The Bergman kernel functions of certain unbounded domains

by Friedrich Haslinger (Wien)

Abstract

We compute the Bergman kernel functions of the unbounded domains $\Omega_{p}=\left\{\left(z^{\prime}, z\right) \in \mathbb{C}^{2}: \Im z>p\left(z^{\prime}\right)\right\}$, where $p\left(z^{\prime}\right)=\left|z^{\prime}\right|^{\alpha} / \alpha$. It is also shown that these kernel functions have no zeros in Ω_{p}. We use a method from harmonic analysis to reduce the computation of the 2 -dimensional case to the problem of finding the kernel function of a weighted space of entire functions in one complex variable.

1. Introduction. Let Ω_{p} be a domain in \mathbb{C}^{n+1} of the form

$$
\Omega_{p}=\left\{\left(z^{\prime}, z\right): z^{\prime} \in \mathbb{C}^{n}, z \in \mathbb{C}, \Im z>p\left(z^{\prime}\right)\right\}
$$

Such domains can be viewed as generalizations of the Siegel upper half space, where $p\left(z^{\prime}\right)=\left|z^{\prime}\right|^{2}$ (see $[\mathrm{S}]$).

Weakly pseudoconvex domains of this kind were investigated by Bonami and Lohoué [BL], Boas, Straube and Yu [BSY], McNeal [McN1], [McN2], [McN3] and Nagel, Rosay, Stein and Wainger [NRSW1], [NRSW2]. For the case where $p\left(z^{\prime}\right)=\left|z^{\prime}\right|^{k}, k \in \mathbb{N}$, Greiner and Stein [GS] found an explicit expression for the Szegő kernel of Ω_{p}.

If p is a subharmonic function on \mathbb{C} which depends only on the real or only on the imaginary part of z^{\prime}, then one can find analogous expressions and estimates in [N] (see also [Has1]). In [D] and in [K] properties of the Szegő projection for such domains are studied. The asymptotic behavior of the corresponding Szegő kernel was investigated in [Han] and [Has2].

There have been several recent papers obtaining explicit formulas for the Bergman and Szegő kernel function on various weakly pseudoconvex domains ([D'A], [BFS], [FH1], [FH2], [FH3] and [OPY]). From the explicit formulas one can find examples of bounded convex domains whose Bergman kernel functions have zeros (see [BSF]).

[^0]In this paper we compute the Bergman kernel functions of the unbounded domains $\Omega_{p}=\left\{\left(z^{\prime}, z\right) \in \mathbb{C}^{2}: \Im z>p\left(z^{\prime}\right)\right\}$, where $p\left(z^{\prime}\right)=\left|z^{\prime}\right|^{\alpha} / \alpha$, and we also show that these kernel functions have no zeros in Ω_{p}.
2. Computation of the Bergman kernel. We suppose that the weight function $p: \mathbb{C}^{n} \rightarrow \mathbb{R}_{+}$is (pluri)subharmonic and of a growth behavior guaranteeing that the corresponding Bergman spaces H_{τ} of entire functions are nontrivial, where $H_{\tau}(\tau>0)$ consists of all entire functions $\phi: \mathbb{C}^{n} \rightarrow \mathbb{C}$ such that

$$
\int_{\mathbb{C}^{n}}\left|\phi\left(z^{\prime}\right)\right|^{2} e^{-4 \pi \tau p\left(z^{\prime}\right)} d \lambda\left(z^{\prime}\right)<\infty .
$$

The Bergman kernels of these spaces are denoted by $K_{\tau}\left(z^{\prime}, w^{\prime}\right)$. A result on parameter families of Bergman kernels of pseudoconvex domains of Diederich and Ohsawa [DO] can be adapted to our case, showing that for fixed (z^{\prime}, w^{\prime}) the function $\tau \mapsto K_{\tau}\left(z^{\prime}, w^{\prime}\right)$ is continuous. Then we can apply a method from [Has1] to obtain the following formulas for the Szegő kernel S of the Hardy space $H^{2}\left(\partial \Omega_{p}\right)$ and the Bergman kernel B of the domain Ω_{p} (see [Has3]):

