ANNALES POLONICI MATHEMATICI LXIX.2 (1998)

Dini continuity of the first derivatives of generalized solutions to the Dirichlet problem for linear elliptic second order equations in nonsmooth domains

by Michail Borsuk (Olsztyn)

Abstract. We consider generalized solutions to the Dirichlet problem for linear elliptic second order equations in a domain bounded by a Dini–Lyapunov surface and containing a conical point. For such solutions we derive Dini estimates for the first order generalized derivatives.

1. Introduction. We consider generalized solutions to the Dirichlet problem for a linear uniformly elliptic second order equation in divergence form

(DL)
$$\begin{cases} \frac{\partial}{\partial x_i} (a^{ij}(x)u_{x_j} + a^i(x)u) + b^i(x)u_{x_i} + c(x)u \\ &= g(x) + \frac{\partial f^j(x)}{\partial x_j}, \quad x \in G, \\ &u(x) = \varphi(x), \quad x \in \partial G \end{cases}$$

(summation over repeated indices from 1 to n is understood), where $G \subset \mathbb{R}^n$ is a bounded domain with boundary ∂G and ∂G is a Dini–Lyapunov surface containing the origin \mathcal{O} as a conical point. This last means that $\partial G \setminus \mathcal{O}$ is a smooth manifold but near \mathcal{O} the domain G is diffeomorphic to a cone.

Hölder estimates for the first derivatives of generalized solutions to the problem (DL) are well known in the case where the leading coefficients $a^{ij}(x)$ are Hölder continuous (see e.g. [5, 8.11] for smooth domains and [1] for domains with angular points). Here we derive Dini estimates for the first derivatives of generalized solutions of the problem (DL) in a domain with a conical boundary point under *minimal* smoothness conditions on the leading coefficients (Dini continuity). It should be noted that interior Dini continuity

¹⁹⁹¹ Mathematics Subject Classification: 35J.

 $Key\ words\ and\ phrases:$ elliptic equations, nonsmooth domains, Dini continuous, smoothness of generalized solutions.

^[129]

M. Borsuk

of the first and second derivatives of generalized solutions to the problem (DL) was investigated in [3, 7] under the condition of Dini continuity of the first derivatives of the leading coefficients.

We introduce the following notations and definitions:

- [l]: the integral part of l (if l is not an integer);
- r = |x| = (∑_{i=1}ⁿ x_i²)^{1/2};
 G' ⊂ G: G' has compact closure contained in G;
- mes G: volume of G;
- S^{n-1} : the unit sphere in \mathbb{R}^n ;
- $B_r(x_0)$: the open ball in \mathbb{R}^n of radius r centered at x_0 ;
- $\omega_n = 2\pi^{n/2}/(n\Gamma(n/2))$: the volume of the unit ball in \mathbb{R}^n ;
- $\sigma_n = n\omega_n$: the area of the *n*-dimensional unit sphere;
- \mathbb{R}^n_+ : the half-space $x_n > 0$;
- Σ : the hyperplane $\{x_n = 0\};$
- $B_r^+ = B_r \cap \mathbb{R}^n_+$, where $x_0 \in \overline{\mathbb{R}^n_+}$;
- (r, ω) : the spherical coordinates of $x \in \mathbb{R}^n$ with pole \mathcal{O} ;
- Ω : a domain in S^{n-1} with smooth (n-2)-dimensional boundary $\partial \Omega$;
- $G_a^b = G \cap \{(r, \omega) \mid 0 \le a < r < b, \ \omega \in \Omega\}$: a layer in \mathbb{R}^n ; $\Gamma_a^b = \partial G \cap \{(r, \omega) \mid 0 \le a < r < b, \ \omega \in \partial \Omega\}$: the lateral surface of the layer G_a^b ;
- $D_i u = u_{x_i} = \partial u / \partial x_i, \ D_{ij} u = u_{x_i x_j} = \partial^2 u / \partial x_i \partial x_j;$
- $\nabla u \equiv u_x = (u_{x_1}, \dots, u_{x_n})$: the gradient of u(x);

• $\mathbf{n} = \mathbf{n}(x) = \{\nu_1, \dots, \nu_n\}$: the unit outward normal to ∂G at the point x;

- $d\Omega$: the (n-1)-dimensional area element of the unit sphere;
- $d\sigma$: the (n-1)-dimensional area element of ∂G ;
- Δ : the Laplacian in \mathbb{R}^n ;
- Δ_{ω} : the Laplace–Beltrami operator on the unit sphere S^{n-1} ;
- $d(x) = \operatorname{dist}(x, \partial G \setminus \mathcal{O});$
- $\Phi(x)$: any possible extension into G of a boundary function $\varphi(x)$, i.e., $\Phi(x) = \varphi(x)$ for $x \in \partial G$;
- $\mathcal{A}(t)$: a function defined for $t \geq 0$, nonnegative, increasing, continuous at zero, with $\lim_{t\to+0} \mathcal{A}(t) = 0$.

DEFINITION 1.1. The function \mathcal{A} is called *Dini continuous at zero* if $\int_0^d t^{-1} \mathcal{A}(t) \, dt < \infty \text{ for some } d > 0.$

DEFINITION 1.2. The function \mathcal{A} is called an α -function, $0 < \alpha < 1$, on (0, d] if $t^{-\alpha} \mathcal{A}(t)$ is decreasing on (0, d], i.e.

(1.1)
$$\mathcal{A}(t) \le t^{\alpha} \tau^{-\alpha} \mathcal{A}(\tau), \quad 0 < \tau \le t \le d.$$

In particular, setting $t = c\tau$, c > 1, we have

(1.2)
$$\mathcal{A}(c\tau) \le c^{\alpha} \mathcal{A}(\tau), \quad 0 < \tau \le c^{-1} d.$$

If an α -function \mathcal{A} is Dini continuous at zero, then we say that \mathcal{A} is an α -Dini function. In that case we also define the function $\mathcal{B}(t) = \int_0^t (\mathcal{A}(\tau)/\tau) d\tau$. It is obvious that \mathcal{B} is increasing and continuous on [0, d], and $\mathcal{B}(0) = 0$. We integrate the inequality (1.1) over τ from 0 to t:

(1.3)
$$\mathcal{A}(t) \leq \alpha \mathcal{B}(t).$$

Similarly from (1.1) we derive

$$\int_{\delta}^{d} (\mathcal{A}(t)/t^2) dt = \int_{\delta}^{d} t^{\alpha-2} (\mathcal{A}(t)/t^{\alpha}) dt \le \delta^{-\alpha} \mathcal{A}(\delta) \int_{\delta}^{d} t^{\alpha-2} dt \le (1-\alpha)^{-1} \mathcal{A}(\delta)/\delta,$$

whence by (1.3),

(1.4)
$$\delta \int_{\delta}^{d} (\mathcal{A}(t)/t^2) dt \leq (1-\alpha)^{-1} \mathcal{A}(\delta)$$
$$\leq \alpha (1-\alpha)^{-1} \mathcal{B}(\delta), \quad \forall \alpha \in (0,1), \ 0 < \delta < d.$$

DEFINITION 1.3. The function \mathcal{B} is called *equivalent* to \mathcal{A} , written $\mathcal{A} \sim \mathcal{B}$, if there exist positive constants C_1 and C_2 such that

$$C_1 \mathcal{A}(t) \le \mathcal{B}(t) \le C_2 \mathcal{A}(t) \quad \text{for all } t \ge 0.$$

An equivalence test is known [4, theorem of Sec. 1]: $\mathcal{A} \sim \mathcal{B}$ if and only if

(1.5)
$$\underline{\lim}_{t \to 0} \mathcal{A}(2t) / \mathcal{A}(t) > 1.$$

In some cases we shall consider functions \mathcal{A} such that also

(1.6)
$$\sup_{0 < \tau \le 1} \mathcal{A}(\tau t) / \mathcal{A}(\tau) \le c \mathcal{A}(t), \quad \forall t \in (0, d].$$

with some constant c independent of t. Examples of α -Dini functions \mathcal{A} which satisfy (1.5), (1.6) with c = 1 are:

$$\begin{split} t^{\alpha}, \quad 0 \leq t < \infty; \\ t^{\alpha} \ln(1/t), \quad t \in (0,d], \ d = \min(e^{-e}, e^{-1/\alpha}), \ e^{-1} < \alpha < 1. \end{split}$$

We will consider the following function spaces:

• $C^{l}(\overline{G})$: the Banach space of functions having all the derivatives of order at most l (if $l = \text{integer} \geq 0$) and of order [l] (if l is noninteger) continuous in \overline{G} and whose [l]th order partial derivatives are uniformly Hölder continuous with exponent l - [l] in \overline{G} ; $|u|_{l;G}$ is the norm of the element $u \in C^{l}(\overline{G})$; if $l \neq [l]$ then

$$|u|_{l;G} = \sum_{j=0}^{[l]} \sup_{G} |D^{j}u| + \sup_{\substack{|\alpha|=[l] \ x\neq y}} \sup_{\substack{x,y\in G \\ x\neq y}} \frac{|D^{\alpha}u(x) - D^{\alpha}u(y)|}{|x-y|^{l-[l]}}.$$

• $C_0^k(G)$: the set of functions in $C^k(G)$ with compact support in G.

• $C^{0,\mathcal{A}}(G)$: the set of bounded and continuous functions f on G with

$$[f]_{\mathcal{A};G} = \sup_{\substack{x,y \in G \\ x \neq y}} \frac{|f(x) - f(y)|}{\mathcal{A}(|x-y|)} < \infty;$$

equipped with the norm

$$||f||_{0,\mathcal{A};G} = |f|_{0;G} + [f]_{\mathcal{A};G},$$

this set is a Banach space. We also define the quantity

$$[f]_{\mathcal{A},x} = \sup_{y \in G \setminus \{x\}} \frac{|f(x) - f(y)|}{\mathcal{A}(|x - y|)}.$$

It is not difficult to see that if $\mathcal{A} \sim \mathcal{B}$ then $[f]_{\mathcal{A}} \sim [f]_{\mathcal{B}}$.

If $k \geq 1$ is an integer then we denote by $C^{k,\mathcal{A}}(G)$ the subspace of $C^k(G)$ consisting of functions whose (k-1)th order partial derivatives are uniformly Lipschitz continuous and each kth order derivative belongs to $C^{0,\mathcal{A}}(G)$; it is a Banach space with the norm

$$||f||_{k,\mathcal{A};G} = |f|_{k;G} + \sum_{|\beta|=k} [D^{\beta}f]_{\mathcal{A};G}.$$

The interpolation inequality (see [8, (10.1)]) will be needed: if the domain has a Lipschitz boundary, then for any $\varepsilon > 0$ there exists a constant $c(\varepsilon, G)$ such that for every $f \in C^{1,\mathcal{A}}(G)$,

(1.7)
$$\sum_{i=1}^{n} |D_i f|_{0;G} \le \varepsilon \sum_{i=1}^{n} [D_i f]_{\mathcal{A};G} + c(\varepsilon, G) |f|_{0;G}.$$

• $L_p(G)$: the Banach space of *p*-integrable functions *u* on *G* ($p \ge 1$) with norm $\|u\|_{p;G}$.

