On certain subclasses of multivalently meromorphic close-to-convex maps

by K. S. PADMANABHAN (Madras)

Abstract. Let M_p denote the class of functions f of the form $f(z) = 1/z^p + \sum_{k=0}^{\infty} a_k z^k$, p a positive integer, in the unit disk $E = \{|z| < 1\}$, f being regular in 0 < |z| < 1. Let $L_{n,p}(\alpha) = \{f : f \in M_p, \operatorname{Re}\{-(z^{p+1}/p)(D^n f)'\} > \alpha\}, \alpha < 1$, where $D^n f = (z^{n+p}f(z))^{(n)}/(z^p n!)$. Results on $L_{n,p}(\alpha)$ are derived by proving more general results on differential subordination. These results reduce, by putting p = 1, to the recent results of Al-Amiri and Mocanu.

1. Introduction. Let M_p denote the class of meromorphic functions f in the unit disk $E = \{z : |z| < 1\}$ having only a pole of order p at z = 0, of the form

(1)
$$f(z) = \frac{1}{z^p} + \sum_{k=0}^{\infty} a_k z^k$$
, p a positive integer.

We define

$$D^{n}f(z) = \frac{1}{z^{p}(1-z)^{n+1}} * f(z),$$

where n is a non-negative integer and \ast denotes Hadamard product. It can be verified that

$$D^{n}f(z) = \frac{(z^{n+p}f(z))^{(n)}}{z^{p}n!},$$

where $f^{(n)}$ denotes the *n*th derivative of f in the usual sense. Let $L_{n,p}(\alpha)$, $\alpha < 1$, denote the class of functions $f \in M_p$ such that

(2)
$$\operatorname{Re}\left\{\frac{-z^{p+1}}{p}(D^n f)'\right\} > \alpha.$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 30C45.

 $Key \ words \ and \ phrases:$ meromorphic multivalently close-to-convex, differential sub-ordination, convolution.

^[251]

Let

$$I_c(f)(z) = \frac{c - p + 1}{z^{c+1}} \int_0^z t^c f(t) \, dt, \quad \text{Re} \, c > 0.$$

For p = 1, H. Al-Amiri and P. T. Mocanu [1] have shown that $L_{n+1,1}(\alpha) \subset L_{n,1}(r)$, $r > \alpha$; and $I_c[L_{n,1}(\alpha)] \subset L_{n,1}(\delta)$, $\delta > \alpha$. Furthermore, they proved that if $f \in M_1$ and $\operatorname{Re} c > 0$ then

$$\operatorname{Re}[-z^{2}(D^{n}f(z))'] > \alpha - (1-\alpha)\operatorname{Re}\frac{1}{c} \Rightarrow I_{c}(f) \in L_{n,1}(\alpha).$$

Indeed they have proved certain more general results on differential subordination from which the above results are deduced.

In this paper, we obtain analogous results for $L_{n,p}(\alpha)$ when p is any positive integer and the results obtained by Al-Amiri and Mocanu [1] can be deduced from our results when we put p = 1. We also establish general results on differential subordination from which the results of Al-Amiri and Mocanu are deducible.

2. Preliminary definitions and lemmas

DEFINITION 1. If f and g are analytic in E and g is univalent in E, then f is said to be subordinate to g, written $f \prec g$, if f(0) = g(0) and $f(E) \subset g(E)$.

LEMMA A [3, 4]. Let $p(z) = p(0) + p_n z^n + ...$ be analytic in E and qanalytic and univalent in E. If p is not subordinate to the analytic function qin E, then there exist points $z_0 \in E$ and $\zeta_0 \in \partial E$ such that (i) $p(z_0) = q(\zeta_0)$, (ii) $z_0 p'(z_0) = m\zeta_0 q'(\zeta_0)$, where $m \ge n$.

LEMMA B [3, 4]. Let the function $H : \mathbb{C}^2 \to \mathbb{C}$ satisfy $\operatorname{Re} H(is,t) \leq 0$ for real s and $t \leq -n(1+s^2)/2$, where n is a positive integer. If $p(z) = 1 + p_n z^n + \ldots$ is analytic in E and $\operatorname{Re} H(p(z), zp'(z)) > 0$ for $z \in E$, then $\operatorname{Re} p(z) > 0$ in E.

