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Intersection theory and separation exponent

in complex analytic geometry

by Ewa Cygan (Kraków)

Abstract. We consider the intersection multiplicity of analytic sets in the general
situation. We prove that it is a regular separation exponent for complex analytic sets
and so it estimates the  Lojasiewicz exponent. We also give some geometric properties of
proper projections of analytic sets.

1. Introduction. The aim of this paper is to find a connection between
two indices which characterize locally the intersection of analytic sets: inter-
section multiplicity and separation exponent. In [CT], [T3] such a relation
has been established in two particular cases: proper intersection and isolated
intersection of analytic sets.

The definition of the intersection multiplicity in the improper case, pro-
posed recently by P. Tworzewski [T2], raises the natural question about a
generalization of these results. The main theorem of this paper (Thm. 4.4)
confirms the hypothesis that the intersection multiplicity is a separation ex-
ponent for analytic sets. Moreover, some geometric properties of proper pro-
jections of analytic sets are given (Section 3), which can represent interesting
tools in the investigation of geometric characterizations of analytic sets.

The main result presented here has already found nice applications in
estimating the  Lojasiewicz exponent at infinity for polynomial mappings; in
particular, using it one can improve Kollár’s well-known results (see [CKT],
[K]).

2. Intersection multiplicity. For the convenience of the reader we
compile in this section some basic notions of intersection theory (see [ATW],
[Ch], [D], [T2] for more details).
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I. Analytic cycles and their multiplicities. In this paper analytic means
complex analytic, and manifold means a complex manifold satisfying the
second axiom of countability. Let M be a manifold of dimension m. An
analytic cycle on M is a formal sum

A =
∑

j∈J

αjZj

where αj 6= 0 for j ∈ J are integers and {Zj}j∈J is a locally finite family of
pairwise distinct irreducible analytic subsets of M .

The analytic set
⋃

j∈J Zj is called the support of the cycle A and is
denoted by |A|. If all the components of A have the same dimension k, then
A is called a k-cycle. We say that A is positive if αj > 0 for all j ∈ J .

We consider the natural extension of the local multiplicity of analytic
sets. Namely, if a ∈ M and ν(Zj , a) denotes the multiplicity of Zj at the
point a (see [D], p. 194), then the sum

ν(A, a) =
∑

j∈J

αjν(Zj , a)

is well defined and called the multiplicity of the cycle A at the point a.
There exists a unique decomposition

A = T(m) + T(m−1) + . . . + T(0),

where T(j) is a j-cycle for j = 0, . . . ,m. For our purpose it will be useful to
introduce the notion of extended multiplicity of A at a by the formula

ν̃(A, a) = (ν(T(m), a), . . . , ν(T(0), a)) ∈ Z
m+1.

Denote by ν(A) and ν̃(A) the functions

ν(A) : M ∋ x → ν(A,x) ∈ Z, ν̃(A) : M ∋ x → ν̃(A,x) ∈ Z
m+1.

Observe that ν(A,x) = ̂ν̃(A,x), where ν̂ denotes the sum of the coordinates
of ν ∈ Z

m+1.

II. Proper intersections and regular directions. Let now X and Y be pure
dimensional analytic subsets of M . We say that X and Y meet properly on
M if dim(X ∩ Y ) = dim X + dim Y − m. Then we have the intersection

product X · Y which is an analytic cycle on M defined by the formula

X · Y =
∑

Z

i(X · Y,Z) Z,

where the summation extends over all the analytic components Z of X ∩ Y

and i(X · Y,Z) denotes the intersection multiplicity along Z in the sense of
Draper ([D], Def. 4.5; cf. [W]). Such multiplicities are positive integers.

Consider now the special situation when M is a neighbourhood of zero
in a normed complex vector space N . Take a pure k-dimensional analytic
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subset Z in M and a linear subspace Λ of dimension m−k such that zero is
an isolated point of Z ∩ Λ. We say that Λ is a regular direction for Z in N

if i(Z ·Λ, 0) = ν(Z, 0). Recall that Λ is a regular direction for Z if and only
if Λ ∩ C(Z, 0) = {0}, where C(Z, 0) is the tangent cone to Z at zero ([D],
Thm. 6.3). Hence the subset of all regular directions for Z in N is open and
dense in the grassmannian manifold Gm−k(N).