Moreover, $\lambda = \lambda(\Omega)$ will stand for the smallest positive eigenvalue of the problem

(EVP)
$$\begin{cases} \Delta_{\omega}\psi + \lambda(\lambda + n - 2)\psi = 0, & \omega \in \Omega \subset S^{n-1}, \\ \psi(\omega) = 0, & \omega \in \partial\Omega, \end{cases}$$

and $c(\ldots)$ will be different constants depending only on the quantities appearing in parentheses.

Let $T \subset \partial G$ be a nonempty set. Following [5, Sec. 6.2] and [8, Sec. 3] we shall say that the boundary portion T is of class $C^{1,\mathcal{A}}$ if for each point $x_0 \in T$ there are a ball $B = B(x_0)$, a one-to-one mapping ψ of B onto a ball B' and a constant K > 0 such that:

(i)
$$B \cap \partial G \subset T$$
, $\psi(B \cap G) \subset \mathbb{R}^{n}_{+}$;
(ii) $\psi(B \cap \partial G) \subset \Sigma$;
(iii) $\psi \in C^{1,\mathcal{A}}(B), \ \psi^{-1} \in C^{1,\mathcal{A}}(B')$;

132

(iv) $\|\psi\|_{1,\mathcal{A};B} \le K, \|\psi^{-1}\|_{1,\mathcal{A};B'} \le K.$

It is not difficult to see that for $y = \psi(x)$ one has

(1.8)
$$K^{-1}|y-y'| \le |x-x'| \le K|y-y'|, \quad \forall x, x' \in B.$$

LEMMA [8, Sec. 7, (iv)]. Let \mathcal{A} be an α -function and $f \in C^{0,\mathcal{A}}(B)$, $\psi^{-1} \in C^{1,\mathcal{A}}(B')$. Then $f \circ \psi^{-1} \in C^{1,\mathcal{A}}(B)$ and

(1.9)
$$[f \circ \psi^{-1}]_{\mathcal{A};B} \le K^{\alpha}[f]_{\mathcal{A};B}.$$

2. Dini estimates of the first derivatives for the generalized Newtonian potential (cf. [5, Ch. 4]). We shall consider the Dirichlet problem for the Poisson equation

(PE)
$$\begin{cases} \Delta v = \mathcal{G} + \sum_{j=1}^{n} D_{j} \mathcal{F}^{j}, & x \in G, \\ v(x) = 0, & x \in \partial G. \end{cases}$$

Let $\Gamma(x-y)$ be the normalized fundamental solution of Laplace's equation. The following estimates are known (see e.g. [5, (2.12), (2.14)]):

(2.1)

$$\begin{aligned} |\Gamma(x-y)| &= |x-y|^{2-n}/(n(n-2)\omega_n), \quad n \ge 3\\ |D_i\Gamma(x-y)| &\le |x-y|^{1-n}/(n\omega_n),\\ |D_{ij}\Gamma(x-y)| &\le |x-y|^{-n}/\omega_n,\\ |D^{\beta}\Gamma(x-y)| &\le C(n,\beta)|x-y|^{2-n-|\beta|}. \end{aligned}$$

We define the functions

(2.2)
$$z(x) = \int_{G} \Gamma(x-y)\mathcal{G}(y) \, dy, \quad w(x) = D_j \int_{G} \Gamma(x-y)\mathcal{F}^j(y) \, dy,$$

assuming that the functions $\mathcal{G}(x)$ and $\mathcal{F}^{j}(x)$, $j = 1, \ldots, n$, are integrable on G. The function z is called the *Newtonian potential* with density function \mathcal{G} , and w is called the *generalized Newtonian potential* with density function div \mathcal{F} . We now give estimates for these potentials.

Let $B_1 = B_R(x_0)$, $B_2 = B_{2R}(x_0)$ be concentric balls in \mathbb{R}^n and z, w be Newtonian potentials in B_2 .

LEMMA 1. Suppose $\mathcal{G} \in L_p(B_2)$, p > n/2, and $\mathcal{F}^j \in L_\infty(B_2)$, $j = 1, \ldots, n$. Then

(2.3)
$$|z|_{0;B_1} \le c(p)R^{2/p'}\ln^{1/p'}(1/(2R))|\mathcal{G}|_{p;B_2}, \quad n=2,$$

$$|z|_{0;B_1} \le c(p,n)R^{2-n+n/p'} |\mathcal{G}|_{p;B_2}, \qquad n \ge 3,$$

M. Borsuk

(2.4)
$$|w|_{0;B_1} \le 2R \sum_{j=1}^n |\mathcal{F}^j|_{0;B_2},$$

where 1/p + 1/p' = 1.

Proof. The estimates follow from inequalities (2.1), Hölder's inequality and [5, Lemma 4.1].

In the following the D operator is always taken with respect to the x variable.

LEMMA 2 [5, Lemmas 4.1, 4.2]. Let $\partial G \in C^{1,\mathcal{A}}$, $\mathcal{G} \in L_p(G)$, p > n, $\mathcal{F}^j \in C^{0,\mathcal{A}}(G)$, where \mathcal{A} is an α -function Dini continuous at zero. Then for any $x \in G$,

(2.5)
$$D_i z(x) = \int_G D_i \Gamma(x-y) \mathcal{G}(y) \, dy,$$

(2.6)
$$D_i w(x) = \int_{G_0} D_{ij} \Gamma(x-y) (\mathcal{F}^j(y) - \mathcal{F}^j(x)) \, dy$$
$$- \mathcal{F}^j(x) \int_{\partial G_0} D_i \Gamma(x-y) \nu_j \, d_y \sigma$$

(i = 1, ..., n); here G_0 is any domain containing G for which the Gauss divergence theorem holds and \mathcal{F}^j are extended to vanish outside G.

LEMMA 3 (cf. [5, Lemma 4.4]). Let $\mathcal{G} \in L_p(B_2)$, p > n, $\mathcal{F}^j \in C^{0,\mathcal{A}}(\overline{B}_2)$, where \mathcal{A} is an α -function Dini continuous at zero. Then $z, w \in C^{1,\mathcal{B}}(\overline{B}_1)$ and

(2.7)
$$||z||_{1,\mathcal{B};B_1} \le c(n,p,R,\mathcal{A}^{-1}(2R))|\mathcal{G}|_{p;B_2},$$

(2.8)
$$||w||_{1,\mathcal{B};B_1} \le c(n,p,\alpha,R,\mathcal{A}^{-1}(2R),\mathcal{B}(2R)) \sum_{j=1}^n ||\mathcal{F}^j||_{0,\mathcal{A};B_2}.$$

Proof. Let $x, \overline{x} \in B_1$ and $G = B_2$. By formulas (2.5), (2.6), taking into account (2.1) and Hölder's inequality and setting |x - y| = t, $y - x = t\omega$, $dy = t^{n-1}dt d\Omega$, we have

(2.9)
$$|D_{i}z| \leq (n\omega_{n})^{-1} \int_{B_{2}} |x-y|^{1-n} |\mathcal{G}(y)| \, dy$$
$$\leq (n\omega_{n})^{-1} \|\mathcal{G}\|_{p;B_{2}} \Big\{ \int_{B_{2}} |x-y|^{(1-n)p'} \, dy \Big\}^{1/p'}$$
$$= \frac{p-1}{p-n} (2R)^{(p-n)/(p-1)} \|\mathcal{G}\|_{p;B_{2}},$$
(2.10)
$$|D_{i}w(x)| \leq (n\omega_{n})^{-1} R^{1-n} \sum_{j=1}^{n} |\mathcal{F}^{j}(x)| \int_{\partial B_{2}} d_{y}\sigma$$

$$+ \omega_n^{-1} \sum_{j=1}^n [\mathcal{F}^j]_{\mathcal{A},x} \int_{B_2} \frac{\mathcal{A}(x-y)}{|x-y|^n} dy$$

$$\leq 2^{n-1} \sum_{j=1}^n |\mathcal{F}^j(x)| + n \sum_{j=1}^n [\mathcal{F}^j]_{\mathcal{A},x} \int_0^{2R} \frac{\mathcal{A}(t)}{t} dt$$

$$\leq c(n) \mathcal{B}(2R) \sum_{j=1}^n (|\mathcal{F}^j(x)| + [\mathcal{F}^j]_{\mathcal{A},x}).$$

Taking into account (2.5) we obtain by subtraction

$$|D_i z(x) - D_i z(\overline{x})| \le \int_{B_2} |D_i \Gamma(x - y) - D_i \Gamma(\overline{x} - y)| \cdot |\mathcal{G}(y)| \, dy.$$

We set $\delta = |x - \overline{x}|, \xi = \frac{1}{2}(x - \overline{x})$ and write $B_2 = B_{\delta}(\xi) \cup \{B_2 \setminus B_{\delta}(\xi)\}$. Then (2.11) $\int |D_{\delta}\Gamma(x - y) - D_{\delta}\Gamma(\overline{x} - y)| \cdot |\mathcal{G}(y)| dy$

$$(2.11) \int_{B_{\delta}(\xi)} |D_{i}\Gamma(x-y) - D_{i}\Gamma(\overline{x}-y)| \cdot |\mathcal{G}(y)| \, dy$$

$$\leq \int_{B_{\delta}(\xi)} |D_{i}\Gamma(x-y)| \cdot |\mathcal{G}(y)| \, dy + \int_{B_{\delta}(\xi)} |D_{i}\Gamma(\overline{x}-y)| \cdot |\mathcal{G}(y)| \, dy$$

$$\leq (n\omega_{n})^{-1} \left\{ \int_{B_{\delta}(\xi)} |x-y|^{1-n}|\mathcal{G}(y)| \, dy + \int_{B_{\delta}(\xi)} |\overline{x}-y|^{1-n}|\mathcal{G}(y)| \, dy \right\}$$

$$\leq 2(n\omega_{n})^{-1} \int_{B_{3\delta/2}(x)} |x-y|^{1-n}|\mathcal{G}(y)| \, dy$$

$$\leq 2(n\omega_{n})^{-1} |\mathcal{G}|_{p;B_{2}} \left(\int_{B_{3\delta/2}(x)} |x-y|^{(1-n)p'} \, dy \right)^{1/p'}$$

$$\leq 2(n\omega_{n})^{-1/p} |\mathcal{G}|_{p;B_{2}} \left(\frac{3\delta}{2} \right)^{1-n/p} \{n+(1-n)p'\}^{-1/p'}$$

$$\leq \frac{2(n\omega_{n})^{-1/p}(2R)^{1-n/p}}{\{n+(1-n)p'\}^{-1/p'}} \cdot \frac{\mathcal{A}(|\overline{x}-x|)}{\mathcal{A}(2R)} |\mathcal{G}|_{p;B_{2}}, \quad 1/p+1/p'=1$$