DEFINITION 2. Let $z \in E$, $t \geq 0$. A function L(z,t) is called a *subordination chain* if $L(\cdot,t)$ is analytic and univalent on E for all $t \geq 0$, $L(z, \cdot)$ is continuously differentiable on $[0, \infty)$ for each $z \in E$, and $L(z, s) \prec L(z, l)$ for $0 \leq s < l$.

LEMMA C [6]. The function $L(z,t) = a_1(t)z + \ldots$, with $a_1(t) \neq 0$ and $\lim_{t\to\infty} |a_1(t)| = \infty$, is a subordination chain if and only if

$$\operatorname{Re}\left[z\frac{\partial L}{\partial z} \middle/ \frac{\partial L}{\partial t}\right] > 0 \quad \text{for } z \in E \text{ and } t \ge 0$$

LEMMA D [7]. Let $\alpha, \beta \in \mathbb{R}$, $\alpha > 0$, g starlike univalent in E, and h analytic in E with h(0) = 1 and $\operatorname{Re} h > 0$ in E. Define

$$B(\alpha,\beta) = \left\{ F: F(z) = \left(\int_{0}^{z} h(t)g^{\alpha}(t)t^{i\beta-1} dt \right)^{1/(\alpha+i\beta)}, \ z \in E \right\}$$

Then $G \in B(\alpha, \beta)$, where

$$G(z) = \left[z^{-c} \int_{0}^{z} t^{c-1} F^{\alpha+i\beta}(t) dt\right]^{1/(\alpha+i\beta)}, \quad c \in \mathbb{C}, \text{ Re } c > 0.$$

REMARK. $F \in B(\alpha, \beta)$ is univalent and analytic in E and is called a *Bazilevič function*. The class B(1,0) consists of close-to-convex functions in E.

DEFINITION 3. Let $H(p(z), zp'(z)) \prec h(z)$ be a first order differential subordination. Then a univalent function q is called its *dominant* if $p \prec q$ for all analytic functions p that satisfy the differential subordination. A dominant \overline{q} is called *the best dominant* if $\overline{q} \prec q$ for all dominants q. For the general theory of differential subordination and its applications we refer to [5].

LEMMA 1. Let q be a convex univalent function in E and $\operatorname{Re} c > 0$. Let

$$h(z) = q(z) + \frac{p+1}{c}zq'(z),$$

where p is a positive integer. If $p(z) = 1 + a_{p+1}z^{p+1} + \dots$ is analytic in E and

$$p(z) + \frac{1}{c}zp'(z) \prec h(z),$$

then $p(z) \prec q(z)$ and q is the best dominant.

Proof. We can assume that q is analytic and convex on \overline{E} without any loss of generality, because otherwise we replace q(z) by $q_r(z) = q(rz)$, 0 < r < 1. These functions satisfy the conditions of the lemma on \overline{E} . We can prove that $p_r(z) \prec q_r(z)$, which enables us to obtain $p \prec q$ on letting $r \rightarrow 1$. Consider

$$L(z,t) = q(z) + \frac{p+1+t}{c} zq'(z), \quad z \in E, \ t \ge 0.$$

Then

$$\frac{\partial L}{\partial t} = \frac{zq'(z)}{c}, \quad \frac{\partial L}{\partial z} = q'(z) + \frac{p+1+t}{c}zq''(z) + \frac{p+1+t}{c}q'(z).$$

We have

$$\operatorname{Re}\left(\frac{z\partial L/\partial z}{\partial L/\partial t}\right) = \operatorname{Re}\left\{c + (p+1+t)(1+zq''(z)/q'(z))\right\} > 0$$

since q is convex and $\operatorname{Re} c > 0$. Hence L(z,t) is a subordination chain by Lemma C. We have $L(z,0) = h(z) \prec L(z,t)$ for t > 0 and $L(\zeta,t) \notin h(E)$ for $|\zeta| = 1$ and $t \geq 0$. If p is not subordinate to q, then by Lemma A, there exist points $z_0 \in E$, $\zeta_0 \in \partial E$ and $m \geq p+1$ such that $p(z_0) = q(\zeta_0)$, $z_0 p'(z_0) = m\zeta_0 q'(\zeta_0)$ and so

$$p(z_0) + \frac{1}{c} z_0 p'(z_0) = q(\zeta_0) + \frac{m}{c} \zeta_0 q'(\zeta_0) = L(\zeta_0, m - p - 1) \notin h(E),$$

which contradicts our assumption that $p(z) + \frac{1}{c}zp'(z) \prec h(z)$. So we conclude that $p \prec q$. Consider $p(z) = q(z^{p+1})$ to see that q is the best dominant.

