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Complex Plateau problem in non-Kähler manifolds

by S. Ivashkovich (Lille and L’viv)

Abstract. We consider the complex Plateau problem for strongly pseudoconvex con-
tours in non-Kähler manifolds. We give a necessary and sufficient condition for the exis-
tence of solution in the class of manifolds carrying pluriclosed metric forms and propose
a conjecture for the general case.

0. Introduction. Recall that the complex Plateau problem for a compact
real submanifold M of a complex manifold X consists in finding an analytic
chain A ⊂ X \ M with “boundary” M . More precisely, one wants to find
a complex analytic subset A ⊂ X \ M such that ∂[A] = [M ] in the sense
of currents. A necessary condition on M for the complex Plateau problem
to have a solution is the maximal complexity of M , i.e. M should be a
CR-submanifold of X with dimCR M = p, where dimR M = 2p + 1. In the
case when X is Stein this is also sufficient (see [H]). Already in the case
X = CP

3 the maximal complexity of the “contour” M is not sufficient
any more [Db]. We refer the interested reader to [Db-H] for an extensive
exposition on the Plateau problem in projective space.

In this paper we restrict ourselves to strongly pseudoconvex contours M ,
which are already the boundaries of some abstract complex manifolds. At
the same time we look for solutions of the complex Plateau problem in more
general ambient manifolds.

Let w be a strictly positive, smooth (1, 1)-form on the complex mani-
fold X.

Definition 0.1. We say that w is pluriclosed if ddcw = 0.

The Hermitian metric canonically associated with such a w is often also
called pluriclosed . Denote by ∆ the unit disk in C.

Definition 0.2. We say that a complex space X is disk-convex in di-

mension k if for any compact set K ⋐ X there is another compact set K̂

1991 Mathematics Subject Classification: Primary 32D15.
Key words and phrases: meromorphic map, continuity principle, Hartogs extension

theorem, spherical shell, complex Plateau problem.

[131]



132 S. Ivashkovich

such that for every meromorphic mapping f : ∆k → X with f(∂∆k) ⊂ K

one has f(∆k) ⊂ K̂. If X is disk-covex in dimension one, we say simply that
X is disk-convex .

All compact spaces are of course disk-convex. More generally, all
k-convex spaces are disk-convex in dimension k.

Definition 0.3. Amaximally complex CR-manifold M is called strongly

pseudoconvex if it can be realized as a strongly pseudoconvex hypersurface
in some complex manifold. We say that M bounds an abstract smooth Stein

domain if there exists a CR-imbedding i : M → Ω of M into a complex
manifold Ω such that i(M) bounds in Ω a Stein domain D.

If we say that a CR-manifold M is contained in a complex manifold X
we mean that some CR-imbedding M → X is given.

Theorem. Let M be a strongly pseudoconvex , maximally complex , com-

pact CR-manifold in a disk-convex complex manifold X carrying a pluri-

closed Hermitian metric form. Suppose that M bounds an abstract smooth

Stein domain.

(a) If dim M ≥ 5 then the complex Plateau problem for M ⊂ X has a

solution.

(b) If dimM = 3 then the complex Plateau problem for M ⊂ X has a

solution iff M is homologous to zero in X.

Remarks. 1. Let H2 := C
2 \ {0}/(z ∼ 2z) be the Hopf surface. Take

M to be the image of the standard unit sphere from C
2 under the natural

projection π : C
2 \ {0} → H2. Then M is not homologous to zero in H2

(i.e. it is a spherical shell in H2!), so the complex Plateau problem has no
solution for this M . Note that

w =
i

2

dz1 ∧ dz1 + dz2 ∧ dz2

‖z‖2

is a pluriclosed Hermitian metric form on H2. Here ‖ · ‖ stands for the
Euclidean norm in C

2.
In the case (a), i.e. when dimM ≥ 5 the spherical shells in X are not

obstructions to finding a film with boundary M because we have “enough
concavity”.

2. Consider the Hopf three-fold H3 := C
3 \ {0}/(z ∼ 2z). In this case

take a sphere S
3 in the hyperplane {z1 = 0}. Its image M under the natural

projection will be homologous to zero but will not bound any analytic set
in H3. The reason here is that H3 does not admit a pluriclosed Hermitian
metric.