III. Intersections of analytic sets with submanifolds. Let M be an m-
dimensional manifold. Fix a closed s-dimensional submanifold S of M and
an open subset U of M such that U ∩ S 6= ∅. For a given cycle A =∑

j∈J αjZj analytic on M , by its part supported by S we mean the cycle

AS =
∑

j∈J,Zj⊂S αjZj . Denote by H(U) the set of all H := (H1, . . . ,Hm−s)
satisfying the following conditions:

(1) Hj is a smooth hypersurface of U containing U∩S for j = 1, . . . ,m−s,

(2)
⋂m−s

j=1 Tx(Hj) = TxS for each x ∈ U ∩ S.

For a given analytic subset Z of M of pure dimension k we denote by
H(U,Z) the set of all H ∈ H(U) such that ((U \S)∩Z)∩H1∩ . . .∩Hj is an
analytic subset of U \S of pure dimension k− j (or empty) for j = 1, . . . , k.

Following [T2] we present here an algorithm which produces for every
H ∈ H(U,Z) an analytic cycle Z ·H in S ∩U . At each step of the algorithm
we get a cycle Zi = ZS

i + (Zi −ZS
i ). Denote by iH ∈ {0, . . . ,m− s} the first

index for which |ZiH − ZS
iH
| = ∅.

(2.1) Algorithm.

Step 0. Let Z0 = Z ∩U . Then Z0 = ZS
0 + (Z0 −ZS

0 ), where ZS
0 is the

part of Z0 supported by S ∩ U .

Step 1. Let Z1 = (Z0 − ZS
0 ) · H1. Then Z1 = ZS

1 + (Z1 − ZS
1 ), where

ZS
1 is the part of Z1 supported by S ∩ U .

Step 2. Let Z2 = (Z1 − ZS
1 ) · H2. Then Z2 = ZS

2 + (Z2 − ZS
2 ), where

ZS
2 is the part of Z2 supported by S ∩ U .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Step iH. Let ZiH = (ZiH−1 −ZS
iH−1) ·HiH . Now we have the decompo-

sition ZiH = ZS
iH

+ (ZiH − ZS
iH

), and |ZiH − ZS
iH
| ∩ S = ∅.

We call the positive analytic cycle Z · H = ZS
0 + ZS

1 + . . . + ZS
iH

in S ∩ U

the result of the above algorithm.

At an arbitrary point a ∈ S the set Z can be characterized by two indices
g(a) and p(a) which we now define. Let

g̃(a) = g̃(Z,S)(a) := minlex{ν̃(Z · H, a) : H ∈ H(U,Z), a ∈ U} ∈ N
s+1

and g(a) = g(Z,S)(a) = ̂(g̃(a)). The number g(a) is called the index of

intersection of Z and S at a (see [T2], Def. 4.2).
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From our point of view the following index is much more interesting for
applications in regular separation.

Definition 2.2. For a ∈ S we call

p(a) = p(Z,S)(a) := min{ν(Z · H, a) : H ∈ H(U,Z), a ∈ U} ∈ N

the index of contact of Z and S at a.

Observe that we always have p(a) ≤ g(a).

III. Intersection of analytic sets—general case. Let X and Y be irre-
ducible analytic subsets of an m-dimensional manifold M and let a ∈ M .
By standard diagonal construction the multiplicity of intersection of X and
Y at a is defined to be

d(a) = d(X,Y )(a) = g(X × Y,∆M , (a, a)).

The intersection product of X and Y is a unique analytic cycle X • Y in M

such that ν(X • Y ) = d(X,Y ) (see [T2], Def. 6.3).

The above definition can be naturally extended to the case of the in-
tersection of a finite number of irreducible analytic subsets and next to the
case of arbitrary analytic cycles by multilinearity.

3. Special properties of proper projections of analytic sets. Let
M be a complex inner product space of dimension m and Ω a neighbour-
hood of zero in M . Consider a positive k-cycle A in Ω. If Λ is an (m − k)-
dimensional linear subspace of M such that Λ ∩ |A| = {0} then there exists
a connected neighbourhood of zero in M = Λ⊥ + Λ = Λ⊥ × Λ of the form
G = U ×W ⊂ Ω, where U and W are balls in the spaces Λ⊥, Λ respectively,
such that the natural projection πΛ||A|∩G : |A| ∩ G → U is a p-sheeted
branched covering with p = ν(|A| · Λ, 0), i.e.