LEMMA 2. Let

(3)
$$w = \frac{(p+1)^2 + |c|^2 - |(p+1)^2 - c^2|}{4(p+1)\operatorname{Re} c}, \quad \operatorname{Re} c > 0.$$

If h is analytic in E with h(0) = 1 and

(4)
$$\operatorname{Re}\left\{1 + \frac{zh''(z)}{h'(z)}\right\} > -w,$$

and if $p(z) = 1 + a_{p+1}z^{p+1} + \dots$ is analytic in E and satisfies

(5)
$$p(z) + \frac{1}{c}zp'(z) \prec h(z).$$

then $p(z) \prec q(z)$, where q(z) is the solution of

(6)
$$q(z) + \frac{p+1}{c}zq'(z) = h(t), \quad q(0) = 1,$$

given by

(7)
$$q(z) = \frac{c}{(p+1)z^{c/(p+1)}} \int_{0}^{z} t^{c/(p+1)-1} h(t) dt$$

Also q is the best dominant of (5).

Proof. Using Lemma 1, we see that it is sufficient to show that q is convex. First we note that $w \leq 1/2$. To see this we observe that $\operatorname{Re} c > 0$ implies |c-(p+1)| < |c+(p+1)|. Multiplying by |c-(p+1)| and simplifying, we get

$$(p+1)^2 + |c|^2 - |(p+1)^2 - c^2| < 2\operatorname{Re} c \cdot (p+1)$$

whence $w \leq 1/2$.

If c = p + 1, then w = 1/2, and (4) implies that h is close-to-convex and, by Lemma D, (7) implies that q is also close-to-convex. So $q'(z) \neq 0$ for $z \in E$ and the function

$$P(z) = 1 + \frac{zq''(z)}{q'(z)} = 1 + P_1 z + P_2 z^2 + \dots$$

is analytic in E, with P(0) = 1. From (6), on differentiation, we get

$$(p+1)P(z) + c = ch'(z)/q'(z).$$

Again logarithmic differentiation and substitution for zq''(z)/q'(z) in terms of P(z) yields

(8)
$$P(z) + zP'(z) / \left(P(z) + \frac{c}{p+1} \right) = 1 + \frac{zh''(z)}{h'(z)}.$$

Now let

(9)
$$H(u,v) = u + \frac{v}{u + \frac{c}{p+1}} + w.$$

Then

$$\operatorname{Re} H(is,t) = \operatorname{Re} \left\{ is + \frac{t}{is + \frac{c}{p+1}} + w \right\}$$
$$= \operatorname{Re} \left\{ \frac{t(p+1)(\overline{c} - (p+1)is)}{|c + (p+1)is|^2} + w \right\}$$
$$= \frac{(p+1)t\operatorname{Re} c}{|c + (p+1)is|^2} + w.$$

From (8), (9) and (4) we obtain

(10)
$$\operatorname{Re} H(P(z), zP'(z)) > 0, \quad z \in E.$$

We proceed to show that $\operatorname{Re} H(is, t) \leq 0$ for all real s and $t \leq -(1+s^2)/2$:

(11)
$$\operatorname{Re} H(is,t) = \frac{(p+1)t\operatorname{Re} c}{|c+(p+1)is|^2} + w$$
$$\leq -\frac{1}{|c+(p+1)is|^2} \left\{ s^2 \left(\frac{p+1}{2} \operatorname{Re} c - (p+1)^2 w \right) - 2s(p+1)w \cdot \operatorname{Im} c + \operatorname{Re} c \cdot \frac{p+1}{2} - w|c|^2 \right\}.$$

For w given by (3), the coefficient of s^2 of the quadratic expression in s in braces is positive. To check this, put $c = c_1 + ic_2$ so that $\operatorname{Re} c = c_1$, $\operatorname{Im} c = c_2$. We have to verify that

$$c_1 > 2(p+1)w = \frac{(p+1)^2 + |c|^2 - |(p+1)^2 - c^2|}{2c_1}$$

This inequality will hold if

$$2c_1^2 + |(p+1)^2 - c^2| > (p+1)^2 + |c| = (p+1)^2 + c_1^2 + c_2^2,$$

that is, if

$$|(p+1)^2 - c^2| > (p+1)^2 - \operatorname{Re} c^2,$$

which is obviously true. Further, the quadratic expression in s is a perfect square for the assumed value of w. So from (11) we see that $\operatorname{Re} H(is, t) \leq 0$.