Proposition 1. (a) If $\partial \Omega_{p}$ is identified with $\mathbb{C}^{n} \times \mathbb{R}$, then the Szegö kernel on $\partial \Omega_{p} \times \partial \Omega_{p}$ has the form

$$
S\left(\left(z^{\prime}, t\right),\left(w^{\prime}, s\right)\right)=\int_{0}^{\infty} K_{\tau}\left(z^{\prime}, w^{\prime}\right) e^{-2 \tau\left(p\left(z^{\prime}\right)+p\left(w^{\prime}\right)\right)} e^{-2 \pi i \tau(s-t)} d \tau
$$

where $z^{\prime}, w^{\prime} \in \mathbb{C}^{n}$ and $s, t \in \mathbb{R}$.
(b) For $\left(z^{\prime}, z\right),\left(w^{\prime}, w\right) \in \Omega_{p}\left(z^{\prime}, w^{\prime} \in \mathbb{C}^{n} ; z, w \in \mathbb{C}\right)$ the Szegö kernel can be expressed in the form

$$
S\left(\left(z^{\prime}, z\right),\left(w^{\prime}, w\right)\right)=\int_{0}^{\infty} K_{\tau}\left(z^{\prime}, w^{\prime}\right) e^{-2 \pi i \tau(\bar{w}-z)} d \tau .
$$

(c) The Bergman kernel of Ω_{p} is

$$
B\left(\left(z^{\prime}, z\right),\left(w^{\prime}, w\right)\right)=4 \pi \int_{0}^{\infty} \tau K_{\tau}\left(z^{\prime}, w^{\prime}\right) e^{-2 \pi i \tau(\bar{w}-z)} d \tau .
$$

We first compute the Bergman kernel $K_{\tau}\left(z^{\prime}, w^{\prime}\right)$ of the weighted spaces of entire functions H_{τ}. Here we only consider the one-dimensional case. There are several possibilities to generalize to the higher dimensional case, where the corresponding formulas become quite complicated.

We suppose that the weight function p has the property that the Taylor series of an entire function in H_{τ} is convergent in H_{τ}. For instance, these assumptions are satisfied in the following case:

Proposition 2 (see $[\mathrm{T}]$). Suppose that p is a convex function on $\mathbb{R}^{2}=$ \mathbb{C} such that H_{τ} contains the polynomials. Then the polynomials are dense in H_{τ}.

We further suppose that p depends only on $|z|$ and has a continuously differentiable inverse ϱ as a function from \mathbb{R}_{+}to \mathbb{R}_{+}. Then the Bergman kernel of H_{τ} can be computed as follows:

Proposition 3.

$$
K_{\tau}\left(z^{\prime}, w^{\prime}\right)=\frac{1}{2 \pi \tau} \sum_{n=0}^{\infty} \frac{n+1}{a_{n}(\tau)} z^{\prime n} \bar{w}^{\prime n}
$$

where $a_{n}(\tau)=\mathcal{L}\left(\varrho^{2 n+2}\right)(4 \pi \tau)$ is the Laplace transform of $\varrho^{2 n+2}$ at the point ($4 \pi \tau$):

$$
\mathcal{L}\left(\varrho^{2 n+2}\right)(4 \pi \tau)=\int_{0}^{\infty}(\varrho(s))^{2 n+2} e^{-4 \pi \tau s} d s
$$

Proof. Since the monomials $\left(z^{\prime n}\right)_{n \geq 0}$ constitute a complete orthogonal system in H_{τ} the Bergman kernel can be expressed in the form

$$
K_{\tau}\left(z^{\prime}, w^{\prime}\right)=\sum_{n=0}^{\infty} \frac{z^{\prime n} \overline{w^{\prime n}}}{c_{n}(\tau)}
$$

where

$$
c_{n}(\tau)=\int_{\mathbb{C}}\left|z^{\prime}\right|^{2 n} \exp \left(-4 \pi \tau p\left(z^{\prime}\right)\right) d \lambda\left(z^{\prime}\right)
$$

(see $[\mathrm{Kr}]$ or $[\mathrm{R}]$). Using polar coordinates we get

$$
c_{n}(\tau)=2 \pi \int_{0}^{\infty} r^{2 n+1} \exp (-4 \pi \tau p(r)) d r
$$

and after substituting $p(r)=s$ we obtain

$$
c_{n}(\tau)=2 \pi \int_{0}^{\infty}(\varrho(s))^{2 n+1} \exp (-4 \pi \tau s) \varrho^{\prime}(s) d s
$$