(here we take into account that $\delta^{\alpha} \leq (2R)^{\alpha} \mathcal{A}(\delta) / \mathcal{A}(2R)$ for all $\alpha > 0$ by (1.1), since $\delta \leq 2R$). Similarly,

$$(2.12) \qquad \int_{B_2 \setminus B_{\delta}(\xi)} |D_i \Gamma(x-y) - D_i \Gamma(\overline{x}-y)| \cdot |\mathcal{G}(y)| \, dy$$
$$\leq |x-\overline{x}| \int_{B_2 \setminus B_{\delta}(\xi)} |DD_i \Gamma(\widetilde{x}-y)| \cdot |\mathcal{G}(y)| \, dy$$
$$(\text{for some } \widetilde{x} \text{ between } x \text{ and } \overline{x})$$

$$\begin{split} &\leq \delta \omega_n^{-1} \int_{|y-\xi| \ge \delta} |y-\widetilde{x}|^{-n} |\mathcal{G}(y)| \, dy \\ &\leq 2^n \delta \omega_n^{-1} \int_{|y-\xi| \ge \delta} |y-\xi|^{-n} |\mathcal{G}(y)| \, dy \quad (\text{since } |y-\xi| \le 2|y-\widetilde{x}|) \\ &\leq 2^n \delta \omega_n^{-1} \|\mathcal{G}\|_{p;B_2} \Big(\int_{|y-\xi| \ge \delta} |y-\xi|^{-np'} dy \Big)^{1/p'} \\ &\leq 2^n \omega_n^{-1/p} (p-1)^{1/p'} \delta^{1-n/p} \|\mathcal{G}\|_{p;B_2} \\ &\leq 2^n \omega_n^{-1/p} (p-1)^{1/p'} (2R)^{1-n/p} \frac{\mathcal{A}(|x-\overline{x}|)}{\mathcal{A}(2R)} \|\mathcal{G}\|_{p;B_2}. \end{split}$$

From (2.11) and (2.12), taking into account (1.3), we obtain

$$(2.13) |D_i z(x) - D_i z(\overline{x})| \leq c(n, p, R) \mathcal{A}^{-1}(2R) |\mathcal{G}|_{p;B_2} \mathcal{A}(|x - \overline{x}|) \leq c(n, p, R) \mathcal{A}^{-1}(2R) |\mathcal{G}|_{p;B_2} \mathcal{B}(|x - \overline{x}|), \quad \forall x, \overline{x} \in B_1.$$

The first of the required estimates, (2.7), follows from (2.3) and (2.13). Now we derive the estimate (2.8).

By (2.6) for all $x, \overline{x} \in B_1$ we have

$$(2.14) \quad D_i w(\overline{x}) - D_i w(x) = \sum_{j=1}^n (\mathcal{F}^j(x)\mathcal{J}_{1j} + (\mathcal{F}^j(x) - \mathcal{F}^j(\overline{x}))\mathcal{J}_{2j}) + \mathcal{J}_3 + \mathcal{J}_4 + \sum_{j=1}^n (\mathcal{F}^j(x) - \mathcal{F}^j(\overline{x}))\mathcal{J}_{5j} + \mathcal{J}_6,$$

where

$$\begin{aligned} \mathcal{J}_{1j} &= \int_{\partial B_2} (D_i \Gamma(x-y) - D_i \Gamma(\overline{x}-y)) \nu_j(y) \, d_y \sigma, \\ \mathcal{J}_{2j} &= \int_{\partial B_2} D_i \Gamma(\overline{x}-y) \nu_j(y) \, d_y \sigma, \\ \mathcal{J}_3 &= \int_{B_{\delta}(\xi)} D_{ij} \Gamma(x-y) (\mathcal{F}^j(x) - \mathcal{F}^j(y)) \, dy, \\ \mathcal{J}_4 &= \int_{B_{\delta}(\xi)} D_{ij} \Gamma(\overline{x}-y) (\mathcal{F}^j(y) - \mathcal{F}^j(\overline{x})) \, dy, \\ \mathcal{J}_{5j} &= \int_{B_2 \setminus B_{\delta}(\xi)} D_{ij} \Gamma(x-y) \, dy, \end{aligned}$$

136

Dini continuity for equations in nonsmooth domains

$$\mathcal{J}_6 = \int_{B_2 \setminus B_\delta(\xi)} (D_{ij} \Gamma(x-y) - D_{ij} \Gamma(\overline{x}-y)) (\mathcal{F}^j(\overline{x}) - \mathcal{F}^j(y)) \, dy.$$

(Here we set again $\delta = |x - \overline{x}|, \xi = \frac{1}{2}(x - \overline{x})$ and write $B_2 = B_{\delta}(\xi) \cup \{B_2 \setminus B_{\delta}(\xi)\}$.)

We estimate these integrals by analogy with [5, pp. 58–59]:

Next,

$$\begin{aligned} |\mathcal{J}_{2j}| &\leq 2^{n-1}, \\ |\mathcal{J}_{3}| &\leq \omega_{n}^{-1} [\mathcal{F}^{j}]_{\mathcal{A},x} \int_{B_{\delta}(\xi)} |x-y|^{-n} \mathcal{A}(|x-y|) \, dy \\ &\leq \omega_{n}^{-1} [\mathcal{F}^{j}]_{\mathcal{A},x} \int_{B_{3\delta/2}(x)} |x-y|^{-n} \mathcal{A}(|x-y|) \, dy \\ &= n [\mathcal{F}^{j}]_{\mathcal{A},x} \int_{0}^{3\delta/2} t^{-1} \mathcal{A}(t) \, dt \\ &\leq (3/2)^{\alpha} n [\mathcal{F}^{j}]_{\mathcal{A},x} \mathcal{B}(\delta) \quad (by \ (1.2)). \end{aligned}$$

By analogy with the estimate for \mathcal{J}_3 we obtain

$$\mathcal{J}_4| \le (3/2)^{\alpha} n[\mathcal{F}^j]_{\mathcal{A},\overline{x}} \mathcal{B}(\delta), \quad |\mathcal{J}_{5j}| \le 2^n \quad (\text{see } [5, \text{ p. } 59]),$$

and

$$|\mathcal{J}_6| \le |x - \overline{x}| \int_{B_2 \setminus B_{\delta}(\xi)} |DD_{ij}\Gamma(\widetilde{x} - y)| \cdot |\mathcal{F}^j(\overline{x}) - \mathcal{F}^j(y)| \, dy$$

(for some \tilde{x} between x and \overline{x})

$$\leq |x - \overline{x}| c(n) \int_{|y - \xi| \geq \delta} |\mathcal{F}^{j}(\overline{x}) - \mathcal{F}^{j}(y)| \cdot |\widetilde{x} - y|^{-n-1} \, dy$$

M. Borsuk

$$\leq c(n)\delta[\mathcal{F}^{j}]_{\mathcal{A},\overline{x}} \int_{|y-\xi|\geq\delta} \mathcal{A}(|\overline{x}-y|)|\widetilde{x}-y|^{-n-1} dy$$

$$\leq 2^{n+1}c(n)\delta[\mathcal{F}^{j}]_{\mathcal{A},\overline{x}} \int_{|y-\xi|\geq\delta} \mathcal{A}((3/2)|\xi-y|)|\xi-y|^{-n-1} dy$$

$$(\text{since } |\overline{x}-y| \leq (3/2)|\xi-y| \leq 3|x-\widetilde{y}|)$$

$$\leq 2^{n+1}n\omega_n c(n)(3/2)^{\alpha}\delta[\mathcal{F}^{j}]_{\mathcal{A},\overline{x}} \int_{\delta}^{R} t^{-2}\mathcal{A}(t) dt$$

$$(\text{since } \mathcal{A}((3/2)t) \leq (3/2)^{\alpha}\mathcal{A}(t) \text{ by } (1.2))$$

$$\leq \frac{\alpha}{1-\alpha}(3/2)^{\alpha}n\omega_n 2^{n+1}c(n)[\mathcal{F}^{j}]_{\mathcal{A},\overline{x}}\mathcal{B}(\delta) \quad (\text{by } (1.4)).$$

Now from (2.14) and the above estimates we obtain

$$(2.15) \quad |D_i w(\overline{x}) - D_i w(x)| \\ \leq c(n, \alpha) \sum_{j=1}^n (|\mathcal{F}^j(x)| \mathcal{A}^{-1}(2R) + [\mathcal{F}^j]_{\mathcal{A}, x} + [\mathcal{F}^j]_{\mathcal{A}, \overline{x}}) \mathcal{B}(|x - \overline{x}|), \\ \forall x, \overline{x} \in B_1.$$

Finally, from (2.10) and (2.15) it follows that $w \in C^{1,\mathcal{B}}(B_1)$ and the estimate (2.8) holds. Lemma 3 is proved.

THEOREM 1. Let v be a generalized solution of equation (PE) in B_2^+ with $\mathcal{G} \in L_{n/(1-\alpha)}(B_2^+)$, $\mathcal{F}^j \in C^{0,\mathcal{A}}(\overline{B_2^+})$, where \mathcal{A} is an α -function satisfying the Dini condition at zero, and let v = 0 on $B_2 \cap \Sigma$. Then $v \in C^{1,\mathcal{B}}(\overline{B_1^+})$ and

$$\|v\|_{1,\mathcal{B};B_1^+} \le c \Big(|v|_{0;B_2^+} + \|\mathcal{G}\|_{n/(1-\alpha);B_2^+} + \sum_{j=1}^n \|\mathcal{F}^j\|_{0,\mathcal{A};B_2^+} \Big),$$

where $c = c(n, \alpha, R, \mathcal{A}^{-1}(2R), \mathcal{B}(2R)).$

Theorem 1 follows from (2.7), (2.8), representation of solutions of (PE) by means of the fundamental solution and by the same argument as in [5, 4.4-4.5] (see also [5, 8.11]).