(1) πΛ||A| is surjective and proper,

(2) for every x ∈ U the fibre (πΛ||A|)
−1(x) is finite,

(3) there exists a proper analytic subset S of U such that πΛ||A| is locally

biholomorphic on |A| \ π−1
Λ (S) and

#(πΛ||A|)
−1(x) = p if x ∈ U \ S,

#(πΛ||A|)
−1(x) < p if x ∈ S.

The set S is called the critical set of the branched covering πΛ||A|, and U \S

its regular set.

Without loss of generality we can assume that all the components of A

pass through zero and G = Ω. For each component Z of A the projection
πΛ|Z is also a branched covering and we denote its multiplicity by pΛ,Z.
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For every cycle A we now define a certain useful real function on G. First
for each component Z of A we define

dG,Λ,Z(z) =

pΛ,Z∏

i=1

|z − zi| for (πΛ|Z)−1(πΛ(z)) = {z1, . . . , zpΛ,Z
},

where zi are counted with their multiplicities. Next for the cycle A =∑
Z αZZ we put

dG,Λ,A(z) =
∏

Z

dαz

G,Λ,Z(z).

Further we consider the germ of dG,Λ,A at zero, denoted by dΛ,A. For rep-
resentatives of dΛ,A we use the notation dΛ,A.

The next remark will be used in the proof of the main theorem.

Remark 3.1. If M ′ is a linear subspace of M , Λ ⊂ M ′ and the inter-

section of A and M ′ is proper then for A′ = A ·M ′ considered as a positive

cycle on G′ = G ∩ M ′ we have dG′,Λ,A′(z) = dG,Λ,A(z) for z ∈ G′.

P r o o f. Notice that for all z ∈ G′ we have dG,Λ,A(z) =
∏r

i=1 |z− zi|
αi if

A · (Λ + z) =
∑r

i=1 αi{zi}. As A ·M (Λ + z) = (A ·M M ′) ·M ′ (Λ + z) ([TW2],
Thm. 2.2), the equality follows.

Consider now a non-zero linear form l : Λ → C and define the linear
mapping

L : M = Λ⊥ × Λ ∋ (x, y) → (x, l(y)) ∈ Λ × C.

Note that ker L ∩ |A| = {0} and for each component Z of A we get some
standard properties:

(i) L|Z is proper (see [TW1]),
(ii) ZL = L(Z) is an irreducible analytic subset of U × l(W ) of pure

dimension k,

(iii) L|Z : Z → ZL is a µL,Z-sheeted analytic covering (see [D]),
(iv) the natural projection πΛ|ZL

: ZL ∋ (x, t) → x ∈ U is a pZL
-sheeted

analytic covering for some pZL
∈ N.

In consequence there exists a unique system of functions α1,Z , . . . , αpZL
,Z

holomorphic on U such that

ZL = {(x, t) ∈ U × l(W ) : Pl,Z(x, t) = 0},

where Pl,Z(x, t) = tpZL + α1,Z(x)tpZL
−1 + . . . + αpZL

,Z(x).

For a cycle A on G we now introduce a holomorphic function determined
by the linear form l as follows:

FG,l,A(z) =
∏

Z

(Pl,Z(L(z)))µL,Z ·αZ .

We denote by Fl,A the germ of FG,l,A at zero, and by Fl,A its representatives.
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It is useful to introduce another holomorphic mapping. Let l1, . . . , lr be
non-zero linear forms on Λ. We put

(∗) FG,(l1,...,lr),A(z) = (FG,l1,A(z), . . . , FG,lr,A(z)) for z ∈ G.

The germ of this mapping at zero will be denoted by F(l1,...,lr),A, and its
representatives by F(l1,...,lr),A.

To simplify the notation, an inequality for germs of real functions will
mean the inequality between some of their representatives.

Let us now recall the following general lemma (see [CT]).

Lemma 3.2. Suppose that n, d are positive integers, r = (n−1)d+1 and

l1, . . . , lr are linear forms on Λ such that li1 , . . . , lin
are linearly independent

for i1, . . . , in ∈ {1, . . . , r} such that is 6= it for s 6= t. Define

Φ : Λd ∋ (v1, . . . , vd) →
( d∏

i=1

l1(vi), . . . ,

d∏

i=1

lr(vi)
)
∈ C

r.

Then there exists a positive constant c > 0 such that |Φ(v1, . . . , vd)| ≥
c|v1| . . . |vd| for v1, . . . , vd ∈ Λ.

The next lemma establishes relations between all the functions intro-
duced before.