Lemma B enables us to conclude from (10) that $\operatorname{Re} P(z) > 0, \ z \in E$, that is,

$$\operatorname{Re}\left\{1+\frac{zq''(z)}{q'(z)}\right\} > 0, \quad z \in E.$$

So q is convex and the proof is complete.

REMARK. If c > 0, then $w = \frac{c}{2(p+1)}$ for $0 < c \le p+1$, and $w = \frac{p+1}{2c}$ for c > p+1.

3. Theorems and their proofs

THEOREM 1. Let q be a convex analytic function in E with q(0) = 1 and let

$$h(z) = q(z) + \frac{(p+1)zq'(z)}{n+1}$$
, n a positive integer.

If $f \in M_p$ and

$$D^{n}f(z) = \frac{1}{z^{p}(1-z)^{n+1}} * f(z),$$

then

$$-\frac{z^{p+1}}{p}(D^{n+1}f)' \prec h \Rightarrow -\frac{z^{p+1}}{p}(D^nf)' \prec q$$

and the latter subordination is best possible.

Proof. One can verify without difficulty the relation

(12)
$$(n+1)D^{n+1}f = z(D^nf)' + (n+p+1)D^nf.$$

Set $P(z) = -\frac{z^{p+1}}{p}(D^n f)'$. Differentiation gives

(13)
$$pzP'(z) = p(p+1)P(z) - z^{p+2}(D^n f)''.$$

Differentiating (12) we obtain

(14)
$$(n+1)(D^{n+1}f)' = (n+p+2)(D^nf)' + z(D^nf)''.$$

Multiplying (14) by $-z^{p+1}$ and using (13) gives

(15)
$$\frac{zP'}{n+1} + P(z) = -\frac{z^{p+1}}{p}(D^{n+1}f)' \prec h(z)$$

Moreover, P(0) = 1 and P'(0) = 0. Indeed, $P(z) = 1 + P_{p+1}z^{p+1} + P_{p+2}z^{p+2} + \ldots$ By Lemma 1, we conclude that $P(z) \prec q(z)$ and q is the best dominant.

THEOREM 2. Let h be analytic in E with

$$h(0) = 1$$
, $\operatorname{Re}\left(1 + \frac{zh''(z)}{h'(z)}\right) > -w$,

256

where

$$w = \begin{cases} (n+1)/(2(p+1)), & n = 0, 1, \dots, p-1, \\ (p+1)/(2(n+1)), & n \ge p, \end{cases}$$

n being a positive integer. If $f \in M_p$, then

$$-\frac{z^{p+1}}{p}(D^{n+1}f)' \prec h \Rightarrow -\frac{z^{p+1}}{p}(D^nf)' \prec q,$$

where q is the solution of

$$q(z) + (p+1)\frac{zq'(z)}{n+1} = h(z), \quad q(0) = 1.$$

In fact, q is given by

$$q(z) = \frac{n+1}{(p+1)z^{(n+1)/(p+1)}} \int_{0}^{z} t^{(n+1)/(p+1)-1} h(t) dt$$

and it is the best dominant.

Proof. The proof is immediate from Lemma 2, with c = n + 1, if we note that the value of w for positive c is given by the remark following the proof of Lemma 2.

COROLLARY 1. $L_{n+1,p}(\alpha) \subset L_{n,p}(r)$ for $\alpha < 1$, where the best possible value of r is given by

$$r = r(\alpha, n) = 2\alpha - 1 + \frac{2(1-\alpha)}{p+1}(n+1)\int_{0}^{1} \frac{t^{(n-p)/(p+1)}}{1+t} dt > \alpha.$$

Proof. Choose

$$h(z) = \frac{1 + z(2\alpha - 1)}{1 + z}$$

in Theorem 2. Then h is convex and

(16)
$$q(z) = \frac{n+1}{(p+1)z^{(n+1)/(p+1)}} \int_{0}^{z} t^{(n-p)/(p+1)} \frac{1+(2\alpha-1)t}{1+t} dt$$