3. Dini continuity near a smooth portion of the boundary

THEOREM 2 (cf. [5, Corollary 8.36]). Let \mathcal{A} be an α -Dini function (0 < $\alpha < 1$) satisfying the condition (1.5). Let $T \subset \partial G$ be of class $C^{1,\mathcal{A}}$. Let $u \in W^1(G)$ be a weak solution of the problem (DL) with $\varphi \in C^{1,\mathcal{A}}(\partial G)$. Suppose the coefficients of the equation in (DL) satisfy the conditions

Dini continuity for equations in nonsmooth domains

$$a^{ij}(x)\xi_i\xi_j \ge \nu |\xi|^2, \quad \forall x \in \overline{G}, \ \xi \in \mathbb{R}^n, a^{ij}, a^i, f^i \in C^{0,\mathcal{A}}(\overline{G}) \quad (i, j = 1, \dots, n), b^i, c \in L_{\infty}(G), \quad g \in L_{n/(1-\alpha)}(G).$$

Then $u \in C^{1,\mathcal{B}}(G \cup T)$ and for every $G' \Subset G \cup T$,

(3.1)
$$\|u\|_{1,\mathcal{B};G'} \leq c(n,T,\nu,k,d') \Big(|u|_{0;G} + \|g\|_{n/(1-\alpha);G} + \sum_{i=1}^{n} \|f^{i}\|_{0,\mathcal{A};G} + \|\varphi\|_{1,\mathcal{A};\partial G} \Big),$$

where $d' = \operatorname{dist}(G', \partial G \setminus T)$ and

$$k = \max_{i,j=1,\dots,n} \{ \|a^{ij}, a^i\|_{0,\mathcal{A};G}, |b^i, c|_{0;G} \}$$

Proof. We use the perturbation method. We freeze the leading coefficients $a^{ij}(x)$ at $x_0 \in G \cup T$ by setting, without loss of generality, $a^{ij}(x_0) = \delta_i^j$ (see [5, Lemma 6.1]), and rewrite the equation of (DL) in the form (PE) for the function $v(x) = u(x) - \varphi(x)$ with

(3.2)
$$\mathcal{G}(x) = g(x) - b^i(x)(D_iv + D_i\varphi) - c(x)(v(x) + \varphi(x)),$$

(3.3)
$$\mathcal{F}^{i}(x) = (a^{ij}(x_{0}) - a^{ij}(x))D_{j}v - a^{ij}(x)D_{j}\varphi - a^{i}(x)(v(x) + \varphi(x)) + f^{i}(x) \quad (i = 1, \dots, n).$$

It is not difficult to observe that the conditions on the coefficients of the equation and on T are invariant under maps of class $C^{1,\mathcal{A}}$. Therefore after a preliminary rectification of T by means of a diffeomorphism $\psi \in C^{1,\mathcal{A}}$ it is sufficient to prove the theorem in the case $T \subset \Sigma$. This is carried out using Theorem 1 in a standard way (see [5, Chs. 6, 8]). In this connection we use the following estimates for the functions (3.2), (3.3):

$$(3.4) \qquad \left| \mathcal{G} \right|_{n/(1-\alpha);B_{2}^{+}} \leq \left| g \right|_{n/(1-\alpha);B_{2}^{+}} + k \left(\sum_{i=1}^{n} |D_{i}v|_{0;B_{2}^{+}} + |v|_{0;B_{2}^{+}} \right) \\ + \sum_{i=1}^{n} |D_{i}\varphi|_{0;B_{2}^{+}} + |\varphi|_{0,B_{2}^{+}} \right) \\ \leq \left| g \right|_{n/(1-\alpha);B_{2}^{+}} + k \left(\varepsilon \sum_{i=1}^{n} [D_{i}v]_{\mathcal{A};B_{2}^{+}} \right) \\ + c_{\varepsilon} |v|_{0;B_{2}^{+}} + |\varphi|_{1,B_{2}^{+}} \right) \qquad (by (1.7)),$$

M. Borsuk

$$(3.5) \qquad \sum_{j=1}^{n} \|\mathcal{F}^{j}\|_{0,\mathcal{A};B_{2}^{+}} \leq nk\mathcal{A}(2R)\|\nabla v\|_{0,\mathcal{A};B_{2}^{+}} + k\sum_{i=1}^{n} |D_{i}v|_{0,B_{2}^{+}} + c(k)(|v|_{0;B_{2}^{+}} + \|\varphi\|_{1,\mathcal{A};B_{2}^{+}}) + \sum_{j=1}^{n} \|f^{j}\|_{0,\mathcal{A};B_{2}^{+}}.$$

Taking into account once more the inequality (1.7) and the condition (1.5) that ensures the equivalence $[]_{\mathcal{A}} \sim []_{\mathcal{B}}$, from (3.4)–(3.5) we finally obtain

(3.6)
$$\begin{aligned} \|\mathcal{G}\|_{n/(1-\alpha);B_{2}^{+}} + \sum_{j=1}^{n} \|\mathcal{F}^{j}\|_{0,\mathcal{A};B_{2}^{+}} \\ &\leq k(\varepsilon + n\mathcal{A}(2R))\|v\|_{1,\mathcal{B};B_{2}^{+}} + c_{\varepsilon}(k)(|v|_{0;B_{2}^{+}} + \|\varphi\|_{1,\mathcal{A};B_{2}^{+}}) \\ &+ \sum_{j=1}^{n} \|f^{j}\|_{0,\mathcal{A};B_{2}^{+}} + \|g\|_{n/(1-\alpha);B_{2}^{+}} \quad \text{for all } \varepsilon > 0. \end{aligned}$$

Since \mathcal{A} is continuous, choosing $\varepsilon, R > 0$ sufficiently small we obtain the desired assertion and the estimate (3.1) in a standard way from (2.16) and (3.6).

4. Dini continuity near the conical point. We consider the problem (DL) under the following assumptions:

- (i) ∂G is a Dini–Lyapunov surface with conical point \mathcal{O} ;
- (ii) the uniform ellipticity holds:

$$u \xi^2 \le a^{ij}(x) \xi_i \xi_j \le \mu \xi^2, \quad \forall x \in G, \ \xi \in \mathbb{R}^n,$$

where $\nu, \mu = \text{const} > 0$ and $a^{ij}(0) = \delta_i^j$ (i, j = 1, ..., n);

(iii) $a^{ij}, a^i \in C^{0,\mathcal{A}}(G)$ (i, j = 1, ..., n) where \mathcal{A} is an α -Dini function on $(0, d], \alpha \in (0, 1)$, satisfying the conditions (1.5)-(1.6) and also

n;

(4.1)

$$\sup_{0<\varrho\leq 1} \varrho^{\lambda-1}/\mathcal{A}(\varrho) \leq \text{const},$$

$$|x| \left(\sum (b^{i}(x))^{2}\right)^{1/2} + |x|^{2}|c(x)| \leq \mathcal{A}(|x|);$$
(iv) $g \in L_{n/(1-\alpha)}(G), \ \varphi \in C^{1,\mathcal{A}}(\partial G), \ f^{j} \in C^{0,\mathcal{A}}(\overline{G}), \ j = 1, \dots,$
(v) $\int_{G} r^{4-n-2\lambda} \mathcal{H}^{-1}(r) g^{2}(x) \, dx < \infty,$
 $\int_{G} r^{2-n-2\lambda} \mathcal{H}^{-1}(r) \left(\sum_{j=1}^{n} |f^{j}|^{2} + |\nabla \Phi|^{2} + r^{-2}\Phi^{2}\right) dx < \infty,$

where \mathcal{H} is a continuous increasing function satisfying the Dini condition at t = 0.

140

THEOREM 3. Let u be a generalized solution of (DL) and suppose that assumptions (i)–(v) are satisfied. Then there exist d > 0 and a constant c > 0 independent of u and depending only on parameters and norms of the given functions appearing in assumptions (i)–(v), such that

$$\begin{aligned} (4.2) \quad |u(x)| &\leq c |x|\mathcal{A}(|x|) \Big(\left\| g \right\|_{n/(1-\alpha);G} + \sum_{i=1}^{n} \| f^{i} \|_{0,\mathcal{A};G} + \| \varphi \|_{1,\mathcal{A};\partial G} \\ &+ \Big\{ \int_{G} \Big(r^{4-n-2\lambda} \mathcal{H}^{-1}(r) g^{2}(x) + r^{2-n-2\lambda} \mathcal{H}^{-1}(r) \\ &\times \sum_{i=1}^{n} |f^{i}(x)|^{2} + r^{2-n-2\lambda} \mathcal{H}^{-1}(r)| \nabla \Phi |^{2} \\ &+ |u|^{2} + |\nabla u|^{2} \Big) \, dx \Big\}^{1/2} \Big), \quad \forall x \in G_{0}^{d}, \end{aligned}$$

$$(4.3) \quad |\nabla u(x)| \leq c \mathcal{A}(|x|) \Big(\left\| g \right\|_{n/(1-\alpha);G} + \sum_{i=1}^{n} \| f^{i} \|_{0,\mathcal{A};G} + \| \varphi \|_{1,\mathcal{A};\partial G} \\ &+ \Big\{ \int_{G} \Big(r^{4-n-2\lambda} \mathcal{H}^{-1}(r) g^{2}(x) + r^{2-n-2\lambda} \mathcal{H}^{-1}(r) \\ &\times \sum_{i=1}^{n} |f^{i}(x)|^{2} + r^{2-n-2\lambda} \mathcal{H}^{-1}(r)| \nabla \Phi |^{2} \\ &+ |u|^{2} + |\nabla u|^{2} \Big) \, dx \Big\}^{1/2} \Big), \quad \forall x \in G_{0}^{d}. \end{aligned}$$

Proof. We use Kondrat'ev's method of layers: we move away from the conical point of $\rho > 0$ and work in $G_{\rho/4}^{2\rho}$; after the change of variables $x = \rho x'$ the layer $G_{\rho/4}^{2\rho}$ takes the position of a fixed domain $G_{1/4}^2$ with smooth boundary.

