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The Bergman kernel functions of

certain unbounded domains

by Friedrich Haslinger (Wien)

Abstract. We compute the Bergman kernel functions of the unbounded domains
Ωp = {(z

′, z) ∈ C
2 : ℑz > p(z′)}, where p(z′) = |z′|α/α. It is also shown that these kernel

functions have no zeros in Ωp. We use a method from harmonic analysis to reduce the
computation of the 2-dimensional case to the problem of finding the kernel function of a
weighted space of entire functions in one complex variable.

1. Introduction. Let Ωp be a domain in C
n+1 of the form

Ωp = {(z′, z) : z′ ∈ C
n, z ∈ C, ℑz > p(z′)}.

Such domains can be viewed as generalizations of the Siegel upper half space,
where p(z′) = |z′|2 (see [S]).

Weakly pseudoconvex domains of this kind were investigated by Bonami
and Lohoué [BL], Boas, Straube and Yu [BSY], McNeal [McN1], [McN2],
[McN3] and Nagel, Rosay, Stein and Wainger [NRSW1], [NRSW2]. For the
case where p(z′) = |z′|k, k ∈ N, Greiner and Stein [GS] found an explicit
expression for the Szegő kernel of Ωp.

If p is a subharmonic function on C which depends only on the real or
only on the imaginary part of z′, then one can find analogous expressions
and estimates in [N] (see also [Has1]). In [D] and in [K] properties of the
Szegő projection for such domains are studied. The asymptotic behavior of
the corresponding Szegő kernel was investigated in [Han] and [Has2].

There have been several recent papers obtaining explicit formulas for
the Bergman and Szegő kernel function on various weakly pseudoconvex
domains ([D’A], [BFS], [FH1], [FH2], [FH3] and [OPY]). From the explicit
formulas one can find examples of bounded convex domains whose Bergman
kernel functions have zeros (see [BSF]).
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In this paper we compute the Bergman kernel functions of the unbounded
domains Ωp = {(z′, z) ∈ C

2 : ℑz > p(z′)}, where p(z′) = |z′|α/α, and we
also show that these kernel functions have no zeros in Ωp.

2.Computation of the Bergman kernel. We suppose that the weight
function p : C

n → R+ is (pluri)subharmonic and of a growth behavior
guaranteeing that the corresponding Bergman spaces Hτ of entire functions
are nontrivial, where Hτ (τ > 0) consists of all entire functions φ : C

n → C

such that \
Cn

|φ(z′)|2e−4πτp(z′) dλ(z′) < ∞.

The Bergman kernels of these spaces are denoted by Kτ (z′, w′). A re-
sult on parameter families of Bergman kernels of pseudoconvex domains of
Diederich and Ohsawa [DO] can be adapted to our case, showing that for
fixed (z′, w′) the function τ 7→ Kτ (z′, w′) is continuous. Then we can apply
a method from [Has1] to obtain the following formulas for the Szegő kernel
S of the Hardy space H2(∂Ωp) and the Bergman kernel B of the domain
Ωp (see [Has3]):

Proposition 1. (a) If ∂Ωp is identified with C
n × R, then the Szegő

kernel on ∂Ωp × ∂Ωp has the form

S((z′, t), (w′, s)) =

∞\
0

Kτ (z′, w′)e−2τ(p(z′)+p(w′))e−2πiτ(s−t) dτ,

where z′, w′ ∈ C
n and s, t ∈ R.

(b) For (z′, z), (w′, w) ∈ Ωp (z′, w′ ∈ C
n; z,w ∈ C) the Szegő kernel can

be expressed in the form

S((z′, z), (w′, w)) =

∞\
0

Kτ (z′, w′)e−2πiτ(w−z) dτ.

(c) The Bergman kernel of Ωp is

B((z′, z), (w′, w)) = 4π

∞\
0

τKτ (z′, w′)e−2πiτ(w−z) dτ.

We first compute the Bergman kernel Kτ (z′, w′) of the weighted spaces of
entire functions Hτ . Here we only consider the one-dimensional case. There
are several possibilities to generalize to the higher dimensional case, where
the corresponding formulas become quite complicated.