Lemma 3.3. Let l1, . . . , lr be linear forms as in Lemma 3.2 with n =
m−k and d = ν(Λ ·A, 0), and l : Λ → C a non-zero linear form on Λ. Then

there exist constants c′, c′′ > 0 such that

c′|Fl,A| ≤ dΛ,A ≤ c′′|F(l1,...lr),A|.

P r o o f. It suffices to show that for some constants c′, c′′ > 0,

c′|FG,l,A(z)| ≤ dG,Λ,A(z) ≤ c′′|FG,(l1,...lr),A(z)| for z ∈ G.

Denote by S the critical set of the analytic covering πΛ||A| : |A| → U and
fix z = (x, y) ∈ G with x ∈ U \ S. Let

(πΛ|Z)−1(x) = {(x, y1,Z), . . . , (x, ypΛ,Z ,Z)}

for every component Z of |A|. Applying Lemma 3.2 to the system v1, . . . , vp

∈ Λ where each of the points y − y1,Z , . . . , y − ypΛ,Z ,Z is repeated αZ times
we get constants c′, c′′ > 0 such that

c′
∣∣∣

p∏

i=1

l(vi)
∣∣∣ ≤

p∏

i=1

|vi| ≤ c′′
∣∣∣
( p∏

i=1

l1(vi), . . . ,

p∏

i=1

lr(vi)
)∣∣∣.

So according to our definitions it follows that

c′
∣∣∣
∏

Z

( pΛ,Z∏

i=1

l(y − yi,Z)
)αZ

∣∣∣

≤ dG,Λ,A(z) ≤ c′′
∣∣∣
( ∏

Z

( pΛ,Z∏

i=1

l1(y− yi,Z)
)αZ

, . . . ,
∏

Z

( pΛ,Z∏

i=1

lr(y− yi,Z)
)αZ

)∣∣∣
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and after standard calculations we finally get

c′|FG,l,A(z)| ≤ dG,Λ,A(z) ≤ c′′|FG,(l1,...lr),A(z)| for z ∈ G \ (S × W ).

By continuity of all the functions considered we have the required inequali-
ties on the whole G.

Lemma 3.4. Let A, B be positive analytic k-cycles on Ω and Λ an

(m − k)-dimensional linear subspace of M such that Λ ∩ |A| = {0} and

dim C(|B|, 0) ∩ Λ = l > 0. Then there exist Λ1, . . . , Λr ∈ Gm−k(M) and

c > 0 such that

(1) dim C(|B|, 0) ∩ Λi < l,

(2) dΛ,A ≤ c
∑r

i=1 dΛi,A.

P r o o f. Without loss of generality we can assume that M = C
m, Λ =

{0} × C
m−k = {z ∈ C

m : z1 = . . . = zk = 0} and dim C(|B|, 0) ∩ Λ̃ =

dim C(|B|, 0) ∩ Λ = l, where Λ̃ = {z ∈ C
m : z1 = . . . = zk−1 = 0}. Put

Z = C(|B|, 0) ∩ Λ̃ and consider S = {ζ ∈ Gm−1(Cm) : dim Z ∩ ζ ≥ l}.
According to [T1], Lemma 4.12, we know that Gm−1(Cm) \S is an open

and dense subset in the manifold Gm−1(Cm).

So it is possible to choose a system of hyperplanes ζj = {z ∈ C
m : lj(z)

= 0}, j = 1, . . . , r, where r = (m − k − 1)ν(A · Λ, 0) + 1, satisfying the
following conditions:

(1) ζj = {z ∈ C
m : lj(z) = 0} 6∈ S,

(2) every system of linear forms lj1 |Λ, . . . , ljm−k
|Λ is linearly independent

for j1, . . . , jm−k ∈ {1, . . . , r} provided js 6= jt for s 6= t.

Applying Lemma 3.3 to the subspace Λ and the system l1|Λ, . . . , lr|Λ we
get

(∗) dΛ,A ≤ c

r∑

j=1

|Flj |Λ,A|.