1°. We consider a solution u in the domain G_0^{2d} with some positive $d\ll 1;$ then u is a weak solution in G_0^{2d} of the problem

$$(DL)_{0,2d} \qquad \begin{cases} \frac{\partial}{\partial x_i} (a^{ij}(x)u_{x_j} + a^i(x)u) + b^i(x)u_{x_i} + c(x)u \\ &= g(x) + \frac{\partial f^j}{\partial x_j}, \quad x \in G_0^{2d}, \\ &u(x) = \varphi(x), \quad x \in \Gamma_0^{2d} \subset \partial G_0^{2d}. \end{cases}$$

We make the change of variables $x = \rho x'$ and set $v(x') = \rho^{-1} \mathcal{A}^{-1}(\rho) u(\rho x')$,

 $\varrho \in (0,d), \ 0 < d \ll 1.$ Then v satisfies in $G_{1/4}^2$ the problem

$$\begin{cases} \frac{\partial}{\partial x'_i} (a^{ij}(\varrho x')v_{x'_j} + \varrho a^i(\varrho x')v) + \varrho b^i(\varrho x')v_{x'_i} + \varrho^2 c(\varrho x')v \\ &= \mathcal{A}^{-1}(\varrho) \sum_{j=1}^n \frac{\partial f^j(\varrho x')}{\partial x'_j} + \varrho \mathcal{A}^{-1}(\varrho)g(\varrho x'), \quad x' \in G^2_{1/4}, \\ &v(x') = \varrho^{-1} \mathcal{A}^{-1}(\varrho)\varphi(\varrho x'), \quad x' \in \Gamma^2_{1/4}. \end{cases}$$

To solve this problem we use Theorem 2. We check its assumptions. Since under assumption (ii), \mathcal{A} is increasing, $\rho \in (0, d)$ and $0 < d \ll 1$, from the inequality $\rho^{-1}|x-y| \ge |x-y|$ for $\rho \in (0, d)$ it follows that

$$\mathcal{A}(|x'-y'|) = \mathcal{A}(\varrho^{-1}|x-y|) \ge \mathcal{A}(|x-y|)$$

and by (iii) we have

$$\begin{split} \sum_{i,j} \|a^{ij}(\varrho \cdot)\|_{0,\mathcal{A};G^2_{1/4}} + \varrho \sum_i \|a^i(\varrho \cdot)\|_{0,\mathcal{A};G^2_{1/4}} \\ &\leq \sum_{i,j} \|a^{ij}\|_{0,\mathcal{A};G^{2\varrho}_{\varrho/4}} + d \sum_i \|a^i\|_{0,\mathcal{A};G^{2\varrho}_{\varrho/4}} < \infty. \end{split}$$

Further, let Φ be a regularity preserving extension of the boundary function φ into a domain G_{ε}^{d} for $\varepsilon > 0$ (such an extension exists; see e.g. [5, Lemma 6.38]).

Since $\varphi \in C^{1,\mathcal{A}}(\partial G)$ we have

$$\left\|\varPhi\right\|_{1,\mathcal{A};G^{2\varrho}_{\varrho/4}} \le c(G) \left\|\varphi\right\|_{1,\mathcal{A};\Gamma^{2\varrho}_{\varrho/4}} \le \text{const.}$$

By definition of the norm in $C^{1,\mathcal{A}}$ we obtain

(4.4)
$$\sup_{\substack{x,y\in G_{\varrho/4}^{2\varrho}\\x\neq y}}\frac{|\nabla\Phi(x)-\nabla\Phi(y)|}{\mathcal{A}(|x-y|)} \le \|\Phi\|_{1,\mathcal{A};G_{\varrho/4}^{2\varrho}} \le c(G)\|\varphi\|_{1,\mathcal{A};\Gamma_{\varrho/4}^{2\varrho}}.$$

Now we show that by (v) and the smoothness of φ ,

(4.5)
$$|\varphi(x)| \le c|x|\mathcal{A}(|x|), \quad |\nabla \Phi(x)| \le c\mathcal{A}(|x|), \quad \forall x \in G^{2\varrho}_{\varrho/4}.$$

Indeed, from

$$\varphi(x) - \varphi(0) = \int_0^1 \frac{d}{d\tau} \Phi(\tau x) \, d\tau = x_i \int_0^1 \frac{\partial \Phi(\tau x)}{\partial (\tau x_i)} \, d\tau$$

by Hölder's inequality we have

(4.6)
$$|\varphi(x) - \varphi(0)| \le r |\nabla \Phi|.$$

From (iv) it follows that

$$(4.7) \qquad \int_{G_0^{\varrho}} (r^{2-n} |\nabla \Phi|^2 + r^{-n} |\varphi|^2) dx$$
$$= \int_{G_0^{\varrho}} (r^{2-n-2\lambda} \mathcal{H}^{-1}(r) |\nabla \Phi|^2 + r^{-n-2\lambda} \mathcal{H}^{-1}(r) |\varphi|^2) (r^{2\lambda} \mathcal{H}(r)) dx$$
$$\leq \operatorname{const} \varrho^{2\lambda} \mathcal{H}(\varrho).$$

Since $|\varphi(0)| \le |\varphi(x)| + |\varphi(x) - \varphi(0)|$, by (4.6) we obtain

$$|\varphi(0)| \le |\varphi(x)| + r |\nabla \Phi|.$$

Squaring both sides, multiplying by r^{-n} and integrating over G_0^{ϱ} we obtain

(4.8)
$$\varphi^{2}(0) \int_{G_{0}^{\varrho}} r^{-n} dx \leq 2 \int_{G_{0}^{\varrho}} (r^{-n} \varphi^{2}(x) + r^{2-n} |\nabla \Phi|^{2}) dx < \infty$$

by (4.7). Since

$$\int_{G_0^{\varrho}} r^{-n} \, dx = \operatorname{mes} \Omega \int_0^{\varrho} \frac{dr}{r} = \infty,$$

the assumption $\varphi(0) \neq 0$ contradicts (4.8). Thus $\varphi(0) = 0$. Then from (4.4) we have

$$\begin{aligned} |\nabla \Phi(x) - \nabla \Phi(y)| &\leq \operatorname{const} \mathcal{A}(|x - y|) \|\varphi\|_{1,\mathcal{A};\Gamma^{2\varrho}_{\varrho/4}}, \quad \forall x, y \in G^{2\varrho}_{\varrho/4}, \\ |\nabla \Phi(y)| &\leq |\nabla \Phi(x) - \nabla \Phi(y)| + |\nabla \Phi(x)| \\ &\leq c \mathcal{A}(|x - y|) \|\varphi\|_{1,\mathcal{A};\Gamma^{2\varrho}_{\varrho/4}} + |\nabla \Phi(x)|. \end{aligned}$$

Hence considering y to be fixed in $G^{2\varrho}_{\varrho/4}$ and x variable, we get

$$\begin{split} |\nabla \Phi(y)|^2 \int_{G_{\varrho/4}^{2\varrho}} r^{2-n} \, dx &\leq 2c^2 \|\varphi\|_{1,\mathcal{A};\Gamma_{\varrho/4}^{2\varrho}} \int_{G_{\varrho/4}^{2\varrho}} r^{2-n} \mathcal{A}^2(|x-y|) \, dx \\ &+ 2 \int_{G_{\varrho/4}^{2\varrho}} r^{2-n} |\nabla \Phi(x)|^2 \, dx \end{split}$$

or by (4.7),

$$\varrho^2 |\nabla \Phi(y)|^2 \le c(\operatorname{mes} \Omega, k_1)(\varrho^2 \mathcal{A}^2(\varrho) + \varrho^{2\lambda} \mathcal{H}(\varrho)), \quad \forall y \in G_{\varrho/4}^{2\varrho}$$

Hence the assumption (4.1) yields the second inequality of (4.5). Now the first inequality of (4.5) follows from (4.6) and $\varphi(0) = 0$. Thus (4.5) is proved.

Now we obtain

$$(4.9) \quad \varrho^{-1}\mathcal{A}^{-1}(\varrho) \|\varphi(\varrho \cdot)\|_{1,\mathcal{A};\Gamma_{1/4}^{2}} \\ \leq c\varrho^{-1}\mathcal{A}^{-1}(\varrho) \|\Phi(\varrho \cdot)\|_{1,\mathcal{A};G_{1/4}^{2}} \\ = c\varrho^{-1}\mathcal{A}^{-1}(\varrho) \bigg\{ \sup_{\substack{x' \in G_{1/4}^{2}}} |\Phi(\varrho x')| + \sup_{\substack{x' \in G_{1/4}^{2}}} |\nabla'\Phi(\varrho x')| \\ + \sup_{\substack{x',y' \in G_{1/4}^{2}\\ x' \neq y'}} \frac{|\nabla'\Phi(\varrho x') - \nabla'\Phi(\varrho y')|}{\mathcal{A}(|x' - y'|)} \bigg\} \\ \leq c_{1} + c\mathcal{A}^{-1}(\varrho) \sup_{\substack{x,y \in G_{\varrho/4}^{2\varrho}\\ \mathcal{A}(\varrho^{-1}|x - y|)}} \frac{|\nabla\Phi(x) - \nabla\Phi(y)|}{\mathcal{A}(\varrho^{-1}|x - y|)} \\ = c_{1} + c[\nabla\Phi]_{0,\mathcal{A};G_{\varrho/4}^{2\varrho}}\mathcal{A}^{-1}(\varrho) \sup_{0 < t < 4\varrho} \frac{\mathcal{A}(t)}{\mathcal{A}(\varrho^{-1}t)} \\ \leq \text{ const}, \quad \forall \varrho \in (0,d), \end{cases}$$

by (4.5), since by (1.6),

$$\sup_{0 < t < 4\varrho} \frac{\mathcal{A}(t)}{\mathcal{A}(\varrho^{-1}t)} = \sup_{0 < \tau < 4} \frac{\mathcal{A}(\tau \varrho)}{\mathcal{A}(\tau)} \le c \mathcal{A}(\varrho).$$

In the same way we have

(4.10)
$$\mathcal{A}^{-1}(\varrho) \|f^{j}\|_{0,\mathcal{A};G^{2}_{1/4}} = \mathcal{A}^{-1}(\varrho) \left(|f^{j}|_{0;G^{2\varrho}_{\varrho/4}} + \sup_{\substack{x,y \in G^{2\varrho}_{\varrho/4} \\ x \neq y}} \frac{|f^{j}(x) - f^{j}(y)|}{\mathcal{A}(\varrho^{-1}|x - y|)} \right).$$

Since
$$f^{j} \in C^{0,\mathcal{A}}(\overline{G})$$
, we get
(4.11) $|f^{j}(x) - f^{j}(y)| \leq \widetilde{c}_{j}\mathcal{A}(|x-y|), \quad \forall x, y \in G^{2\varrho}_{\varrho/4},$
(4.12) $\int_{G^{\varrho}_{0}} r^{2-n} |f^{j}(x)|^{2} dx = \int_{G^{\varrho}_{0}} (r^{2-n-2\lambda}\mathcal{H}^{-1}(r)|f^{j}(x)|^{2})(\mathcal{H}(r)r^{2\lambda}) dx$
 $\leq \operatorname{const} \varrho^{2\lambda}\mathcal{H}(\varrho)$

by (v). Now fix y in $G_{\varrho/4}^{2\varrho}$. Then

$$|f^{j}(y)| \le |f^{j}(x)| + |f^{j}(x) - f^{j}(y)| \le |f^{j}(x)| + \widetilde{c}_{j}\mathcal{A}(|x-y|).$$

Hence

$$|f^{j}(y)|^{2} \int_{G_{\varrho/4}^{2\varrho}} r^{2-n} dx \leq 2 \int_{G_{\varrho/4}^{2\varrho}} r^{2-n} |f^{j}(x)|^{2} dx + 2\widetilde{c}_{j}^{2} \int_{G_{\varrho/4}^{2\varrho}} r^{2-n} \mathcal{A}^{2}(|x-y|) dx.$$

