By Lemma 1, L′ = KerA. It is evident that for all f ∈ L′, T (t)f = f
and T0(t)f = f. Take t0 > 0 and let t = nt0 + t′ where 0 ≤ t′ < t0. Since,
by Corollary 1, T0(t0)f belongs to L′, we get

‖T (t)f − T0(t0)f‖ = ‖T (t′)T (nt0)f − T (t′)T0(t0)f‖
≤ const · ‖T (nt0)f − T0(t0)f‖ → 0 as n→ ∞,
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and (i) follows. The operator P is given by

Pf = lim
t→∞

T (t)f = lim
n→∞

Tn(t0)f = T0(t0)f.

Note that the limit (i) is actually uniform in any interval [r,∞) where
r > 0.

As seen from Proposition 8, a necessary condition for the existence of

the limit in Proposition 9(i) is the existence of limn→∞
1
n

(
1
n − A

)−1
f. As

an application of Proposition 5 we now show that the converse also holds
provided {T (t) : t ≥ 0} is holomorphic.

Proposition 10. Suppose {T (t) : t ≥ 0} is a holomorphic semigroup of

equibounded operators generated by an operator A. The following statements

are equivalent :

(i) limt→∞ T (t)f exists for all f ∈ L,

(ii) limn→∞
1
n

(
1
n
−A

)−1
f exists for all f ∈ L,

(iii) limε→0 ε(ε −A)−1f exists for all f ∈ L.

Furthermore, g ∈ L may be obtained as one of the limits above iff g belongs

to KerA.

P r o o f. Suppose (i) holds. Fix a sequence an → ∞ and set Tn(t) =
T (ant). Of course, {Tn(t) : t ≥ 0} converge and thus for any λ > 0 the limit

lim
n→∞

(λ− anA)−1f = lim
n→∞

1

an

(
λ

an
−A

)−1

f

exists. Setting λ = 1 and bn = 1/an we see that for any bn → 0 (bn 6= 0) the
limit limn→∞ bn(bn −A)−1f exists, i.e. we have (iii).

Clearly, (iii) implies (ii).

Finally, suppose that (ii) holds. Since

1

n

(
1

n
−A

)−1

= (1 − nA)−1 = R1(An)

where An = nA it follows that limn→∞Rλ(An) exists for all λ > 0 and
f ∈ L. The semigroups {Tn(t) : t ≥ 0} generated by An are uniformly
holomorphic; indeed, there exist positive constants M and ω such that Sω :=
{z ∈ C : |arg z| ≤ π/2 + ω} ⊂ ̺(A) and ‖Rλ(A)‖ ≤ M/|λ| for λ ∈ Sω;
therefore, if λ ∈ Sω then λ/n also belongs to Sω, and

‖Rλ(An)‖ = ‖(λ− nA)−1‖ =
1

n

∥∥∥∥
(
λ

n
−A

)−1∥∥∥∥ ≤
1
n
M∣∣λ
n

∣∣ =
M

|λ| .

By Proposition 5 the limit limn→∞ Tn(t)f = limn→∞ T (nt)f exists. Propo-
sition 9 completes the proof.
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Example 3. Consider the space L = C[0,∞] of all continuous functions
f : [0,∞) → C with a finite limit at infinity, equipped with the norm
‖f‖ = supx≥0 |f(x)|. Given ε > 0, define the domain of an operator Aε as
the set of all twice continuously differentiable functions f with f ′′ ∈ L which
satisfy f(0) = εf ′(0), and set Aεf = 1

2
f ′′. For every ε > 0, the operator

Aε is the infinitesimal generator of a positive and holomorphic contraction
semigroup {Sε(t) : t ≥ 0} acting in L, and, furthermore ([9], (2.26)),

(λ−Aε)
−1g(x)

=
1√
2λ

∞\
0

e−
√

2λ|x−y|g(y) dy +H(ε
√

2λ)
1√
2λ

∞\
0

e−
√

2λ(y+x)g(y) dy

where H(z) = (z − 1)/(z + 1). Observe that for f ≡ 1 we have

‖λ(λ−Aε)
−1f‖L = sup

x∈R+

∣∣1
2
− 1

2
(1 − e−

√
2λx) + 1

2
H(ε

√
2λ)e−

√
2λx

∣∣

= 1
2 |1 +H(ε

√
2λ)| −→

λ→0
0.