Now consider the subspaces Λj = ζj ∩ Λ̃. For each of the epimorphisms
Lj : C

m ∋ (z1, . . . , zm) → (z1, . . . , zk, lj |Λ(zk+1, . . . , zm)) ∈ C
k+1 we have

ker Lj ⊂ Λj . Since dim(ker Lj) = m − k − 1 it is possible to choose for

every j ∈ {1, . . . , r} a linear form l̃j on Λj such that ker Lj = ker L̃j for

L̃j : C
m = Λ⊥

j × Λj ∋ (x, y) → (x, l̃j(y)) ∈ C
k+1. Consequently, there exist

linear isomorphisms Ij : C
k+1 → C

k+1 for which L̃j = Ij ◦ Lj . Hence it
is easy to see that for every component Z of the cycle A the multiplicities
µLj ,Z and µ

L̃j,Z
coincide. As the germs of Plj |Λ,Z and P

l̃j ,A
◦ I at zero in

C
k+1 generate the ideal of the germ of Lj(Z), we get

(∗∗) |Flj|Λ,A| ≤ c̃|F
l̃j ,A

| for some c̃ > 0.
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Combining now (∗) and (∗∗) and applying once more Lemma 3.3 to each

of the forms l̃j we finally get dΛ,A ≤ c
∑r

j=1 dΛj ,A.

As dim C(|B|, 0)∩Λ̃∩ζj < l we obtain dim C(|B|, 0)∩Λj < dim C(|B|, 0)
∩ Λ and this completes the proof.

Theorem 3.5. Let A, B be positive analytic k-cycles on Ω and Λ an

(m − k)-dimensional linear subspace of M with Λ ∩ |A| = {0}. Then there

exist Λ1, . . . , Λs ∈ Gm−k(M) and c > 0 such that

(1) Λ1, . . . , Λs are regular directions for the cycle B in M ,
(2) dΛ,A ≤ c

∑s
i=1 dΛi,A(z).

P r o o f. Thanks to the characterization of regular directions in terms
of the dimension of the intersection of Λ with the tangent cone to B (see
Section 2), the assertion follows by repeated application of Lemma 3.4.

Remark 3.6. Observe that the assertion of Theorem 3.5 can be formu-
lated in a more convenient way:

There exist regular directions Λ1, . . . , Λs for B, representatives dΛ,A,

dΛ1,A, . . . , dΛs,A, c > 0 and a neighbourhood G of zero in M such that

for every z ∈ G there exists i0 ∈ {1, . . . , s} such that dΛ,A(z) ≤ cdΛi0
,A(z).

We call the subspace Λi0 chosen in the above way the maximal subspace

for the point z where the following elements are supposed to be given: the
subspace Λ, system Λ1, . . . , Λs, neighbourhood G and constant c.

The following proposition, closely related to [JKS], Lemma 8, establishes
the relations between the function dΛ,A and the distance to the support of A.

Proposition 3.7. Let A be a positive analytic k-cycle on Ω, and Λ an

(m− k)-dimensional linear subspace of M such that Λ∩ |A| = {0}. If dΛ,A

is a representative of the germ dΛ,A then there exist a constant c > 0 and a

neighbourhood G of zero in M such that

c̺(z, |A|) ≥ dΛ,A(z) ≥ ̺(z, |A|)p

for p = ν(A · Λ, 0) and z ∈ G.

P r o o f. Without loss of generality we can assume that Ω = G, where
G is the neighbourhood of zero chosen at the beginning of this section.
Suppose also that B(0, 2R) ⊂ G for some R > 0. Note that the zero set of
the function F = FG,(l1,...,lr),A is just |A|.

By the mean value theorem there exists c̃ > 0 such that |F (z′)−F (z′′)| ≤
c̃|z′ − z′′| if z′, z′′ ∈ B(0, 2R). For z ∈ B(0, R) there is w ∈ |A| ∩ B(0, 2R)
such that ̺(z, |A|) = |z − w|. Then, by Lemma 3.3,

̺(z, |A|) = |z − w| ≥ c̃−1|F (z) − F (w)| ≥ c′dΛ,A(z).

As the second inequality follows directly from the definition of dΛ,A this
ends the proof.
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4. Separation exponent of analytic sets. We first repeat some basic
facts on regular separation, thus making our exposition self-contained. For
the proofs we refer the reader to [CT] (cf. [ L1]–[ L3]).

Let M be an m-dimensional normed complex vector space and X, Y

closed sets in an open subset G of M . For p ∈ [1,∞), we say that X and Y

are p-separated at a ∈ G if a ∈ X ∩ Y and

̺(z,X) + ̺(z, Y ) ≥ c̺(z,X ∩ Y )p

in a neighbourhood of a, for some c > 0.

Lemma 4.1. Let H1 ⊂ G and H2 be open subsets of normed , finite-

dimensional complex vector spaces and let f : H1 → H2 be a biholomor-

phism. Then closed subsets X and Y of G are p-separated at a point a ∈ H1

if and only if f(X ∩ H1) and f(Y ∩ H1) are p-separated at f(a).