Calculations and (4.12) give

$$\varrho^2 |f^j(y)|^2 \le c(\widetilde{c}_j, k_1, \operatorname{mes} \Omega)(\varrho^2 \mathcal{A}^2(\varrho) + \varrho^{2\lambda} \mathcal{H}(\varrho)), \quad \forall y \in G^{2\varrho}_{\varrho/4}.$$

Hence by the assumption (4.1) it follows that

(4.13)
$$|f^j(x)| \le c_j \mathcal{A}(\varrho), \quad \forall x \in G^{2\varrho}_{\varrho/4}, \ j = 1, \dots, n.$$

Further, in the same way as in the proof of (4.9),

(4.14)
$$\sup_{\substack{x,y\in G_{\varrho/4}^{2\varrho}\\x\neq y}} \frac{|f^j(x)-f^j(y)|}{\mathcal{A}(\varrho^{-1}|x-y|)} \le [f^j]_{0,\mathcal{A};G_{\varrho/4}^{2\varrho}} \sup_{0< t<4\varrho} \frac{\mathcal{A}(t)}{\mathcal{A}(\varrho^{-1}t)} \le c\mathcal{A}(\varrho)[f^j]_{0,\mathcal{A};G_{\varrho/4}^{2\varrho}}.$$

Now from (4.10), (4.13) and (4.14) we obtain

(4.15)
$$\mathcal{A}^{-1}(\varrho) \sum_{j=1}^{n} |f^{j}|_{0,\mathcal{A};G^{2}_{1/4}} \leq \text{const.}$$

It remains to verify the finiteness of $[\varrho \mathcal{A}(\varrho)^{-1}g(\varrho x')]_{n/(1-\alpha);G^2_{1/4}}$. We have

$$\begin{split} \varrho \mathcal{A}^{-1}(\varrho) \Big(\int\limits_{G_{1/4}^2} |g(\varrho x')|^{n/(1-\alpha)} dx' \Big)^{(1-\alpha)/n} \\ &= \varrho^{\alpha} \mathcal{A}^{-1}(\varrho) \Big(\int\limits_{G_{\varrho/4}^{2\varrho}} |g(x)|^{n/(1-\alpha)} dx \Big)^{(1-\alpha)/n} \\ &\leq d^{\alpha} \mathcal{A}^{-1}(d) \Big(\int\limits_{G_{\varrho/4}^{2\varrho}} |g(x)|^{n/(1-\alpha)} dx \Big)^{(1-\alpha)/n} \\ &\leq \text{const}, \quad \forall \varrho \in (0, d), \end{split}$$

by the condition (1.1). Thus the conditions of Theorem 2 are satisfied. By this theorem we have

$$\begin{aligned} (4.16) & \|v\|_{1,\mathcal{B};G^{1}_{1/2}} \\ &\leq c\{n,\nu,G,\max_{i,j=1,\dots,n}(\|a^{ij}(\varrho\,\cdot)\|_{0,\mathcal{A};G^{2}_{1/4}},\varrho\|a^{i}(\varrho\,\cdot)\|_{0,\mathcal{A};G^{2}_{1/4}}),\mathcal{A}(2\varrho)\} \\ & \times \left(\|v\|_{0;G^{2}_{1/4}} + \varrho^{-1}\mathcal{A}^{-1}(\varrho)\|\varphi(\varrho\,\cdot)\|_{1,\mathcal{A};\Gamma^{2}_{1/4}} + \varrho\mathcal{A}^{-1}(\varrho)\|g(\varrho\,\cdot)\|_{n/(1-\alpha);G^{2}_{1/4}} \\ & + \mathcal{A}^{-1}(\varrho)\sum_{j=1}^{n}\|f^{j}(\varrho\,\cdot)\|_{0,\mathcal{A};G^{2}_{1/4}}\right), \quad \forall \varrho \in (0,d). \end{aligned}$$

2°. To estimate $|v|_{0;G^2_{1/4}}$ we use the local estimate at the boundary of the maximum of the modulus of a solution [5, Theorem 8.25]. We check the assumptions of that theorem. To this end, set

$$z(x') = v(x') - \varrho^{-1} \mathcal{A}^{-1}(\varrho) \Phi(\varrho x')$$

and write the problem for the function z:

$$\begin{cases} \frac{\partial}{\partial x'_i} (a^{ij}(\varrho x')z_{x'_j} + \varrho a^i(\varrho x')z) + \varrho b^i(\varrho x')z_{x'_i} + \varrho^2 c(\varrho x')z \\ &= G(x') + \frac{\partial F^j(x')}{\partial x'_j}, \quad x' \in G^2_{1/4}, \\ &z(x') = 0, \quad x' \in \Gamma^2_{1/4}, \end{cases}$$

where

$$(4.17) \qquad G(x') \equiv \varrho \mathcal{A}^{-1}(\varrho) g(\varrho x') - \mathcal{A}^{-1}(\varrho) b^{i}(\varrho x') \Phi_{x'_{i}}(\varrho x') - \varrho \mathcal{A}^{-1}(\varrho) c(\varrho x') \Phi(\varrho x'), (4.18) \qquad F^{i}(x') \equiv \mathcal{A}^{-1}(\varrho) f^{i}(\varrho x') - \varrho^{-1} \mathcal{A}^{-1}(\varrho) a^{ij}(\varrho x') \Phi_{x'_{j}}(\varrho x') - \mathcal{A}^{-1}(\varrho) a^{i}(\varrho x') \Phi(\varrho x') \qquad (i = 1, \dots, n).$$

First we verify the smoothness of the coefficients (see the remark at the end of [5, 8.10]). Let q > n. We have

(4.19)
$$\int_{G_{1/4}^2} |\varrho a^i(\varrho x')|^q \, dx' = \varrho^{q-n} \int_{G_{\varrho/4}^{2\varrho}} |a^i(x)|^q \, dx$$
$$\leq c_2(G) d^q ||a^i||_{0,\mathcal{A};G}^q, \quad \forall \varrho \in (0,d).$$

By (iii) we also obtain

$$(4.20) \qquad \int_{G_{1/4}^2} |\varrho b^i(\varrho x')|^q \, dx' = \varrho^{q-n} \int_{G_{\varrho/4}^{2\varrho}} |b^i(x)|^q \, dx \le 4^q \varrho^{-n} \int_{G_{\varrho/4}^{2\varrho}} |rb^i(x)|^q \, dx$$
$$\le 4^q \varrho^{-n} \int_{G_{\varrho/4}^{2\varrho}} \mathcal{A}^q(r) \, dx \le 2^{n+2q} \int_{G_{\varrho/4}^{2\varrho}} r^{-n} \mathcal{A}^q(r) \, dx$$
$$= 2^{n+2q} \operatorname{mes} \Omega \int_{\varrho/4}^{2\varrho} \frac{\mathcal{A}^q(r)}{r} \, dr$$
$$\le 2^{n+2q} \operatorname{mes} \Omega \cdot \mathcal{A}^{q-1}(2d) \int_{0}^{2d} \frac{\mathcal{A}(r)}{r} \, dr,$$
$$(4.21) \quad \int_{G_{1/4}^2} |\varrho^2 c(\varrho x')|^{q/2} \, dx' = \varrho^{q-n} \int_{G_{\varrho/4}^{2\varrho}} |c(x)|^{q/2} \, dx$$

$$\leq 4^{q} \varrho^{-n} \int_{G_{\varrho/4}^{2\varrho}} |r^{2}c(x)|^{q/2} dx$$

$$\leq 2^{2q+n} \int_{G_{\varrho/4}^{2\varrho}} r^{-n} \mathcal{A}^{q/2}(r) dx$$

$$\leq 2^{2q+n} \operatorname{mes} \Omega \cdot \mathcal{A}^{(q-2)/2}(2d) \int_{0}^{2d} \frac{\mathcal{A}(r)}{r} dr,$$

for q > n and all $\varrho \in (0, d)$.

In the same way from (4.17) we get

$$(4.22) \quad \varrho \mathcal{A}^{-1}(\varrho) | G(x') |_{q/2; G_{1/4}^2} = \varrho \mathcal{A}^{-1}(\varrho) \Big(\int_{G_{\varrho/4}^{2\varrho}} \varrho^{-n} \Big\{ |g(x)|^{q/2} + \Big(\sum_{i=1}^n |b^i(x)| \Big)^{q/2} |\nabla \Phi|^{q/2} + |c(x)|^{q/2} |\Phi(x)|^{q/2} \Big\} dx \Big)^{2/q}.$$

By (iv) setting $q=n/(1-\alpha)>n$ and applying Hölder's inequality we obtain

$$(4.23) \quad \varrho \mathcal{A}^{-1}(\varrho) \Big(\int_{G_{\varrho/4}^{2\varrho}} \varrho^{-n} |g(x)|^{q/2} dx \Big)^{2/q} \\ \leq c \varrho^{\alpha} \mathcal{A}^{-1}(\varrho) \Big(\int_{G_{\varrho/4}^{2\varrho}} \varrho^{-n/2} |g(x)|^{q/2} dx \Big)^{2/q} \\ \leq c \varrho^{\alpha} \mathcal{A}^{-1}(\varrho) \|g\|_{q; G_{\varrho/4}^{2\varrho}} (\operatorname{mes} \Omega \ln 8)^{1/q} \\ \leq c (d, \alpha, q, \operatorname{mes} \Omega, \mathcal{A}(d)) \|g\|_{q; G_{\varrho/4}^{2\varrho}},$$

since by (1.1), $\rho^{\alpha} \mathcal{A}^{-1}(\rho) \leq d^{\alpha} \mathcal{A}^{-1}(d)$ for all $\rho \in (0, d)$. Similarly,

$$(4.24) \quad \varrho \mathcal{A}^{-1}(\varrho) \Big(\int_{G_{\varrho/4}^{2\varrho}} r^{-n} \\ \times \Big\{ \Big(\sum_{i=1}^{n} |b^{i}(x)| \Big)^{q/2} |\nabla \Phi|^{q/2} + |c(x)|^{q/2} |\Phi(x)|^{q/2} \Big\} dx \Big)^{2/q} \\ \le c (\operatorname{mes} \Omega)^{2/q} \|\varphi\|_{1,\mathcal{A}; G_{\varrho/4}^{2\varrho}} \mathcal{A}^{(q-2)/q}(\varrho) \int_{\varrho/4}^{2\varrho} \frac{\mathcal{A}(r)}{r} dr.$$

From (4.22)–(4.24) we obtain

$$(4.25) \quad \left[G(\varrho \cdot)\right]_{q/2;G^2_{1/4}} \leq \operatorname{const}\left(q,\alpha,d,\operatorname{mes}\Omega,\mathcal{A}(d),\int\limits_{\varrho/4}^{2\varrho}\frac{\mathcal{A}(r)}{r}\,dr\right) \\ \times \left(\left[g\right]_{q;G^{2\varrho}_{\varrho/4}} + \left\|\varphi\right\|_{1,\mathcal{A};\Gamma^{2\varrho}_{\varrho/4}}\right), \quad q = n/(1-\alpha) > n.$$