Now partial integration gives

$$
2 \pi \int_{0}^{\infty}(\varrho(s))^{2 n+1} \exp (-4 \pi \tau s) \varrho^{\prime}(s) d s=\frac{2 \pi \tau}{n+1} \int_{0}^{\infty}(\varrho(s))^{2 n+2} \exp (-4 \pi \tau s) d s
$$

which proves the proposition.
In the next step we compute the Bergman kernel of $\Omega_{p} \subset \mathbb{C}^{2}$:
Proposition 4. Let the weight function p be as in Proposition 3. Then the Bergman kernel $B\left(\left(z^{\prime}, z\right),\left(w^{\prime}, w\right)\right)$ of $\Omega_{p}=\left\{\left(z^{\prime}, z\right) \in \mathbb{C}^{2}: \Im z>p\left(z^{\prime}\right)\right\}$
can be written in the form

$$
B\left(\left(z^{\prime}, z\right),\left(w^{\prime}, w\right)\right)=2 \int_{0}^{\infty}\left(\sum_{n=0}^{\infty}(n+1) \frac{e^{-2 \pi i(\bar{w}-z) \tau}}{\mathcal{L}\left(\varrho^{2 n+2}\right)(4 \pi \tau)} z^{\prime n} \bar{w}^{\prime n}\right) d \tau .
$$

Proof. Combine Propositions 1(c) and 3.
In the sequel we concentrate on weight functions of the form $p\left(z^{\prime}\right)=$ $\left|z^{\prime}\right|^{\alpha} / \alpha$, where $\alpha \in \mathbb{R}, \alpha \geq 1$. It is easily seen that in this case the assumptions of Propositions 2 and 3 are satisfied. Hence we can apply Proposition 4 to get

Proposition 5. Let $p\left(z^{\prime}\right)=\left|z^{\prime}\right|^{\alpha} / \alpha$, where $\alpha \in \mathbb{R}, \alpha \geq 1$. Then the Bergman kernel $B\left(\left(z^{\prime}, z\right),\left(w^{\prime}, w\right)\right)$ of $\Omega_{p}=\left\{\left(z^{\prime}, z\right) \in \mathbb{C}^{2}: \Im z>p\left(z^{\prime}\right)\right\}$ has the form

$$
\begin{aligned}
& B\left(\left(z^{\prime}, z\right),\left(w^{\prime}, w\right)\right) \\
& \quad=\frac{2}{\pi(i(\bar{w}-z))^{2}} \frac{\left[\frac{\alpha i}{2}(\bar{w}-z)\right]^{2 / \alpha}\left[(2+\alpha)\left[\frac{\alpha i}{2}(\bar{w}-z)\right]^{2 / \alpha}+(2-\alpha) z^{\prime} \bar{w}^{\prime}\right]}{\left[\left[\frac{\alpha i}{2}(\bar{w}-z)\right]^{2 / \alpha}-z^{\prime} \bar{w}^{\prime}\right]^{3}} .
\end{aligned}
$$

We always take the principal values of the multi-valued functions involved.
Proof. First we compute the Laplace transform $\mathcal{L}\left(\varrho^{2 n+2}\right)(4 \pi \tau)$. In our case we have $\varrho(s)=(\alpha s)^{1 / \alpha}$, hence

$$
\begin{aligned}
\mathcal{L}\left(\varrho^{2 n+2}\right)(4 \pi \tau) & =\int_{0}^{\infty}(\alpha s)^{(2 n+2) / \alpha} e^{-4 \pi \tau s} d s \\
& =(4 \pi \tau)^{-1-(2 n+2) / \alpha} \alpha^{(2 n+2) / \alpha} \int_{0}^{\infty} t^{(2 n+2) / \alpha} e^{-t} d t \\
& =(4 \pi \tau)^{-1-(2 n+2) / \alpha} \alpha^{(2 n+2) / \alpha} \Gamma(1+(2 n+2) / \alpha) .
\end{aligned}
$$