According to the above lemma we can consider p-separation for closed
subsets of complex manifolds. Namely, we say that closed subsets X and Y

of an m-dimensional complex manifold M are p-separated at a ∈ M if for
some (and hence every) chart ϕ : Ω → G ⊂ C

m such that a ∈ Ω, the sets
ϕ(X ∩ Ω) and ϕ(Y ∩ Ω), closed in G, are p-separated at ϕ(a).

Lemma 4.2. Let G be an open subset of a normed finite-dimensional

complex vector space. Then, for p ≥ 1, X and Y are p-separated at a if and

only if there exists a neighbourhood U of a and c > 0 such that

̺(x, Y ) ≥ c̺(x,X ∩ Y )p for x ∈ X ∩ U.

Lemma 4.3. Let M be a complex manifold. If a ∈ M and p ≥ 1 then

the following conditions are equivalent :

(1) X and Y are p-separated at a,
(2) X × Y and ∆M are p-separated at (a, a),

where ∆M = {(x, x) ∈ M2 : x ∈ M} is the diagonal in M2.

We can now formulate our main result.

Theorem 4.4. Let Z be a pure k-dimensional analytic subset of a com-

plex manifold M , S a closed s-dimensional submanifold of M and a ∈ Z∩S.

Then Z and S are p-separated for p = p(Z,S)(a).

P r o o f. First choose a neighbourhood U of a and a system of hypersur-
faces H = (H1, . . . ,Hm) ∈ H(U,Z) such that for every i ∈ {1, . . . ,m − s}
all the components of |ZS

i | pass through a. Define n = iH.

To prove the theorem we will show, using Algorithm (2.1), that the sets
Z and S are pH = ν(Z · H, a)-separated. Applying an appropriate chart
we can assume that Z,S are subsets of C

m, a = 0 and H1, . . . ,Hn can be
regarded as linear subspaces.
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Fix a linear subspace Λn in H1 ∩ . . . ∩ Hn which is a regular direction
for |ZS

n | in H1 ∩ . . . ∩ Hn.

We will choose a special system of linear subspaces in C
m in n steps.

(1) Applying Theorem 3.5 for the cycles A = Zn−1−ZS
n−1, B = Zn−1 and

the subspace Λ = Λn in H1∩ . . .∩Hn we find a neighbourhood Un−1 ⊂ U of
zero in C

m, representatives of the germs dΛn,Zn−1−ZS
n−1

, dΛ(n−1,i),Zn−1−ZS
n−1

and regular directions Λ(n−1,1), . . . , Λ(n−1,sn) ∈ Gm−k(H1 ∩ . . . ∩ Hn−1) for
|Zn−1| in H1∩. . .∩Hn−1 such that if z ∈ Un−1∩H1∩. . .∩Hn ⊂ H1∩. . .∩Hn−1

then

(i) dΛn,Zn−1−ZS
n−1

(z) ≤ c̃n−1

∑sn

i=1 dΛ(n−1,i),Zn−1−ZS
n−1

(z),

(ii) ν(|Zn−1| · Λ(n−1,i), 0) = ν(|Zn−1|, 0).

(2) Applying Theorem 3.5 for A = Zn−2 − ZS
n−2, B = Zn−2 and Λ =

Λ(n−1,i) in H1∩ . . .∩Hn−1 we find a neighbourhood U(n−2,i) ⊂ Un−1 of zero
in C

m, representatives of the germs

dΛ
(n−1,i),Zn−2−ZS

n−2

and dΛ(n−2,i,j),Zn−2−ZS
n−2

and regular directions Λ(n−2,i,1), . . . , Λ(n−2,i,s(n−1,i)) ∈ Gm−k(H1 ∩ . . . ∩
Hn−2) for |Zn−2| in H1 ∩ . . . ∩ Hn−2 such that if z ∈ U(n−1,i) ∩ H1 ∩ . . . ∩
Hn−1 ⊂ H1 ∩ . . . ∩ Hn−2 then

(i) dΛ(n−1,i),Zn−2−ZS
n−2

(z) ≤ c̃(n−2,i)

∑s(n−1,i)

j=1 dΛ(n−2,i,j),Zn−2−ZS
n−2

(z),

(ii) ν(|Zn−2| · Λ(n−2,i,j), 0) = ν(|Zn−2|, 0).

Define U(n−2) =
⋂sn

i=1 U(n−2,i), c̃n−2 = maxi c̃(n−2,i), sn−1 = maxi s(n−1,i).