Since $\operatorname{Re} h(z) > \alpha$, the theorem asserts that

$$\operatorname{Re}\left\{-\frac{z^{p+1}}{p}(D^{n+1}f)'\right\} > \alpha \; \Rightarrow \; -\frac{z^{p+1}}{p}(D^nf)' \prec q(z).$$

But q is convex as observed in Lemma 2, has real coefficients in its Taylor expansion and is real for real z. Hence q(E) is symmetric with respect to

the real and thus $\operatorname{Re} q(z) > q(1)$ for $z \in E$. Moreover,

$$q(1) = \frac{n+1}{p+1} \int_{0}^{1} t^{(n-p)/(p+1)} \frac{1+(2\alpha-1)t}{1+t} dt$$
$$= 2\alpha - 1 + \frac{2(1-\alpha)}{p+1} (n+1) \int_{0}^{1} \frac{t^{(n-p)/(p+1)}}{1+t} dt$$
$$= r, \quad \text{say.}$$

Evidently

$$r > 2\alpha - 1 + \frac{2(1-\alpha)}{p+1}(n+1)\int_{0}^{1} \frac{t^{(n-p)/(p+1)}}{2} dt = \alpha.$$

So, if $f \in L_{n+1,p}(\alpha)$ then

$$\operatorname{Re}\left\{-\frac{z^{(p+1)}}{p}(D^{n+1}f)'\right\} > \min_{|z|<1}\operatorname{Re}q(z) = q(1) = r,$$

which means $f \in L_{n,p}(r)$.

Remark. For n = 0,

$$r = 2\alpha - 1 + \frac{2(1-\alpha)}{p+1} \int_{0}^{1} \frac{t^{1/(p+1)-1}}{1+t} dt$$

Denoting the integral by $I(\frac{1}{p+1})$, we have r = 0 if

$$2\alpha - 1 + \frac{2(1-\alpha)}{p+1}I\left(\frac{1}{p+1}\right) = 0,$$

that is, if

$$2\alpha \left(1 - \frac{I(1/(p+1))}{p+1}\right) = 1 - \frac{2}{p+1}I\left(\frac{1}{p+1}\right).$$

Denoting this value of α by α_0 , we find $L_{m,p}(\alpha_0) \subset L_{0,p}(0)$, m > 0. Now $L_{0,p}(0)$ consists of the functions f for which

$$\operatorname{Re}\left\{-\frac{z^{p+1}}{p}f'\right\} > 0,$$

since $D^0 f = z^{-p}(1-z)^{-1} * f(z) = f(z)$. So $L_{0,p}(0)$ is a subclass of the class of multivalently close-to-convex meromorphic functions in the unit disk introduced by A. E. Livingston [2], the associated meromorphically starlike function being $-1/z^p$.

THEOREM 3. Let h be defined on E by

$$h(z) = q(z) + \frac{p+1}{c-p+1} zq'(z),$$

where q is convex univalent in E, h(0) = 1, and c is a complex number with $\operatorname{Re} c > p - 1$. If $f \in M_p$ and $F = I_c(f)$, where

(17)
$$I_c(f)(z) = \frac{c-p+1}{z^{c+1}} \int_0^z t^c f(t) \, dt,$$

then

$$-\frac{z^{p+1}}{p}(D^n f(z))' \prec h(z) \Rightarrow -\frac{z^{p+1}}{p}(D^n F(z))' \prec q(z)$$

and the subordination is sharp.

Proof. From (17) we get

(18)
$$(c+1)F(z) + zF'(z) = (c-p+1)f(z).$$

If we use the facts $D^n(zF') = z(D^nF)'$ and

(19)
$$z(D^{n}F)' = (n+1)D^{n+1}F - (n+p+1)D^{n}F,$$

then (18) yields

$$(c+1)D^{n}F + (n+1)D^{n+1}F - (n+p+1)D^{n}F = (c-p+1)D^{n}f$$

or

(20)
$$(c-n-p)D^nF + (n+1)D^{n+1}F = (c-p+1)D^nf.$$

Set

$$P(z) = -\frac{z^{p+1}}{p}(D^n F)'$$

so that

(21)
$$pP'(z) = -(p+1)z^p(D^nF)' - z^{p+1}(D^nF)''.$$

Differentiating (19) and using (21) we obtain

(22)
$$pzP'(z) + p(n+1)P(z) = -(n+1)z^{p+1}(D^{n+1}F)'.$$

Differentiating (20) and using (21), we can rewrite (22) in the form

(23)
$$\frac{zp'(z)}{c-p+1} + P(z) = -\frac{z^{p+1}}{p}(D^n f)' \prec h(z)$$

Since $P(z) = 1 + P_1 z^{p+1} + \dots$, application of Lemma 1 shows that (23) implies $P(z) \prec q(z)$ and q is the best dominant.