In the sequel of the proof it will become apparent that summation and integration in Proposition 4 can be interchanged. We now obtain

$$
\begin{aligned}
B\left(\left(z^{\prime}, z\right),\left(w^{\prime}, w\right)\right)= & 2 \sum_{n=0}^{\infty} \frac{(n+1)(4 \pi)^{1+(2 n+2) / \alpha}}{\alpha^{(2 n+2) / \alpha} \Gamma(1+(2 n+2) / \alpha)} \\
& \times\left(\int_{0}^{\infty} \tau^{1+(2 n+2) / \alpha} e^{-2 \pi i(\bar{w}-z) \tau} d \tau\right) z^{\prime n} \bar{w}^{\prime n} .
\end{aligned}
$$

The integral in brackets can be expressed in the form

$$
\begin{aligned}
& \int_{0}^{\infty} \tau^{1+(2 n+2) / \alpha} e^{-2 \pi i(\bar{w}-z) \tau} d \tau \\
& \quad=(2 \pi i(\bar{w}-z))^{-2-(2 n+2) / \alpha} \int_{0}^{\infty} \sigma^{1+(2 n+2) / \alpha} e^{-\sigma} d \sigma,
\end{aligned}
$$

since $\Re(2 \pi i(\bar{w}-z))>0$; this follows by Cauchy's theorem (see for instance [He], p. 33). Now we obtain

$$
\begin{aligned}
& \int_{0}^{\infty} \tau^{1+}(2 n+2) / \alpha \\
& e^{-2 \pi i(\bar{w}-z) \tau} d \tau \\
&=(2 \pi i(\bar{w}-z))^{-2-(2 n+2) / \alpha} \Gamma(2+(2 n+2) / \alpha) \\
&=(2 \pi i(\bar{w}-z))^{-2-(2 n+2) / \alpha}(1+(2 n+2) / \alpha) \Gamma(1+(2 n+2) / \alpha)
\end{aligned}
$$

We can now continue computing the Bergman kernel:

$$
\begin{aligned}
& B\left(\left(z^{\prime}, z\right),\left(w^{\prime}, w\right)\right) \\
& \quad=2 \sum_{n=0}^{\infty} \frac{(n+1)(1+(2 n+2) / \alpha)(4 \pi)^{1+(2 n+2) / \alpha}}{\alpha^{(2 n+2) / \alpha}(2 \pi i(\bar{w}-z))^{2+(2 n+2) / \alpha}} z^{\prime n} \bar{w}^{\prime n} \\
& \quad=\frac{2}{\pi} \sum_{n=0}^{\infty} \frac{2^{(2 n+2) / \alpha}\left[2(n+1)^{2} / \alpha+(n+1)\right]}{\alpha^{(2 n+2) / \alpha}(i(\bar{w}-z))^{2+(2 n+2) / \alpha}} z^{\prime n} \bar{w}^{\prime n} \\
& \quad=\frac{2}{\pi(i(\bar{w}-z))^{2}} \sum_{n=0}^{\infty}\left[\frac{2(n+1)^{2}}{\alpha}+(n+1)\right]\left[\frac{\alpha i}{2}(\bar{w}-z)\right]^{-2(n+1) / \alpha} z^{\prime n} \bar{w}^{\prime n} .
\end{aligned}
$$

For the summation we use the formulas

$$
\sum_{n=0}^{\infty}(n+1)^{2} x^{n}=\frac{1+x}{(1-x)^{3}} \quad \text { and } \quad \sum_{n=0}^{\infty}(n+1) x^{n}=\frac{1}{(1-x)^{2}}
$$

where $|x|<1$. Sine $\Im z>\left|z^{\prime}\right|^{\alpha} / \alpha$ and $\Im w>\left|w^{\prime}\right|^{\alpha} / \alpha$ it follows that

$$
\left|z^{\prime} w^{\prime}\right|<\left|\frac{\alpha i}{2}(\bar{w}-z)\right|^{2 / \alpha}
$$