Inductively at step (l) we make the following choice:

(l) Applying Theorem 3.5 for A = Zn−l − ZS
n−l, B = Zn−l and Λ =

Λ(n−l+1,I) in H1 ∩ . . .∩Hn−l+1 we find a neighbourhood U(n−l,I) ⊂ Un−l−1

of zero in C
m, representatives of the germs

dΛ(n−l−1,I),Zn−l−ZS
n−l

and dΛ(n−l,I,j),Zn−l−ZS
n−l

and regular directions Λ(n−l,I,1), . . . , Λ(n−l,I,s(n−l+1,i)) ∈ Gm−k(H1 ∩ . . . ∩
Hn−l) for |Zn−l| in H1 ∩ . . .∩Hn−l such that if z ∈ U(n−1,Il−1) ∩H1 ∩ . . .∩
Hn−l+1 ⊂ H1 ∩ . . . ∩ Hn−l then

(i) dΛ(n−l+1,I),Zn−l−ZS
n−l

(z) ≤ c̃(n−l,I)

∑s(n−1+1,I)

j=1 dΛ(n−l,I,j),Zn−l−ZS
n−l

,

(ii) ν(|Zn−l| · Λ(n−l,I,j), 0) = ν(|Zn−l|, 0).

Define U(n−l) =
⋂

Il−1
U(n−l,I), c̃n−l = maxI c̃(n−l,I) and sn−l+1 =

maxI s(n−l+1,I).

Finally in the last nth step we get a certain number s1 of linear subspaces
Λ(0,I) (I = In = (i1, . . . , in)), which are the regular directions for |Z0| in
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C
m. From Proposition 3.7 applied to the cycle Z0 we get, for I = In,

(∗) ̺(z, Z) = ̺(z, |Z0|) ≥ c̃dΛ(0,I),Z0
(z)

for some constant c̃>0, independent of I, and for z∈W(0,I), where W(0,I) ⊂
U0 is a neighbourhood of zero in C

m. Put W =
⋂

I W(0,I).
Fix now z ∈ W ∩ S. As z ∈ H1 ∩ . . . ∩ Hn, Remark 3.1 shows that for

some representatives of the germs dΛn,Zn−1−ZS
n−1

and dΛn,ZS
n

we have

(i) dΛn,Zn−1−ZS
n−1

(z) = dΛn,ZS
n

(z),

(ii) ̺(z, Z ∩ S)αn ≤ dΛn,ZS
n

(z) for αn = ν(ZS
n , 0).

We will choose a special subspace from each of the systems Λ(l,In−l).
(1) For the point z choose from the system Λ(n−1,1), . . . , Λ(n−1,sn) the

maximal subspace Λn−1(z) = Λ(n−1,i0) (Remark 3.6). We get

(∗∗) dΛn,Zn−1−ZS
n−1

(z) ≤ cn−1dΛn−1(z),Zn−1−ZS
n−1

(z)

where cn−1 = c̃n−1sn.
Since z ∈ H1 ∩ . . . ∩ Hn−1, for some representatives of the germs

dΛn−1,Zn−1−ZS
n−1

, dΛn−1,ZS
n−1

and dΛn−1,Zn−2−ZS
n−2

we have

(i) dΛn−1(z),Zn−1−ZS
n−1

(z) · dΛn−1(z),ZS
n−1

(z) = dΛn−1(z),Zn−2−ZS
n−2

(z),

(ii) ̺(z, Z ∩ S)αn−1 ≤ dΛn−1(z),ZS
n−1

(z) for αn−1 = ν(ZS
n−1, 0).

Combining the properties (∗∗), (i), (ii) we have

̺(z, Z ∩ S)αn+αn−1 ≤ cn−1dΛn−1(z),Zn−2−ZS
n−2

(z).

(l) Having Λn−1(z), . . . , Λn−l+1(z) = Λ(n−l+1,Il−1) we choose from the
system Λ(n−l,Il−1,1), . . . Λ(n−l,Il−1,sIl−1) the maximal subspace Λn−l+1(z)
and we get

(∗∗) dΛn−l+1(z),Zn−l−ZS
n−l

(z) ≤ cn−ldΛn−l(z),Zn−l−ZS
n−l

(z),

where cn−l = c̃n−lsn−l+1.
As z ∈ H1 ∩ . . . ∩ Hn−l we can repeat the same observation:

(i) dΛn−l(z),Zn−l−ZS
n−l

(z) · dΛn−l,Z
S
n−l

(z) = dΛn−l(z),Zn−l−1−ZS
n−l−1

(z),

(ii) ̺(z, Z ∩ S)αn−l ≤ dΛn−l(z),ZS
n−l

(z) for αn−l = ν(ZS
n−l, 0).

