
ANNALES

POLONICI MATHEMATICI

LXIX.2 (1998)

Multiplicity of positive solutions for

a nonlinear differential equation

with nonlinear boundary conditions

by D. R. Dunninger and Haiyan Wang (East Lansing, Mich.)

Abstract. We study the existence and multiplicity of positive solutions of the non-
linear equation u′′(x) + λh(x)f(u(x)) = 0 subject to nonlinear boundary conditions. The
method of upper and lower solutions and degree theory arguments are used.

1. Introduction. In this paper we are concerned with the existence and
multiplicities of positive solutions of the nonlinear boundary value problem

(1)





u′′(x) + λh(x)f(u(x)) = 0, 0 < x < 1,
B0u ≡ αu(0) − βu′(0) = λg1(u(0)),
B1u ≡ γu(1) + δu′(1) = λg2(u(1)).

By a positive solution of (1) we understand a solution u ∈ C2[0, 1] with
u > 0 in (0, 1). As a consequence of the maximum principle, our hypotheses
below will imply that every nonnegative solution of (1) is positive.

The main results follow.

Theorem 1.1. Assume

(A1) α, β, γ, δ ≥ 0 and ̺ ≡ γβ + αγ + αδ > 0.
(A2) λ is a positive parameter.

(A3) h : [0, 1] → [0,∞) is continuous and does not vanish identically on

any subset (of positive measure) of [0, 1].
(A4) f : [0,∞) → (0,∞) is continuous.

(A5) g1, g2 : [0,∞) → (0,∞) are continuous.

(A6) f∞ = limu→∞ f(u)/u = ∞.

Then there exists a positive number λ∗ such that (1) has at least two positive

solutions for 0 < λ < λ∗, at least one positive solution for λ = λ∗, and no

positive solutions for λ > λ∗.
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Theorem 1.2. Suppose f ≡ 0. Assume (A1), (A2), (A5) and

(A7) (g1)∞ = limu→∞ g1(u)/u = ∞, (g2)∞ = limu→∞ g2(u)/u = ∞.

Then the conclusions of Theorem 1.1 are valid.

Note that we do not require any monotonicity conditions on f, g1, g2.
Theorem 1.1 was proved for a variety of nonlinear differential equations
under homogeneous Dirichlet boundary conditions in [2, 4, 7, 8] and for a
system of differential equations under general homogeneous boundary con-
ditions in [5]. Related results for (1) can be found in [1, 3] and the references
therein.

Our purpose here is to study the influence of the nonlinearities in the
boundary condition. As a direct consequence of Theorems 1.1 and 1.2, we
can easily obtain corresponding results for positive radial solutions of the
following elliptic system on an annulus:

(2)





∆u + λh(|x|)f(u) = 0 in 0 < R1 < |x| < R2,

αu + β
∂u

∂n
= λg1(u) on |x| = R1,

γu + δ
∂u

∂n
= λg2(u) on |x| = R2,

where ∂/∂n denotes the outer normal derivative on the boundary.

Indeed, the search for positive radial solutions u = u(r) of (2) leads to

(3)





u′′(r) +
n − 1

r
u′(r) + λh(r)f(u(r)) = 0, R1 < r < R2,

αu(R1) − βu′(R1) = λg1(u(R1)), γu(R2) + δu′(R2) = λg2(u(R2)).

By applying the change of variables s = −
TR2

r
(1/tn−1) dt, followed by the

change of variables t = (m− s)/m, where m = −
TR2

R1

(1/tn−1) dt, system (3)
can be brought into the form




u′′(x) + λh∗(x)f(u(x)) = 0, 0 < x < 1,

αu(0) − β
R1−n

1

m
u′(0) = λg1(u(0)), γu(1) + δ

R1−n
2

m
u′(1) = λg2(u(1)),

where h∗(t) = m2r2(n−1)(m(1 − t))h(r(m(1 − t))). It is easy to check that
h∗ satisfies (A3), and that the corresponding condition (A1) is met.