Finally, in the same way from (4.18) we have

$$(4.26) \qquad \sum_{i=1}^{n} \int_{G_{1/4}^{2}} |F^{i}(x')|^{q} dx' \\ \leq c \Big(q, G, \max_{j=1,\dots,n} \Big\{ \sum_{i=1}^{n} \|a^{ij}\|_{0,\mathcal{A};G}^{q}, \sum_{i=1}^{n} \|a^{i}\|_{0,\mathcal{A};G}^{q} \Big\} \Big) \\ \times \int_{G_{\ell/4}^{2\varrho}} r^{-n} \mathcal{A}^{-q}(r) \Big(\sum_{i=1}^{n} |f^{i}(x)|^{q} + |\nabla \varPhi|^{q} + |\varPhi|^{q} \Big) dx.$$

It follows from (4.5) as $\rho \to +0$ that $|\nabla \Phi(0)| = 0$. Therefore

$$|\nabla \Phi(x)| = |\nabla \Phi(x) - \nabla \Phi(0)| \le \mathcal{A}(|x|) \|\varphi\|_{1,\mathcal{A};\Gamma^{2\varrho}_{\varrho/4}}, \quad \forall x \in G^{2\varrho}_{\varrho/4},$$

and hence

$$|\Phi(x)| \le r |\nabla \Phi| \le |x| \mathcal{A}(|x|) \|\varphi\|_{1,\mathcal{A};\Gamma^{2\varrho}_{\varrho/4}}, \quad \forall x \in G^{2\varrho}_{\varrho/4}.$$

Similarly it follows from (4.13) as $\rho \to +0$ that $f^j(0) = 0$ for $j = 1, \ldots, n$. Therefore we have for all $x \in G_{\rho/4}^{2\rho}$,

$$|f^{j}(x)| = |f^{j}(x) - f^{j}(0)| \le \mathcal{A}(r)[f^{j}]_{0,\mathcal{A};G^{2\varrho}_{\varrho/4}}.$$

Consequently, estimating the right side of (4.26) and taking into account the inequalities obtained, we have

$$(4.27) \qquad \sum_{i=1}^{n} \|F^{i}\|_{q;G_{1/4}^{2}} \leq c \Big(q, G, \max_{j=1,\dots,n} \Big\{ \sum_{i=1}^{n} \|a^{ij}\|_{0,\mathcal{A};G}, \sum_{i=1}^{n} \|a^{i}\|_{0,\mathcal{A};G} \Big\} \Big) \\ \times \operatorname{mes} \Omega \cdot \Big(\sum_{i=1}^{n} \|f^{i}\|_{0,\mathcal{A};G_{\ell/4}^{2\varrho}} + \|\varphi\|_{1,\mathcal{A};\Gamma_{\ell/4}^{2\varrho}} \Big).$$

So all conditions of [5, Theorem 8.25] are satisfied. By this theorem we get

148

$$(4.28) \sup_{x' \in G_{1/2}^1} |z(x')| \leq c \Big(\|z\|_{2;G_{1/4}^2} + \|G\|_{n/(2(1-\alpha));G_{1/4}^2} + \sum_{i=1}^n \|F^i\|_{n/(1-\alpha);G_{1/4}^2} \Big) \leq c \Big(\|z\|_{2;G_{1/4}^2} + \|g\|_{n/(1-\alpha);G_{\varrho/4}^{2\varrho}} + \sum_{i=1}^n \|f^i\|_{0,\mathcal{A};G_{\varrho/4}^{2\varrho}} + \|\varphi\|_{1,\mathcal{A};\Gamma_{\varrho/4}^{2\varrho}} \Big).$$

Setting $w(x) = u(x) - \varphi(x)$ we have for w(x) the problem

$$(DL)_{0,2d} \qquad \begin{cases} \frac{\partial}{\partial x_i} (a^{ij}(x)w_{x_j} + a^i(x)w) + b^i(x)w_{x_i} + c(x)w \\ &= G(x) + \frac{\partial F^j}{\partial x_j}, \quad x \in G_0^{2d}, \\ &w(x) = 0, \quad x \in \Gamma_0^{2d} \subset \partial G_0^{2d}, \end{cases}$$

where

$$G(x) = g(x) - b^{i}(x)\Phi_{x_{i}} - c(x)\Phi(x),$$

$$F^{i}(x) = f^{i}(x) - a^{ij}(x)\Phi_{x_{j}} - a^{i}(x)\Phi(x).$$

Moreover, by assumptions (i), (ii),

$$|a^{ij}(x) - \delta^j_i| \le ||a^{ij}||_{0,\mathcal{A};G} \mathcal{A}(|x|), \quad x \in G.$$

By [6, Theorem 1] there is a constant c > 0 independent of w, G, F^i such that

$$(4.29) \quad \int_{G_0^{\varrho}} r^{2-n} |\nabla w|^2 \, dx \le c \varrho^{2\lambda} \int_{G_0^{2d}} \left\{ |w(x)|^2 + |\nabla w|^2 + G^2(x) + \sum_{i=1}^n |F^i(x)|^2 + r^{4-n-2\lambda} \mathcal{H}^{-1}(r) G^2(x) + r^{2-n-2\lambda} \right. \\ \left. \times \mathcal{H}^{-1}(r) \sum_{i=1}^n |F^i(x)|^2 \right\} dx, \quad \forall \varrho \in (0,d).$$

Our assumptions guarantee that the integral on the right side is finite. Since $z(x') = \rho^{-1} \mathcal{A}^{-1}(\rho) w(\rho x')$ we obtain from (4.29),

(4.30)
$$\int_{G_{1/4}^2} |\nabla' z|^2 dx' \le 2^{n-2} \varrho^{-2} \mathcal{A}^{-2}(\varrho) \int_{G_{\varrho/4}^{2\varrho}} r^{2-n} |\nabla w|^2 dx$$
$$\le c \varrho^{2\lambda - 2} \mathcal{A}^{-2}(\varrho) \int_{G} \left\{ |w|^2 + |\nabla w|^2 + G^2(x) \right\}$$

M. Borsuk

$$+\sum_{i=1}^{n} |F^{i}(x)|^{2} + r^{4-n-2\lambda} \mathcal{H}^{-1}(r) G^{2}(x) + r^{2-n-2\lambda} \mathcal{H}^{-1}(r) \sum_{i=1}^{n} |F^{i}(x)|^{2} dx.$$

By assumptions (i)–(iv) we have

(4.31)

$$|G(x)|^{2} \leq c\{|g|^{2} + \mathcal{A}^{2}(r)(r^{-2}|\nabla \Phi|^{2} + r^{-4}\Phi^{2})\},$$

$$\sum_{i=1}^{n} |F^{i}(x)|^{2} \leq c\{\sum_{i=1}^{n} |f^{i}(x)|^{2} + \max_{i,j=1,...,n} (\|a^{ij}\|_{0,\mathcal{A};G}, \|a^{i}\|_{0,\mathcal{A};G})(|\nabla \Phi|^{2} + \Phi^{2})\}.$$

Applying now the Friedrichs inequality and taking into account (4.1), we obtain from (4.30), (4.31),

$$\begin{aligned} (4.32) \quad \|z\|_{2;G_{1/4}^{2}}^{2} &\leq c_{0} \|\nabla' z\|_{2;G_{1/4}^{2}}^{2} \\ &\leq c \varrho^{2\lambda-2} \mathcal{A}^{-2}(\varrho) \int_{G} \Big\{ |w|^{2} + |\nabla w|^{2} + g^{2}(x) \\ &+ \sum_{i=1}^{n} |f^{i}(x)|^{2} + |\nabla \Phi|^{2} + \Phi^{2} + r^{4-n-2\lambda} \mathcal{H}^{-1}(r) g^{2}(x) \\ &+ r^{2-n-2\lambda} \mathcal{H}^{-1}(r) \sum_{i=1}^{n} |f^{i}(x)|^{2} \\ &+ r^{2-n-2\lambda} \mathcal{H}^{-1}(r) |\nabla \Phi|^{2} + r^{-2} \mathcal{A}^{2}(r) |\nabla \Phi|^{2} \Big\} dx \\ &\leq \text{const} \Big\{ \|g\|_{n/(1-\alpha);G}^{2} + \sum_{i=1}^{n} \|f^{i}\|_{0,\mathcal{A};G}^{2} + \|\varphi\|_{1,\mathcal{A};G}^{2} \\ &+ \int_{G} \Big(|w|^{2} + |\nabla w|^{2} + r^{4-n-2\lambda} \mathcal{H}^{-1}(r) g^{2}(x) \\ &+ r^{2-n-2\lambda} \mathcal{H}^{-1}(r) \sum_{i=1}^{n} |f^{i}(x)|^{2} \\ &+ r^{2-n-2\lambda} \mathcal{H}^{-1}(r) |\nabla \Phi|^{2} \Big) dx \Big\} \end{aligned}$$

by assumptions (iii)–(v). By the definition of z(x'), inequalities (4.28), (4.32) and assumptions (i)–(v) we finally obtain

(4.33)
$$|v|_{0;G_{1/4}^2} \le |z|_{0;G_{1/4}^2} + \varrho^{-1} \mathcal{A}^{-1}(\varrho) |\varphi(\varrho \cdot)|_{0;G_{1/4}^2}$$

150

Dini continuity for equations in nonsmooth domains

$$\leq c \Big(\|g\|_{n/(1-\alpha);G} + \sum_{i=1}^{n} \|f^{i}\|_{0,\mathcal{A};G} + \|\varphi\|_{1,\mathcal{A};\partial G} \\ + \Big\{ \int_{G} \Big(|w|^{2} + |\nabla w|^{2} + r^{4-n-2\lambda} \mathcal{H}^{-1}(r) g^{2}(x) \\ + r^{2-n-2\lambda} \mathcal{H}^{-1}(r) \sum_{i=1}^{n} |f^{i}(x)|^{2} \\ + r^{2-n-2\lambda} \mathcal{H}^{-1}(r) |\nabla \Phi|^{2} \Big) dx \Big\}^{1/2} \Big).$$

3°. Returning to the variables x, u(x), we now obtain from inequalities (4.16), (4.33),

$$(4.34) \quad \varrho^{-1}\mathcal{A}^{-1}(\varrho) \sup_{x \in G_{\varrho/2}^{\varrho}} |u(x)| + \mathcal{A}^{-1}(\varrho) \sup_{x \in G_{\varrho/2}^{\varrho}} |\nabla u(x)| \\ + \sup_{\substack{x,y \in G_{\varrho/2}^{\varrho} \\ x \neq y}} \frac{|\nabla u(x) - \nabla u(y)|}{\mathcal{A}(\varrho)\mathcal{B}(|x-y|)} \\ \leq c \Big(\|g\|_{n/(1-\alpha);G} + \sum_{i=1}^{n} \|f^{i}\|_{0,\mathcal{A};G} + \|\varphi\|_{1,\mathcal{A};\partial G} \\ + \Big\{ \int_{G} \Big(|u|^{2} + |\nabla u|^{2} + r^{4-n-2\lambda}\mathcal{H}^{-1}(r)g^{2}(x) \\ + r^{2-n-2\lambda}\mathcal{H}^{-1}(r)\sum_{i=1}^{n} |f^{i}(x)|^{2} \\ + r^{2-n-2\lambda}\mathcal{H}^{-1}(r)|\nabla \Phi|^{2} \Big) dx \Big\}^{1/2} \Big).$$

Setting $|x| = 2\rho/3$ we deduce from (4.34) the validity of (4.2), (4.3). This completes the proof of Theorem 3.