Combining (∗∗), (i), (ii) we obtain

̺(z, Z ∩ S)αn+...+αn−l ≤ cn−1 . . . cn−ldΛn−l(z),Zn−l−1−ZS
n−l−1

(z).

After the last step we get

̺(z, Z ∩ S)αn+...+α0 ≤ cn−1 . . . c0dΛ0(z),Z0
.

Since αn+. . .+α0 = pH, applying (∗) we finally get ̺(z, Z∩S)pH ≤ c̺(z, Z)
for c = cn−1 . . . c0 · c̃

−1.
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The constant c is independent of z so the above inequality holds for all
z ∈ W ∩ S and Lemma 4.2 ends the proof.

Corollary 4.5. Let X and Y be analytic subsets of M , and a ∈ X∩Y .

Then X and Y are p-separated at a with p = ν(X • Y, a).

P r o o f. First note that for irreducible analytic subsets X, Y of M we
get ν(X • Y, a) = g(X × Y,∆M , (a, a)). As

p(X × Y,∆M , (a, a)) ≤ g(X × Y,∆M , (a, a)),

Theorem 4.4 and Lemma 4.3 imply that X and Y are ν(X •Y, a)-separated
at a.

Now consider arbitrary X,Y analytic in M and let W be an open neigh-
bourhood of a such that

X ∩ W = X1 ∩ W ∪ . . . ∪ Xk ∩ W, Y ∩ W = Y1 ∩ W ∪ . . . ∪ Yl ∩ W

where Xi, Yj are irreducible components of X,Y respectively such that a ∈
Xi ∩ Yj for all i, j. Then Xi and Yj are pij = ν(Xi • Yj , a)-separated at
a. Take a chart (ϕ,Ω) of M such that Ω ⊂ W , ϕ(Ω) ⊂ B(0, 1) ⊂ C

m and
ϕ(a) = 0. Then, as ϕ(Ω∩Xi) and ϕ(Ω∩Yj) are pij-separated at zero, there
exist Uij ⊂ Ω and cij > 0 such that for x ∈ Xi ∩ Uij we have

̺(ϕ(x), ϕ(Yj ∩ Ω)) ≥ cij̺(ϕ(x), ϕ(Xi ∩ Yj ∩ Ω))pij .

Take U =
⋂

Uij , c = minij cij and fix x ∈ U ∩ X. There exist i, j such that
x ∈ U ∩ Xi and ̺(ϕ(x), ϕ(Y ∩ Ω)) = ̺(ϕ(x), ϕ(Yj ∩ Ω)). We get

̺(ϕ(x), ϕ(Y ∩ Ω)) = ̺(ϕ(x), ϕ(Yj ∩ Ω)) ≥ c̺(ϕ(x), ϕ(Xi ∩ Yj ∩ Ω))pij

≥ c̺(ϕ(x), ϕ(X ∩ Y ∩ Ω))pij

≥ c̺(ϕ(x), ϕ(X ∩ Y ∩ Ω))
∑

i,j
pij .

As
∑

ij pij = ν(X • Y, a) Lemma 4.2 ends the proof.

Let us recall that for isolated intersection one can separate the sets X

and Y with a better exponent, p = ν(X · Y, a) − ν(X,a) · ν(Y, a) + 1 (see
[T3]). The following example shows that even in the situation of proper but
not isolated intersection we cannot improve Corollary 4.5.

Example 4.6. In C
3 take the intersection of X = {(x, y, z) ∈ C

3 :
x2 + xy + z2 = 0} with the subspace Y = {(x, y, z) ∈ C

3 : x = 0}.
It is easy to verify that ν(X · Y, 0) = ν(X, 0) = 2, ν(Y, 0) = 1 and the

best separation exponent for these two sets at zero is 2.
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[K] J. Kol l á r, Sharp effective Nullstellensatz , J. Amer. Math. Soc. 1 (1988), 963–

975.
[ L1] S.  Lojas iewicz, Ensembles semi-analytiques, I.H.E.S., Bures-sur-Yvette, 1965.
[ L2] —, Introduction to Complex Analytic Geometry , Birkhäuser, Basel, 1991.
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