In proving our results, we employ upper and lower solution methods
together with degree theory arguments. We establish Theorem 1.1 first.
Preliminary results are given in Section 2. In Section 3, an existence and
nonexistence result is proved. Upper and lower solutions are discussed in
Section 4. The proof of Theorem 1.1 is given in Section 5. Also in Section 5
we indicate the modifications needed in order to prove Theorem 1.2.
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2. Preliminaries. We first note that (1) is equivalent to the integral
equation

(4) u(x) = λ(P (u(0), u(1))x + Q(u(0), u(1))) + λ

1\
0

k(x, y)h(y)f(u(y)) dy

where

(5) P (s, t) =
αg2(t) − γg1(s)

̺
, Q(s, t) =

(γ + δ)g1(s) + βg2(t)

̺

and k(x, y) is the Green’s function

(6) k(x, y) =
1

̺

{
(γ + δ − γx)(β + αy), y ≤ x,
(β + αx)(γ + δ − γy), x ≤ y.

Consequently, (4) is equivalent to the fixed point equation

Tu = u

in the usual Banach space X = C([0, 1]) with ‖u‖ = supx∈[0,1] |u(x)|, where
T : X → X is given by

(7) Tu(x) = λ(P (u(0), u(1))x + Q(u(0), u(1))) + λ

1\
0

k(x, y)h(y)f(u(y)) dy.

We need the following elementary lemmas:

Lemma 2.1. Suppose k(x, y) is the Green’s function defined in (6). Then

(8)

k(x, y) > 0 for all x, y ∈ [1/4, 3/4],

k(x, y) ≥ 1
16k(z, y) for all x ∈ [1/4, 3/4], y, z ∈ [0, 1].

P r o o f. Clearly,

k(x, y) ≥
1

̺

(
δ +

γ

4

)(
β +

α

4

)
> 0 for all x, y ∈ [1/4, 3/4].

Moreover, for x ∈ [1/4, 3/4], we have

k(x, y) ≥
1

̺





(δ + γ/4)(β + αy), 0 ≤ y ≤ 1/4,
(δ + γ/4)(β + α/4), 1/4 < y < 3/4,
(β + α/4)(γ + δ − γy), 3/4 ≤ y ≤ 1.

On the other hand, for any z, y ∈ [0, 1], we have

k(z, y) ≤
1

̺
(β + αy)(γ + δ − γy)

from which (8) easily follows.

Lemma 2.2. Consider P (s, t)x + Q(s, t), where P,Q are defined in (5).
Then

P (s, t)x + Q(s, t) ≥ min(Q(s, t), P (s, t) + Q(s, t)) ≥ 0,(9)
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P (s, t)x + Q(s, t) ≤ max(Q(s, t), P (s, t) + Q(s, t))(10)

for all x in [0, 1] and s, t ≥ 0. Further ,

(11) P (s, t)x + Q(s, t) ≥ 1
4 (P (s, t)z + Q(s, t))

for all x ∈ [1/4, 3/4], z ∈ [0, 1], s, t ≥ 0.

P r o o f. The estimates (9)–(11) follow easily from the linearity (in x) of
P (s, t)x+Q(s, t) for each fixed s, t ≥ 0, and the nonnegativity of g1 and g2.

3. Existence and nonexistence

Theorem 3.1. Assume (A1)–(A6). Then for λ sufficiently small , (1)
has at least one positive solution, whereas for λ sufficiently large, (1) has no

positive solutions.

We shall need some lemmas to prove this result. It is obvious that the
operator T defined in (7) is completely continuous. Let K be the cone de-
fined by

(12) K =

{
u ∈ X : u ≥ 0, min

x∈[1/4,3/4]
u(x) ≥

1

16
‖u‖

}

and let C be the cone defined by

C = {u ∈ X : u ≥ 0}.

Lemma 3.2. T (C) ⊂ K.