REMARK. As an example of \mathcal{A} that satisfies all the conditions of Theorem 3, besides the function r^{α} , one may take $\mathcal{A}(r) = r^{\alpha} \ln(1/r)$, provided $\lambda \geq 1 + \alpha$. In the case of $\mathcal{A}(r) = r^{\alpha}$ the result of [1] follows from Theorem 3 for a single equation and the estimate (4.2) coincides with [6, (10)].

5. Global regularity and solvability

THEOREM 4. Let \mathcal{A} be an α -Dini function $(0 < \alpha < 1)$ that satisfies the conditions (1.5), (1.6), (4.1). Let $\overline{G} \setminus \{\mathcal{O}\}$ be a domain of class $C^{1,\mathcal{A}}$, and $\mathcal{O} \in \partial G$ be a conical point of G. Suppose that assumptions (i)–(iv) are valid and

(vi)
$$\int_{G} (c(x)\eta - a^{i}(x)D_{i}\eta) dx \leq 0, \quad \forall \eta \geq 0, \ \eta \in C_{0}^{1}(G).$$

Then the generalized problem (DL) has a unique solution $u \in C^{1,\mathcal{A}}(\overline{G})$ and we have the estimate

(5.1)
$$\|u\|_{1,\mathcal{A};G} \leq c \Big(\|g\|_{n/(1-\alpha);G} + \sum_{i=1}^{n} \|f^{i}\|_{0,\mathcal{A};G} + \|\varphi\|_{1,\mathcal{A};\partial G} + \Big\{ \int_{G} \Big(r^{4-n-2\lambda} \mathcal{H}^{-1}(r) g^{2}(x) + r^{2-n-2\lambda} \mathcal{H}^{-1}(r) \sum_{i=1}^{n} |f^{i}(x)|^{2} + r^{2-n-2\lambda} \mathcal{H}^{-1}(r) |\nabla \Phi|^{2} \Big) dx \Big\}^{1/2} \Big).$$

Proof. The inequality (4.34) implies that

(5.2)
$$|\nabla u(x) - \nabla u(y)|$$

$$\leq c\mathcal{B}(|x-y|) \Big(|g|_{n/(1-\alpha);G} + \sum_{i=1}^{n} ||f^{i}||_{0,\mathcal{A};G}$$

$$+ ||\varphi||_{1,\mathcal{A};\partial G} + \Big\{ \int_{G} \Big(|u|^{2} + |\nabla u|^{2} + r^{4-n-2\lambda} \mathcal{H}^{-1}(r)g^{2}(x)$$

$$+ r^{2-n-2\lambda} \mathcal{H}^{-1}(r) \sum_{i=1}^{n} |f^{i}(x)|^{2} + r^{2-n-2\lambda} \mathcal{H}^{-1}(r)|\nabla \Phi|^{2} \Big) dx \Big\}^{1/2} \Big)$$

for all $x, y \in G_{\varrho/2}^{\varrho}$ and all $\varrho \in (0, d)$.

From (4.34), (5.2) we now infer that $u \in C^{1,\mathcal{B}}(\overline{G_0^d})$. Indeed, let $x, y \in \overline{G_0^d}$ and $\varrho \in (0,d)$. If $x, y \in G_{\varrho/2}^{\varrho}$ then (5.2) holds. If $|x-y| > |\varrho| = |x|$ then by (4.34) we obtain

$$\begin{aligned} \frac{|\nabla u(x) - \nabla u(y)|}{\mathcal{B}(|x - y|)} \\ &\leq 2c\mathcal{A}(|x|)\mathcal{B}^{-1}(|x|) \Big(\|g\|_{n/(1 - \alpha);G} + \|\varphi\|_{1,\mathcal{A};\partial G} \\ &+ \sum_{i=1}^{n} \|f^{i}\|_{0,\mathcal{A};G} + \Big\{ \int_{G} \Big(|u|^{2} + |\nabla u|^{2} + r^{4 - n - 2\lambda} \mathcal{H}^{-1}(r)g^{2}(x) \Big\} \end{aligned}$$

Dini continuity for equations in nonsmooth domains

$$+ r^{2-n-2\lambda} \mathcal{H}^{-1}(r) \sum_{i=1}^{n} |f^{i}(x)|^{2} + r^{2-n-2\lambda} \mathcal{H}^{-1}(r)|\nabla \Phi|^{2} dx \Big\}^{1/2}$$

$$\leq 2c\alpha \Big(\|g\|_{n/(1-\alpha);G} + \|\varphi\|_{1,\mathcal{A};\partial G} + \sum_{i=1}^{n} \|f^{i}\|_{0,\mathcal{A};G}$$

$$+ \Big\{ \int_{G} \Big(|u|^{2} + |\nabla u|^{2} + r^{4-n-2\lambda} \mathcal{H}^{-1}(r)g^{2}(x)$$

$$+ r^{2-n-2\lambda} \mathcal{H}^{-1}(r) \sum_{i=1}^{n} |f^{i}(x)|^{2} + r^{2-n-2\lambda} \mathcal{H}^{-1}(r)|\nabla \Phi|^{2} dx \Big\}^{1/2} \Big)$$

in view of (1.3). Because of the condition (1.5) for the equivalence of \mathcal{A} and \mathcal{B} , we derive $u \in C^{1,\mathcal{A}}(\overline{G_0^d})$ and the estimate

(5.3)
$$\|u\|_{1,\mathcal{A};G_0^d} \leq c \Big(\|g\|_{n/(1-\alpha);G} + \sum_{i=1}^n \|f^i\|_{0,\mathcal{A};G} + \|\varphi\|_{1,\mathcal{A};\partial G} \\ + \Big\{ \int_G \Big(|u|^2 + |\nabla u|^2 + r^{4-n-2\lambda} \mathcal{H}^{-1}(r) g^2(x) \\ + r^{2-n-2\lambda} \mathcal{H}^{-1}(r) \sum_{i=1}^n |f^i(x)|^2 \\ + r^{2-n-2\lambda} \mathcal{H}^{-1}(r) |\nabla \Phi|^2 \Big) \, dx \Big\}^{1/2} \Big),$$

following from the above arguments.

By means of a partition of unity, from the bounds (3.1) of Theorem 2 and (5.3) we derive

(5.4)
$$||u||_{1,\mathcal{A};G} \leq c \Big(\|g\|_{n/(1-\alpha);G} + \sum_{i=1}^{n} \|f^{i}\|_{0,\mathcal{A};G} + \|\varphi\|_{1,\mathcal{A};\partial G} + |u|_{0;G} + \Big\{ \int_{G} \Big(|u|^{2} + |\nabla u|^{2} + r^{4-n-2\lambda} \mathcal{H}^{-1}(r) g^{2}(x) + r^{2-n-2\lambda} \mathcal{H}^{-1}(r) \sum_{i=1}^{n} |f^{i}(x)|^{2} + r^{2-n-2\lambda} \mathcal{H}^{-1}(r) |\nabla \Phi|^{2} \Big) dx \Big\}^{1/2} \Big).$$

By the assumption (vi) that guarantees the uniqueness of the solution for the problem (DL), we have the bound [5, Corollary 8.7]

$$\int_{G} (|u|^{2} + |\nabla u|^{2}) \, dx \le C \int_{G} \left(g^{2} + \sum_{i=1}^{n} |f^{i}|^{2} + |\nabla \Phi|^{2} + \Phi^{2} \right) \, dx,$$

which together with the global boundedness of weak solutions [5, Theorem 8.16], and the bound (5.4), leads to the desired estimate (5.1).

Finally, the global estimate (5.1) leads to the assertion on the unique solvability in $C^{1,\mathcal{A}}(\overline{G})$. This is proved by an approximation argument using the relevant propositions from [8] in the same way as in [5, Theorem 8.34].

REMARK. The conclusion of Theorem 4 is best possible. This is shown for $\mathcal{A}(r) = r^{\alpha}$, $\lambda \ge 1 + \alpha$, $\alpha \in (0, 1)$, in [6] (see also examples in [2]).

References

- A. Azzam and V. Kondrat'ev, Schauder-type estimates of solutions of second order elliptic systems in divergence form in non-regular domains, Comm. Partial Differential Equations 16 (1991), 1857–1878.
- [2] M. Borsuk, Best-possible estimates of solutions of the Dirichlet problem for linear elliptic nondivergence equations of second order in a neighbourhood of a conical point of the boundary, Math. USSR-Sb. 74 (1993), 185–201.
- C. Burch, The Dini condition and regularity of weak solutions of elliptic equations, J. Differential Equations 30 (1978), 308-323.
- [4] S. Eĭdel'man and M. Matiĭchuk, The Cauchy problem for parabolic systems with coefficients having low smoothness, Ukrain. Mat. Zh. 22 (1970), 22–36 (in Russian).
- [5] D. Gilbarg and N. Trudinger, *Elliptic Partial Differential Equations of Second Order*, Springer, Berlin, 1983.
- [6] V. Kondrat'ev, I. Kopachek and O. Oleĭnik, On the best Hölder exponents for generalized solutions of the Dirichlet problem for a second-order elliptic equation, Mat. Sb. 131 (1986), 113–125 (in Russian); English transl.: Math. USSR-Sb. 59 (1988).
- G. Lieberman, The Dirichlet problem for quasilinear elliptic equations with continuously differentiable boundary data, Comm. Partial Differential Equations 11 (1986), 167–229.
- [8] E. Sperner, Schauder's existence theorem for α-Dini continuous data, Ark. Mat. 19 (1981), 193-216.

Department of Applied Mathematics Olsztyn University of Agriculture and Technology 10-957 Olsztyn-Kortowo, Poland E-mail: borsuk@art.olsztyn.pl

> Reçu par la Rédaction le 12.6.1997 Révisé le 12.10.1997 et le 15.12.1997