and hence

$$
\begin{aligned}
& B\left(\left(z^{\prime}, z\right),\left(w^{\prime}, w\right)\right) \\
& \quad=\frac{2}{\pi(i(\bar{w}-z))^{2}} \frac{\left[\frac{\alpha i}{2}(\bar{w}-z)\right]^{-2 / \alpha}\left[2+\alpha+(2-\alpha)\left[\frac{\alpha i}{2}(\bar{w}-z)\right]^{-2 / \alpha} z^{\prime} \bar{w}^{\prime}\right]}{\left[1-\left[\frac{\alpha i}{2}(\bar{w}-z)\right]^{-2 / \alpha} z^{\prime} \bar{w}^{\prime}\right]^{3}} \\
& \quad=\frac{2}{\pi(i(\bar{w}-z))^{2}} \frac{\left[\frac{\alpha i}{2}(\bar{w}-z)\right]^{2 / \alpha}\left[(2+\alpha)\left[\frac{\alpha i}{2}(\bar{w}-z)\right]^{2 / \alpha}+(2-\alpha) z^{\prime} \bar{w}^{\prime}\right]}{\left[\left[\frac{\alpha i}{2}(\bar{w}-z)\right]^{2 / \alpha}-z^{\prime} \bar{w}^{\prime}\right]^{3}},
\end{aligned}
$$

which proves Proposition 5.
Proposition 6. Let $p\left(z^{\prime}\right)=\left|z^{\prime}\right|^{\alpha} / \alpha$, where $\alpha \in \mathbb{R}, \alpha \geq 1$. Then the Bergman kernel $B\left(\left(z^{\prime}, z\right),\left(w^{\prime}, w\right)\right)$ of $\Omega_{p}=\left\{\left(z^{\prime}, z\right) \in \mathbb{C}^{2}: \Im z>p\left(z^{\prime}\right)\right\}$ has no zeros in Ω_{p}.

Proof. By Proposition 5 the Bergman kernel $B\left(\left(z^{\prime}, z\right),\left(w^{\prime}, w\right)\right)$ has a zero if and only if

$$
\left[\frac{\alpha i}{2}(\bar{w}-z)\right]^{2 / \alpha}=\frac{\alpha-2}{\alpha+2} z^{\prime} \bar{w}^{\prime}
$$

Since $\Im z>0$ and $\Im w>0$, the factor $\bar{w}-z$ never vanishes on Ω_{p}. So we have a contradiction in the case $\alpha=2$.

Now suppose that $\alpha \neq 2$. If the Bergman kernel has a zero, then

$$
\left|\frac{\alpha i}{2}(\bar{w}-z)\right|^{2}=\left|\frac{\alpha-2}{\alpha+2}\right|^{\alpha}\left|z^{\prime}\right|^{\alpha}\left|\bar{w}^{\prime}\right|^{\alpha}
$$

We set $w=u+i v, z=x+i y$ and know that $\alpha y>\left|z^{\prime}\right|^{\alpha}$ and $\alpha v>\left|w^{\prime}\right|^{\alpha}$, hence

$$
(u-x)^{2}+(v+y)^{2}<4\left|\frac{\alpha-2}{\alpha+2}\right|^{\alpha} v y
$$

Since both v and y are positive and $4 v y \leq(v+y)^{2}$, this inequality can only hold if at least

$$
1<\left|\frac{\alpha-2}{\alpha+2}\right|^{\alpha}
$$

It is clear that the last inequality is false, so the Bergman kernel has no zeros in Ω_{p}.