P r o o f. Choose u ∈ C. Utilizing (8), (9) and (11), for x ∈ [1/4, 3/4] we
have

Tu(x) ≥ λ

(
1

4
(P (u(0), u(1))z + Q(u(0), u(1)) +

1

16

1\
0

k(z, y)h(y)f(u(y)) dy

)

≥
1

16
Tu(z)

for all z ∈ [0, 1], and so

min
x∈[1/4,3/4]

Tu(x) ≥
1

16
‖Tu‖,

i.e., T (u) ∈ K; hence T (C) ⊂ K.

The following lemma is well known and crucial in our arguments; see [6]
for proofs and further discussions of the fixed point index.

Lemma 3.3. Let X be a Banach space and K a cone in X. For r > 0,
define Kr = {x ∈ K : ‖x‖ < r}. Assume that T : Kr → K is a compact

map such that Tx 6= x for x ∈ ∂Kr.

(i) If ‖x‖ ≤ ‖Tx‖ for x ∈ ∂Kr, then i(T,Kr,K) = 0.
(ii) If ‖x‖ ≥ ‖Tx‖ for x ∈ ∂Kr, then i(T,Kr,K) = 1.
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Proof of Theorem 3.1. In the following we set

M = max
(x,y)∈[0,1]×[0,1]

k(x, y) > 0, m = min
(x,y)∈[1/4,3/4]×[1/4,3/4]

k(x, y) > 0.

For q > 0, let

I(q) = M max
u∈K, ‖u‖=q

( 1\
0

h(y)f(u(y)) dy
)

> 0.

For any number r1 > 0, let

Kr1
= {u ∈ K : ‖u‖ < r1}.

We then choose σ > 0 so that

σ ≤
r1

2I(r1)

and

σ max(Q(u(0), u(1)), P (u(0), u(1)) + Q(u(0), u(1))) ≤ r1/2, u ∈ ∂Kr1
.

Then for λ ≤ σ and u ∈ ∂Kr1
, we have, recalling (10),

Tu(x) ≤
r1

2
+ σM

1\
0

h(y)f(u(y)) dy ≤
r1

2
+ σI(r1) ≤ r1,

which implies

‖T (u)‖ ≤ r1 = ‖u‖

for u ∈ ∂Kr1
. Thus Lemma 3.3 implies

i(T,Kr1
,K) = 1.

Since f∞ = ∞, there is a p > 0 such that f(u) ≥ ηu for u ≥ p, where η
is chosen so that

λmη

16

3/4\
1/4

h(y) dy ≥ 1.

Choose r2 ≥ 16p and set Kr2
= {u ∈ K : ‖u‖ < r2}. If u ∈ ∂Kr2

, then

min
x∈[1/4,3/4]

u(x) ≥
1

16
‖u‖ ≥ p

and for any x ∈ [1/4, 3/4], we have

Tu(x) ≥ λm

3/4\
1/4

h(y)f(u(y)) dy

≥ λmη

3/4\
1/4

h(y)u(y) dy ≥
λmη

16
‖u‖

3/4\
1/4

h(y) dy ≥ ‖u‖,
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which implies ‖T (u)‖ ≥ ‖u‖ for u ∈ ∂Kr2
. An application of Lemma 3.3

again shows that

i(T,Kr2
,K) = 0.

Since we can adjust r1 and r2 so that r1 < r2, it follows from the additivity
of the fixed point index that i(T,Kr2

\Kr1
,K) = −1, and thus T has a fixed

point in Kr2
\Kr1

, i.e., (1) has at least one positive solution.

From (A4) and (A6), there is a constant c such that f(u) ≥ cu for u ≥ 0.
Let u ∈ X be a positive solution of (4). By Lemma 3.2, u ∈ K. Now choose
λ large enough so that

λmc

16

3/4\
1/4

h(y) dy > 1.