We suppose that the weight function p has the property that the Taylor
series of an entire function in Hτ is convergent in Hτ . For instance, these
assumptions are satisfied in the following case:



Bergman kernel functions 111

Proposition 2 (see [T]). Suppose that p is a convex function on R
2 =

C such that Hτ contains the polynomials. Then the polynomials are dense

in Hτ .

We further suppose that p depends only on |z| and has a continuously
differentiable inverse ̺ as a function from R+ to R+. Then the Bergman
kernel of Hτ can be computed as follows:

Proposition 3.

Kτ (z′, w′) =
1

2πτ

∞
∑

n=0

n + 1

an(τ)
z′nw′n,

where an(τ) = L(̺2n+2)(4πτ) is the Laplace transform of ̺2n+2 at the point

(4πτ):

L(̺2n+2)(4πτ) =

∞\
0

(̺(s))2n+2e−4πτs ds.

P r o o f. Since the monomials (z′n)n≥0 constitute a complete orthogonal
system in Hτ the Bergman kernel can be expressed in the form

Kτ (z′, w′) =
∞
∑

n=0

z′nw′n

cn(τ)
,

where

cn(τ) =
\
C

|z′|2n exp(−4πτp(z′)) dλ(z′)

(see [Kr] or [R]). Using polar coordinates we get

cn(τ) = 2π

∞\
0

r2n+1 exp(−4πτp(r)) dr,

and after substituting p(r) = s we obtain

cn(τ) = 2π

∞\
0

(̺(s))2n+1 exp(−4πτs)̺′(s) ds.

Now partial integration gives

2π

∞\
0

(̺(s))2n+1 exp(−4πτs)̺′(s) ds =
2πτ

n + 1

∞\
0

(̺(s))2n+2 exp(−4πτs) ds,

which proves the proposition.

In the next step we compute the Bergman kernel of Ωp ⊂ C
2:

Proposition 4. Let the weight function p be as in Proposition 3. Then

the Bergman kernel B((z′, z), (w′, w)) of Ωp = {(z′, z) ∈ C
2 : ℑz > p(z′)}
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can be written in the form

B((z′, z), (w′, w)) = 2

∞\
0

( ∞
∑

n=0

(n + 1)
e−2πi(w−z)τ

L(̺2n+2)(4πτ)
z′n w′n

)

dτ.

P r o o f. Combine Propositions 1(c) and 3.

In the sequel we concentrate on weight functions of the form p(z′) =
|z′|α/α, where α ∈ R , α ≥ 1. It is easily seen that in this case the assump-
tions of Propositions 2 and 3 are satisfied. Hence we can apply Proposition 4
to get

Proposition 5. Let p(z′) = |z′|α/α, where α ∈ R, α ≥ 1. Then the

Bergman kernel B((z′, z), (w′, w)) of Ωp = {(z′, z) ∈ C
2 : ℑz > p(z′)} has

the form

B((z′, z), (w′, w))

=
2

π(i(w − z))2

[

αi
2 (w − z)

]2/α[

(2 + α)
[

αi
2 (w − z)

]2/α
+ (2 − α)z′w′

]

[[

αi
2 (w − z)

]2/α
− z′ w′

]3
.

We always take the principal values of the multi-valued functions involved.

P r o o f. First we compute the Laplace transform L(̺2n+2)(4πτ). In our
case we have ̺(s) = (αs)1/α, hence

L(̺2n+2)(4πτ) =

∞\
0

(αs)(2n+2)/αe−4πτs ds

= (4πτ)−1−(2n+2)/αα(2n+2)/α
∞\
0

t(2n+2)/αe−t dt

= (4πτ)−1−(2n+2)/αα(2n+2)/αΓ (1 + (2n + 2)/α).

In the sequel of the proof it will become apparent that summation and
integration in Proposition 4 can be interchanged. We now obtain

B((z′, z), (w′, w)) = 2

∞
∑

n=0

(n + 1)(4π)1+(2n+2)/α

α(2n+2)/αΓ (1 + (2n + 2)/α)

×
(

∞\
0

τ1+(2n+2)/αe−2πi(w−z)τ dτ
)

z′nw′n.