References

[BFS] H. P. Boas, S. Fu and E. J. Straube, The Bergman kernel function: Explicit formulas and zeros, Proc. Amer. Math. Soc. (to appear).
[BL] A. Bonami and N. Lohoué, Projecteurs de Bergman et Szegő pour une classe de domaines faiblement pseudo-convexes et estimations L^{p}, Compositio Math. 46 (1982), 159-226.
[BSY] H. P. Boas, E. J. Straube and J. Y u, Boundary limits of the Bergman kernel and metric, Michigan Math. J. 42 (1995), 449-462.
[D'A] J. P. D'Angelo, An explicit computation of the Bergman kernel function, J. Geom. Anal. 4 (1994), 23-34.
[D] K. P. Diaz, The Szegö kernel as a singular integral kernel on a family of weakly pseudoconvex domains, Trans. Amer. Math. Soc. 304 (1987), 147-170.
[DO] K. Diederich and T. Ohsawa, On the parameter dependence of solutions to the $\bar{\partial}$-equation, Math. Ann. 289 (1991), 581-588.
[FH1] G. Francsics and N. Hanges, Explicit formulas for the Szegő kernel on certain weakly pseudoconvex domains, Proc. Amer. Math. Soc. 123 (1995), 3161-3168.
[FH2] -, 一, The Bergman kernel of complex ovals and multivariable hypergeometric functions, J. Funct. Anal. 142 (1996), 494-510.
[FH3] -, -, Asymptotic behavior of the Bergman kernel and hypergeometric functions, in: Contemp. Math. (to appear).
［GS］P．C．Greiner and E．M．Stein，On the solvability of some differential oper－ ators of type \square_{b} ，Proc．Internat．Conf．，（Cortona，1976－1977），Scuola Norm． Sup．Pisa，1978，106－165．
［Han］N．Hanges，Explicit formulas for the Szegő kernel for some domains in \mathbb{C}^{2} ， J．Funct．Anal． 88 （1990），153－165．
［Has1］F．Haslinger，Szegő kernels of certain unbounded domains in \mathbb{C}^{2} ，Rév．Rou－ maine Math．Pures Appl． 39 （1994），914－926．
［Has2］－，Singularities of the Szegö kernel for certain weakly pseudoconvex domains in \mathbb{C}^{2} ，J．Funct．Anal． 129 （1995），406－427．
［Has3］－，Bergman and Hardy spaces on model domains，Illinois J．Math．（to ap－ pear）．
［He］P．Henrici，Applied and Computational Complex Analysis，II，Wiley，New York， 1977.
［K］H．Kang， $\bar{\partial}_{b}$－equations on certain unbounded weakly pseudoconvex domains， Trans．Amer．Math．Soc． 315 （1989），389－413．
［Kr］S．G．Krantz，Function Theory of Several Complex Variables，Wadsworth \＆ Brooks／Cole，Pacific Grove，Calif．， 1992.
［McN1］J．McNeal，Boundary behavior of the Bergman kernel function in \mathbb{C}^{2} ，Duke Math．J． 58 （1989），499－512．
［McN2］－，Local geometry of decoupled pseudoconvex domains，in：Complex Analysis， Aspects of Math．E17，K．Diederich（ed．），Vieweg 1991，223－230．
［McN3］－，Estimates on the Bergman kernels on convex domains，Adv．Math． 109 （1994），108－139．
［N］A．Nagel，Vector fields and nonisotropic metrics，in：Beijing Lectures in Har－ monic Analysis，E．M．Stein（ed．），Princeton Univ．Press，Princeton，N．J．， 1986，241－306．
［NRSW1］A．Nagel，J．P．Rosay，E．M．Stein and S．Wainger，Estimates for the Bergman and Szegő kernels in certain weakly pseudoconvex domains，Bull． Amer．Math．Soc． 18 （1988），55－59．
［NRSW2］—，一，一，一，Estimates for the Bergman and Szegő kernels in \mathbb{C}^{2} ，Ann．of Math． 129 （1989），113－149．
［OPY］K．Oeljeklaus，P．Pflug and E．H．Youssfi，The Bergman kernel of the minimal ball and applications，Ann．Inst．Fourier（Grenoble） 47 （1997），915－ 928.
［R］M．Range，Holomorphic Functions and Integral Representations in Several Complex Variables，Springer， 1986.
［S］E．M．Stein，Harmonic Analysis．Real－Variable Methods，Orthogonality and Oscillatory Integrals，Princeton Univ．Press，Princeton，N．J．， 1993.
［T］B．A．Taylor，On weighted polynomial approximation of entire functions， Pacific J．Math． 36 （1971），523－539．

Institut für Mathematik
Universität Wien
Strudlhofgasse 4
A－1090 Wien，Austria
E－mail：has＠pap．univie．ac．at
Web：http：／／radon．mat．univie．ac．at／～fhasling

[^0]: 1991 Mathematics Subject Classification: Primary 32A07, 32H10; Secondary 32A15.
 Key words and phrases: Bergman kernel, Szegő kernel.
 Research partially supported by a FWF-grant P11390-MAT of the Austrian Ministry of Sciences.