Then for x ∈ [1/4, 3/4], we have

u(x) ≥ λmc

3/4\
1/4

h(y)u(y) dy ≥
λmc

16
‖u‖

3/4\
1/4

h(y) dy > ‖u‖,

which is an obvious contradiction. Hence (1) has no positive solutions for λ
sufficiently large.

4. Upper and lower solutions. We say that the function u ∈ C2[0, 1]
is an upper solution of (1) if

u′′(x) + λh(x)f(u(x)) ≤ 0, 0 < x < 1,

B0u ≥ λg1(u(0)), B1u ≥ λg2(u(1)),

and u ∈ C2[0, 1] is a lower solution if

u′′(x) + λh(x)f(u(x)) ≥ 0, 0 < x < 1,

B0u ≤ λg1(u(0)), B1u ≤ λg2(u(1)).

We now establish several lemmas that will be used in the sequel. Let u, u
be upper and lower solutions for (1) and define

f∗(u(x)) =





f(u(x)), u(x) ≥ u(x),
f(u(x)), u(x) ≤ u(x) ≤ u(x),
f(u(x)), u(x) ≤ u(x),

g∗1(u(x)) =





g1(u(x)), u(x) ≥ u(x),
g1(u(x)), u(x) ≤ u(x) ≤ u(x),
g1(u(x)), u(x) ≤ u(x),

g∗2(u(x)) =





g2(u(x)), u(x) ≥ u(x),
g2(u(x)), u(x) ≤ u(x) ≤ u(x),
g2(u(x)), u(x) ≤ u(x).
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Consider the following problem:

(13)





u′′(x) + λh(x)f∗(u(x)) = 0, 0 < x < 1,
B0u = λg∗1(u(0)),
B1u = λg∗2(u(1)).

Lemma 4.1. If there is a solution u of (13), then u(x) ≤ u(x) ≤ u(x)
for x ∈ [0, 1]. In other words, u is a solution of (1).

P r o o f. We first prove that u(x) ≤ u(x). Suppose to the contrary that
u(x0) > u(x0) for some x0 ∈ [0, 1]. Then there are four cases:

(i) u(x) > u(x) for all x ∈ [0, 1]. In this case, we have

f∗(u(x)) = f(u(x)), g∗1(u(0)) = g1(u(0)), g∗2(u(0)) = g2(u(0)).

Therefore

(u − u)′′ ≤ 0, B0(u − u) ≥ 0, B1(u − u) ≥ 0,

which, by the maximum principle, implies the contradiction u(x) ≥ u(x) for
all x ∈ [0, 1].

(ii) u(x) > u(x) for all x ∈ (a, 1], where 0 < a < 1, and u(a) = u(a).
Then

(u − u)′′ ≤ 0 for all x ∈ [a, 1]

u(a) − u(a) = 0, B2(u − u) ≥ 0

which again implies the contradiction u(x) ≥ u(x) for all x ∈ [a, 1].
In a similar way we handle the other two cases:
(iii) u(x) > u(x) for all x ∈ [0, a) where 0 < a < 1, and u(a) = u(a).
(iv) u(x) > u(x) for all x ∈ (a, b), where 0 < a, b < 1, and u(a) =

u(a), u(b) = u(b).
By the same arguments we see that u(x) ≤ u(x) for x ∈ [0, 1]. Since

u(x) ≤ u(x) ≤ u(x) for x ∈ [0, 1], it follows that f∗ = f , g∗1 = g1, g∗2 = g2,
and so u is also a solution of (1).

Lemma 4.2. If there exist upper and lower solutions u and u of (1) with

u(x) ≤ u(x) for x ∈ [0, 1], then there is a solution u to (1) such that

u(x) ≤ u(x) ≤ u(x) for all x ∈ [0, 1].