3. If one does not require strict pseudoconvexity of a “contour” M then
counterexamples are known already in CP

3 (see [Db]).
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4. The condition on M to bound an abstract smooth Stein domain is re-
ally restrictive in dimension 3, while for higher dimensions one has the Rossi
theorem guaranteeing the existence of a (not smooth in general) abstract
Stein domain with boundary M , (see [Rs]).

5. When X is Kähler then any strongly pseudoconvex M ⊂ X which
bounds an abstract Stein domain is homologous to zero in X. This follows
from the Hartogs-type extension theorem proved in [Iv-1].

The proof of the Theorem consists in meromorphic extension of a CR-
imbedding of M into X onto the Stein domain bounded by this M . We
do it along the levels of an appropriate plurisubharmonic Morse exhaustion
function (see §§2 and 3).

In the last §4 we give some open questions.

1. Continuity principle and spherical shells. To realize this ap-
proach we need some results on extension of meromorphic mappings into
general complex manifolds (spaces). For the convenience of the reader we
collect them in this section.

We denote by | · | the polydisk norm in C
n. Put Ak(r, 1) := {z ∈ C

k :
r < |z| < 1} and Ak

s (r, 1) := {s} × Ak(r, 1) for s ∈ ∆n. Let f : ∆n ×
Ak(r, 1) → X be a holomorphic mapping into a normal complex space X.
Denote by S the set of points s ∈ ∆n such that the restriction fs := f |Ak

s (r,1)

extends meromorphically onto the polydisk ∆k
s := {s} × ∆k.

We say that a set S ⊂ ∆n is thick at the point z0 if for any neighborhood
U ∋ z0, S ∩ U is not contained in a proper analytic subset of U .

Theorem 1.1 (Continuity principle). Let f : ∆n × Ak(r, 1) → X be a

holomorphic mapping into a normal complex space X, disk-convex in dimen-

sion k. Suppose that there is a constant C0 < ∞ and a compact set K ⊂ X
such that for s in some subset S ⊂ ∆n, which is thick at the origin:

(a) the restriction fs := f |Ak
s (r,1) is well defined and extends meromor-

phically onto the polydisk ∆k
s = {s} ×∆k, and vol(Γfs

) ≤ C0 for all s ∈ S;

(b) f(∆n × Ak(r, 1)) ⊂ K and fs(∆
k) ⊂ K for all s ∈ S.

Then:

(1) If n = 1 then there is a neighborhood U ∋ 0 in ∆ such that f extends

meromorphically onto U × ∆k.

(2) If n ≥ 2 and X has bounded cycle geometry in dimension k, then

again there is a neighborhood U ∋ 0 in ∆n and a meromorphic extension of

f onto U × ∆k.

Here Γfs
denotes the graph of fs and the volumes are taken with respect

to some Hermitian metric h on X and the standard Euclidean metric on C
k.
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The condition of finiteness clearly does not depend on the particular choice
of the metric.

Let us explain the boundary cycle geometry condition in (2). Denote
by Bk(X) the Barlet space of compact analytic cycles of dimension k in
X, i.e. finite sums

∑
j njZj , where nj ∈ N and Zj are k-dimensional, com-

pact, irreducible analytic subsets of X. One equips Bk(X) with the usual
cycle topology (or equivalently with the locally flat topology on currents of
integration over those analytic subsets). Bk(X) admits the structure of a
finite-dimensional analytic space, compatible with this topology (see [Ba]).
This space has at most a countable number of irreducible components.

Definition 1.1. We say that a complex space X has bounded cycle

geometry in dimension k if all connected components of the Barlet space
Bk(X) are compact.

In other words, X has bounded cycle geometry in dimension k if all
irreducible components of Bk(X) are compact and all connected components
of Bk(X) are just finite unions of irreducible ones. Note again that the
property of having bounded cycle geometry does not depend on the choice
of a Hermitian metric.