The integral in brackets can be expressed in the form
∞\
0

τ1+(2n+2)/αe−2πi(w−z)τ dτ

= (2πi(w − z))−2−(2n+2)/α
∞\
0

σ1+(2n+2)/αe−σ dσ,
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since ℜ(2πi(w − z)) > 0; this follows by Cauchy’s theorem (see for instance
[He], p. 33). Now we obtain

∞\
0

τ1+(2n+2)/αe−2πi(w−z)τ dτ

= (2πi(w − z))−2−(2n+2)/αΓ (2 + (2n + 2)/α)

= (2πi(w − z))−2−(2n+2)/α(1 + (2n + 2)/α)Γ (1 + (2n + 2)/α).

We can now continue computing the Bergman kernel:

B((z′, z), (w′, w))

= 2

∞
∑

n=0

(n + 1)(1 + (2n + 2)/α)(4π)1+(2n+2)/α

α(2n+2)/α(2πi(w − z))2+(2n+2)/α
z′nw′n

=
2

π

∞
∑

n=0

2(2n+2)/α[2(n + 1)2/α + (n + 1)]

α(2n+2)/α(i(w − z))2+(2n+2)/α
z′nw′n

=
2

π(i(w − z))2

∞
∑

n=0

[

2(n + 1)2

α
+ (n + 1)

][

αi

2
(w − z)

]−2(n+1)/α

z′nw′n.

For the summation we use the formulas
∞
∑

n=0

(n + 1)2xn =
1 + x

(1 − x)3
and

∞
∑

n=0

(n + 1)xn =
1

(1 − x)2
,

where |x| < 1. Sine ℑz > |z′|α/α and ℑw > |w′|α/α it follows that

|z′w′| <

∣

∣

∣

∣

αi

2
(w − z)

∣

∣

∣

∣

2/α

and hence

B((z′, z), (w′, w))

=
2

π(i(w − z))2

[

αi
2

(w − z)
]−2/α[

2 + α + (2 − α)
[

αi
2

(w − z)
]−2/α

z′w′
]

[

1 −
[

αi
2 (w − z)

]−2/α
z′w′

]3

=
2

π(i(w − z))2

[

αi
2 (w − z)

]2/α[

(2 + α)
[

αi
2 (w − z)

]2/α
+ (2 − α)z′w′

]

[[

αi
2 (w − z)

]2/α
− z′w′

]3
,

which proves Proposition 5.

Proposition 6. Let p(z′) = |z′|α/α, where α ∈ R, α ≥ 1. Then the

Bergman kernel B((z′, z), (w′, w)) of Ωp = {(z′, z) ∈ C
2 : ℑz > p(z′)} has

no zeros in Ωp.
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P r o o f. By Proposition 5 the Bergman kernel B((z′, z), (w′, w)) has a
zero if and only if

[

αi

2
(w − z)

]2/α

=
α − 2

α + 2
z′w′.

Since ℑz > 0 and ℑw > 0, the factor w − z never vanishes on Ωp. So we
have a contradiction in the case α = 2.

Now suppose that α 6= 2. If the Bergman kernel has a zero, then
∣

∣

∣

∣

αi

2
(w − z)

∣

∣

∣

∣

2

=

∣

∣

∣

∣

α − 2

α + 2

∣

∣

∣

∣

α

|z′|α |w′|α.

We set w = u+ iv, z = x+ iy and know that αy > |z′|α and αv > |w′|α,
hence

(u − x)2 + (v + y)2 < 4

∣

∣

∣

∣

α − 2

α + 2

∣

∣

∣

∣

α

vy.

Since both v and y are positive and 4vy ≤ (v + y)2, this inequality can only
hold if at least

1 <

∣

∣

∣

∣

α − 2

α + 2

∣

∣

∣

∣

α

.

It is clear that the last inequality is false, so the Bergman kernel has no
zeros in Ωp.
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