P r o o f. Consider problem (13). The equivalent integral equation is

u(x) = λ(P ∗(u(0), u(1))x + Q∗(u(0), u(1)))

+ λ

1\
0

k(x, y)h(y)f∗(u(y)) dy

where

P ∗(s, t) =
αg∗2(t) − γg∗1(s)

̺
, Q∗(s, t) =

(γ + δ)g∗1 (s) + βg∗2(t)

̺
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and k(x, y) is the corresponding Green’s function. Let

T ∗u(x) = λ(P ∗(u(0), u(1))x + Q∗(u(0), u(1))) + λ

1\
0

k(x, y)h(y)f∗(u(y)) dy.

Then T ∗ : C[0, 1] → C[0, 1] is completely continuous. Since f∗, g∗1 , g∗2 are
bounded, so is T ∗. By Schauder’s fixed point theorem, T ∗ has a fixed point
u, which is a solution of (13). By Lemma 4.1, u is also a solution of (1).

5. Multiplicity. Since we are seeking positive solutions, we shall make
the convention that f(u) = f(0), g1(u) = g1(0), g2(u) = g2(0) if u < 0.

We first need the following a priori estimate.

Lemma 5.1. There is a constant bI > 0 such that ‖u‖ ≤ bI for all

solutions u of (1) where λ belongs to a compact subset I of (0,∞).

P r o o f. Suppose there is an unbounded sequence {un} of solutions of (1),
and thus of (4), with the corresponding λn belonging to a compact subset
of (0,∞). By Lemma 3.2, un∈K. Since f∞ = ∞, there is a p > 0 such that
f(u) ≥ ηu for u ≥ p, where η satisfies

λnη

4

3/4\
1/4

k

(
1

2
, y

)
h(y) dy ≥ 2 for all n.

Since ‖un‖ → ∞ as n → ∞, there exists an N > 0 such that n ≥ N implies

min
x∈[1/4,3/4]

un(x) ≥
1

4
‖un‖ ≥ p

and thus

un

(
1

2

)
≥ λn

3/4\
1/4

k

(
1

2
, y

)
h(y)f(un(y)) dy

≥
λnη

4
‖un‖

3/4\
1/4

k

(
1

2
, y

)
h(y) dy ≥ 2‖un‖,

which is a contradiction.

Now let Γ denote the set of λ > 0 such that a positive solution of (1)
exists and let λ∗ = sup Γ . By Theorem 3.1, 0 < λ∗ < ∞. We claim that
λ∗ ∈ Γ . To see this, let λn → λ∗ where λn ∈ Γ . Since the λn are bounded,
Lemma 5.1 implies that the corresponding solutions un are bounded. By the
compactness of the integral operator T , it easily follows that λ∗ ∈ Γ .
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Let u∗ be a solution of (1) corresponding to λ∗ and define

f̃(u(x)) =





f(u∗(x) + ε), u(x) ≥ u∗(x) + ε,
f(u(x)), −ε ≤ u(x) ≤ u∗(x) + ε,
f(−ε), u(x) ≤ −ε,

g̃1(u(x)) =





g1(u
∗(x) + ε), u(x) ≥ u∗(x) + ε,

g1(u(x)), −ε ≤ u(x) ≤ u∗(x) + ε,
g1(−ε), u(x) ≤ −ε,

g̃2(u(x)) =





g2(u
∗(x) + ε), u(x) ≥ u∗(x) + ε,

g2(u(x)), −ε ≤ u(x) ≤ u∗(x) + ε,
g2(−ε), u(x) ≤ −ε.

Let

T̃λ(u(x)) = λ(P̃ (u(0), u(1))x + Q̃(u(0), u(1))) + λ

1\
0

k(x, y)h(y)f̃ (u(y)) dy

where

P̃ (s, t) =
αg̃2(t) − γg̃1(s)

̺
, Q̃(s, t) =

(γ + δ)g̃1(s) + βg̃2(t)

̺
.

Consider

Ω = {u ∈ X : −ε < u(x) < u∗(x) + ε}.