THEOREM 4. Let

$$w = \frac{(p+1)^2 + |c'|^2 - |(p+1)^2 - c'^2|}{4(p+1)\operatorname{Re} c'}, \quad \operatorname{Re} c' > 0, \ c' = c - p + 1$$

Let h be analytic in E and satisfy

$$h(0) = 1, \quad \operatorname{Re}\left\{1 + \frac{zh''(z)}{h'(z)}\right\} > -w.$$

If $f \in M_p$ and $F = I_c(f)$ is defined by (17), then

$$-\frac{z^{p+1}}{p}(D^n f(z))' \prec h(z) \implies -\frac{z^{p+1}}{p}(D^n F(z))' \prec q(z),$$

where q is the solution of the differential equation

$$q(z) + \frac{p+1}{c-p+1}zq'(z) = h(z), \quad q(0) = 1,$$

given by

(24)
$$q(z) = \frac{c-p+1}{(p+1)z^{(c-p+1)/(p+1)}} \int_{0}^{z} t^{(c-p+1)/(p+1)-1} h(t) dt.$$

Moreover, q is the best dominant.

 $\Pr{\rm oo\,f.}~{\rm Setting}~P(z)=-\frac{z^{p+1}}{p}(D^nF)'$ as in the proof of Theorem 3, we find

$$\frac{zP'(z)}{c-p+1} + P(z) = -\frac{z^{p+1}}{p}(D^n F)' \prec h(z).$$

An application of Lemma 2 with c replaced by c' = c - p + 1 gives $P(z) \prec q(z)$, where q is given by (24). The proof is complete.

COROLLARY. If $\alpha < 1$, $\operatorname{Re} c > p - 1$, and I_c is defined by (17), then

$$I_c(L_{n,p}(\alpha)) \subset L_{n,p}(\delta)$$

where

$$\delta = \min_{|z|=1} \operatorname{Re} q(z) = \delta(\alpha, c)$$

and

(25)
$$q(z) = \frac{c-p+1}{(p+1)z^{(c-p+1)/(p+1)}} \int_{0}^{z} t^{(c-p+1)/(p+1)} \left\{ \frac{1+(2\alpha-1)t}{1+t} \right\} dt,$$

and the result is sharp. Also if c is real and c > p - 1, then

(26)
$$\delta(\alpha, c) = q(1) = 2\alpha - 1 + \frac{2(1-\alpha)}{p+1}(c-p+1)\int_{0}^{1} \frac{t^{(c-p+1)/(p+1)-1}}{1+t} dt.$$

Proof. If we choose

$$h(z) = \frac{1+z(2\alpha-1)}{1+z}$$

in the theorem, then h is convex and we deduce from the theorem that

$$\operatorname{Re}\left\{-\frac{z^{p+1}}{p}(D^n f(z))'\right\} > \alpha \; \Rightarrow \; -\frac{z^{p+1}}{p}(D^n F(z))' \prec q(z),$$

260

where q is given by (25), and so $I_c(L_{n,p}(\alpha)) \subset L_{n,p}(\delta)$. If c is real and c > p-1, then observing that q(E) is convex and symmetric with respect to the real axis, we get $\operatorname{Re} q(z) > \delta = q(1)$ given by (26).

REMARK. If we take c = (3p-1)/2, then the integral in (26) reduces to

$$\int_{0}^{1} \frac{t^{-1/2}}{1+t} \, dt = \frac{\pi}{2}.$$

We have $\delta = 2\alpha - 1 + (1 - \alpha)\pi/2$, and $\delta = 0$ if $\alpha = -(\pi - 2)/(4 - \pi)$. If

$$\operatorname{Re}\left\{-\frac{z^{p+1}}{p}(D^n f)'\right\} > -\frac{\pi - 2}{4 - \pi},$$

then

$$\operatorname{Re}\left\{-\frac{z^{p+1}}{p}(D^{n}F)'\right\} > 0,$$

where

$$F(z) = \frac{p+1}{2} \cdot \frac{1}{z^{(3p+1)/2}} \int_{0}^{z} t^{(3p-1)/2} f(t) \, dt.$$

THEOREM 5. Let $f \in M_p$ and let $I_c(f)$ be defined by (17). Let $\alpha < 1$. If

$$\operatorname{Re}\left\{-\frac{z^{p+1}}{p}(D^n f)'\right\} > \alpha - (1-\alpha)\operatorname{Re}\frac{1}{c-p+1}$$

then $I_c(f) \in L_{n,p}(\alpha)$.