Furthermore, if f ∈ L1(R+) ∩ L, then

‖λ(λ−Aε)
−1f‖L ≤

√
λ

2
[‖f‖L1(R+) + |H(ε

√
2λ)| · ‖f‖L1(R+)] −→

λ→0
0,

which means that limλ→0 (λ−Aε)
−1
f ≡ 0 on a dense subset of L and there-

fore on the whole of L. Thus, by Proposition 10, limt→∞ Sε(t)f = 0, in agree-
ment with the probabilistic interpretation of the semigroups {Sε(t) : t ≥ 0},
ε > 0 ([33], p. 45). An analogous argument shows that the semigroup
{S(t) : t ≥ 0} related to the reflecting Brownian motion ([33], p. 40),
i.e. the semigroup generated by the operator A with D(A) = {f ∈ L :
f ′′ ∈ L, f ′(0) = 0}, satisfies limt→∞ S(t)f = Pf where P is the pro-
jection onto the one-dimensional subspace generated by f0 ≡ 1, given by
Pf(·) = limt→∞ f(t).

Let us also mention here the paper [39] where the asymptotic stability
of semigroups acting in spaces of continuous functions was considered.

Let us remark that Proposition 10 cannot be extended to the case when
{T (t) : t ≥ 0} is differentiable without making additional assumptions on
the spectrum of its generator. This is shown by the simple example of the
semigroup T (t)z = eitz acting in C.

Furthermore, our Proposition 10 is worth comparing with the well-known
result appearing e.g. in [48], p. 118, stating that if A is the generator of
a holomorphic semigroup {T (t) : t ≥ 0} and sup{Reλ : λ ∈ σ(A)} < 0,
then {T (t) : t ≥ 0} decays exponentially (see [52] for an extension of this
result). Our theorem states in particular that if for a holomorphic semigroup
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condition (iii) of Proposition 8 is satisfied and additionally KerA = {0},
then limt→∞ T (t)f = 0, but in general the decay is not exponential.

A few remarks on the relation to the generalization of the theorem of
Sklyar and Shirman [51], obtained independently by Lyubich and Phóng
[44] and Arendt and Batty [5] (see also [6–7] for recent results in this field)
are also in order. Sklyar and Shirman have proved that if the spectrum
of a bounded and dissipative operator A has at most countable intersec-
tion with the imaginary axis and A∗ has no imaginary eigenvalues, then
limt→∞ ‖etAf‖ = 0, and in [5, 44] this result has been extended to the case
when A, instead of being bounded and dissipative, is the infinitesimal gen-
erator of a semigroup of equibounded operators. Of course, our assumptions
imply that the spectrum of the generator A intersects the imaginary axis
in at most one point, but the rest of the Sklyar–Shirman–Lyubich–Phóng–
Arendt–Batty assumptions are not satisfied, as seen e.g. from the example
of the semigroup related to the reflecting Brownian motion, mentioned in
Example 3 above.

Furthermore, let us recall that, according to [20], Corollary 5.2, p. 126,
if L is a reflexive Banach space, then condition (iii) in Proposition 8 is auto-
matically satisfied. This proves the following corollary ([25], p. 61, Exercise
17, cf. [45], p. 345).

Proposition 9. If {T (t) : t ≥ 0} is a holomorphic semigroup of equi-

bounded operators acting in a reflexive Banach space L, then for all f ∈ L
the limit limt→∞ T (t)f exists.

A number of examples of analytic semigroups acting in reflexive Banach
space can be found in the recent paper [24], and many others can be con-
structed by using semigroups generated by bilinear forms, as presented e.g.
in [36].
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