Lemma 5.2. There is an ε > 0, sufficiently small , such that if u ∈ C[0, 1]

satisfies T̃λu = u for some 0 < λ < λ∗, then u ∈ Ω.

P r o o f. It is clear that u ≥ 0. To prove that u ≤ u∗ + ε, we first show
that u∗ + ε is an upper solution of (1). Since u∗ ≥ 0, there is a constant
c > 0 so that f(u∗(x)) > c for all x ∈ [0, 1]. By uniform continuity, there is
an ε0 such that

|f(u∗(x) + ε) − f(u∗(x))| < c(λ∗ − λ)/λ

for all x ∈ [0, 1], 0 ≤ ε ≤ ε0. Then

(u∗ + ε)′′ = (u∗)′′ = −λ∗hf(u∗)

= − λhf(u∗ + ε) + λ[hf(u∗ + ε) − hf(u∗)] + (λ − λ∗)hf(u∗)

< − λhf(u∗ + ε) + ch(λ∗ − λ) + ch(λ − λ∗) = −λhf(u∗ + ε).

Thus

(u∗ + ε)′′ + λhf(u∗ + ε) ≤ 0.

By the same arguments, we can show that

B0(u
∗ + ε) ≥ λg1(u

∗(0) + ε), B1(u
∗ + ε) ≥ λg2(u

∗(1) + ε)

for ε > 0 and sufficiently small. Therefore u∗ + ε is an upper solution of (1).
It follows from Lemma 4.1 that u ≤ u∗ + ε.
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Proof of Theorem 1.1. Let 0 < λ < λ∗. Since u∗ is an upper solution and
0 is a lower solution, Lemma 4.2 implies the existence of a solution uλ of
(1) such that 0 ≤ uλ ≤ u∗. Thus for 0 < λ ≤ λ∗ a positive solution exists,
whereas for λ > λ∗ a positive solution does not exist. Moreover, uλ ∈ Ω.
We next establish the existence of a second positive solution of (1).

Since T̃λ is bounded for λ in compact intervals,

deg(I − T̃λ, B(uλ, R), 0) = 1

for R large enough, where B(uλ, R) is the ball centered at uλ with radius R

in C[0, 1]. If there exists a u ∈ ∂Ω such that u = T̃λ(u), then f = f̃ , g1 = g̃1,

g2 = g̃2, and so u is a second positive solution. Now suppose u 6= T̃λ(u) for

all u ∈ ∂Ω. Then deg(I − T̃λ, Ω, 0) is well defined. Since Lemma 5.2 implies

T̃λ has no fixed point in B(uλ, R))\Ω, by the excision property of degree we
have

deg(I − Tλ, Ω, 0) = deg(I − T̃λ, Ω, 0) = 1.

On the other hand, by Lemma 5.1, all solutions of (1) are bounded for λ in
compact sets, and thus

deg(I − Tλ, B(0,M), 0) = const

for M large enough. The latter degree must equal 0, since for λ > λ∗ no
solutions exist. Finally, by the excision property,

deg(I − Tλ, B(0,M)\Ω, 0) = −1

and so a second positive solution of system (1) exists for 0 < λ < λ∗.

Proof of Theorem 1.2. Here we briefly consider (1) with f ≡ 0. In this
case the equivalent operator equation is u = Tu, where

Tu(x) = λ

(
αg2(u(1)) − γg1(u(0))

̺
x +

(γ + δ)g1(u(0)) + βg2(u(1))

̺

)
.

If we replace the cone defined in (12) by the cone

K = {u ∈ X : u = ax + b ≥ 0, a, b ∈ R, x ∈ [0, 1]}

then it is obvious that T (C) ⊂ K is completely continuous. Moreover, if
u ∈ K, we note that

‖u‖ = max(u(0), u(1)).

Now the proof of Theorem 1.2 proceeds along the same lines as that of
Theorem 1.1. More precisely, it suffices to replace the previous estimates on
f using condition (A6) by the corresponding estimates on g1 and g2 using
(A7).
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