Proof. Denote $I_c(f)$ by F and put

(27)
$$\frac{-z^{p+1}(D^n F(z))'}{p} = (1-\alpha)P(z) + \alpha.$$

Using (20) and (12) we obtain after differentiation and simplification

(28)
$$(c+2)(D^nF)' + z(D^nF)'' = (c-p+1)(D^nf)'.$$

Multiplying both sides of (28) by z^{p+1} and using (27) we obtain

$$-\{(1-\alpha)P(z) + \alpha\}p(c+2) + p(p+1)\{(1-\alpha)P(z) + \alpha\} - (1-\alpha)pzP'(z)$$
$$= (c-p+1)z^{p+1}(D^nf)',$$

K. S. Padmanabhan

or

(29)
$$-\frac{z^{p+1}}{p}(D^n f)' = (1-\alpha)P(z) + \alpha + (1-\alpha)\frac{zP'(z)}{c-p+1}.$$

So the inequality in the assumptions of the theorem becomes

(30) Re
$$\left\{ (1-\alpha)P(z) + \frac{1-\alpha}{c-p+1}(zP'(z)+1) \right\} > 0, \quad z \in E.$$

Since $P(z) = 1 + P_{p+1}z^{p+1} + \dots$, in order to show that (30) implies that $\operatorname{Re} P(z) > 0$ in E, it suffices to prove the inequality

$$\operatorname{Re}\left\{(1-\alpha)is + \frac{1-\alpha}{c-p+1}(t+1)\right\} \le 0$$

for all real s and

$$t \le -(1+s^2)\frac{p+1}{2} \le -(1+s^2),$$

by Lemma B. Since $\operatorname{Re}(c-p+1) > 0$, the inequality holds and so $\operatorname{Re} P(z)$ > 0. In other words,

$$\operatorname{Re}\left\{-\frac{z^{p+1}}{p}(D^{n}F)'\right\} = \operatorname{Re}(1-\alpha)P(z) + \alpha > \alpha,$$

or $F \in L_{n,p}(\alpha)$. The proof is complete.

REMARK. If $\alpha = 0$, we conclude that

$$\operatorname{Re}\left\{-\frac{z^{p+1}}{p}(D^n f)'\right\} > -\operatorname{Re}\frac{1}{c-p+1} \implies \operatorname{Re}\left\{-\frac{z^{p+1}}{p}(D^n F)'\right\} > 0.$$

If moreover n = 0 and c = p, we obtain the result: For $f \in M_p$,

$$\operatorname{Re}\left\{-\frac{z^{p+1}}{p}f'(z)\right\} > -1 \implies \operatorname{Re}\left\{-\frac{z^{p+1}}{p}F'(z)\right\} > 0,$$
$$z) = z^{-p-1} \int_0^z t^p f(t) \, dt.$$

where F(z30

References

- [1] H. Al-Amiri and P. T. Mocanu, On certain subclasses of meromorphic close-toconvex functions, Bull. Math. Soc. Sci. Math. Roumanie 38 (86) (1994), 3-15.
- [2]A. E. Livingston, Meromorphic multivalent close-to-convex functions, Trans. Amer. Math. Soc. 119 (1965), 167-177.
- [3] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), 289-305.
- [4] —, —, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 167–171.
- -, -, The theory and applications of second order differential subordinations, Studia [5]Univ. Babes-Bolyai Math. 34 (1989), 3-33.

262

- [6] C. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
- [7] S. Ruscheweyh, Eine Invarianzeigenschaft der Basilevič-Funktionen, Math. Z. 134 (1973), 215–219.

M 73/2, 31st Cross Street Besant nagar Madras 600 090, India E-mail: amlav@giasmdo1.vsnl.net.in

Reçu par la Rédaction le 9.10.1997