For the proof of this theorem we refer to [Iv-2]. There also an example
is given, showing that in the case n ≥ 2 some condition on X is needed, in
contrast to the case n = 1.

There are some cases, occurring in applications, when the condition of
bounded cycle geometry can be dropped. For example one has the following

Proposition 1.2. Let f : ∆n × Ak(r, 1) → X be a holomorphic map

into a normal complex space X, disk-convex in dimension k. Suppose that :

(1) for every s∈∆n the restriction fs extends meromorphically onto ∆k
s ;

(2) there is a compact K ⋐ X such that fs(∆
k
s ) ⊂ K for all s and

f(∆n × Ak(r, 1)) ⋐ K;
(3) the volumes of the graphs Γfs

are uniformly bounded in ∆n, i.e. there

exists C0 < ∞ such that vol(Γfs
) ≤ C0 for all s.

Then f meromorphically extends onto ∆n+k.

For the proof see [Iv-2], Corollary 1.
It is probably worth to point out one case when the boundedness of cycle

geometry is satisfied automatically: when k = dim X − 1. Really the cycle
space of divisors is allways compact (provided X is compact).

Denote by

Hk
n(r) := {(z′, z′′) ∈ ∆n+k : 1 − r < |z′′| < 1 or |z′| < r}(1.1)

= ∆n × Ak(1 − r, 1) ∪ ∆n(r) × ∆k

the k-concave Hartogs figure in C
n+k.
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Definition 1.2. We say that the meromorphic mappings into the space
X have the Hartogs-type extension property in bidimension (n, k) if any
meromorphic map f : Hk

n(r) → X extends meromorphically onto ∆n+k.

Definition 1.3. Let us call a Hermitian form w on X plurinegative if
ddcw ≤ 0.

The class of normal complex spaces admitting a plurinegative Hermitian
metric form is denoted by P−. Recall that a subset A ⊂ C

n is called p-polar
if for any point a ∈ A one can find local cooordinates z1, . . . , zn in the
neighborhood of a such that for every (z0

1 , . . . , z0
p) with |z0

i | < 1 the set
A ∩ {zi = z0

i , i = 1, . . . , p} is pluripolar in C
n−p.

Theorem 1.3. Let f : H1
n(r) → X be a meromorphic map into a

disk-convex complex space X which admits a plurinegative Hermitian metric

form. Then:

(1) f extends to a meromorphic map f̂ : ∆n+1 \ A → X, where A is a

closed (n − 1)-polar subset of ∆n+1.

(2) If , moreover , w is pluriclosed then A is an analytic subvariety of

∆n+1 of pure codimension two (maybe empty). If A 6= ∅ then for every

sphere S
3 embedded in ∆n+1 \ A in such a way that [S3] 6= 0 in

H3(∆
n+1 \ A, Z), also its image f(S3) is not homologous to zero in X.

Remarks. 1. One can estimate the number of irreducible components of
the singularity set A in this theorem meeting a compact subset P ⋐ ∆n+1.

Namely, let a compact set K ⊂ X, which contains f(P \ S), be chosen to
be a finite subcomplex of a CW-complex X. Choose a point z′ ∈ ∆n−1 such
that A intersects ∆2

z := {z}×∆2 in a discrete set Az′ . Suppose Az′∩∂P = ∅.
Then

(1.2) |Az′ ∩ P |

≤
∣∣∣

\
∂(P∩∆2

z′ )

dcw
∣∣∣ ·

[
inf

{∣∣∣
\
γ

dcw
∣∣∣ : γ ∈ H3(K, Z),

\
γ

dcw 6= 0
}]−1

.

In other words, the number of branches of the singular set (and moreover,
their existence) is bounded by the differential geometry of X. Note that the
subset {|

T
γ

dcw| : γ ∈ H3(K, Z),
T
γ

dcw 6= 0} ⊂ R is separated from zero

(see (2.2.14) in [Iv-2]).

2. Let a spherical shell of dimension k + 1 in a complex space X be the
image Σ of the standard sphere S

2k+1 ⊂ C
k+1 under a meromorphic map

of some neighborhood of S
2k+1 into X, such that Σ is not homologous to

zero in X. This notion is close to the notion of the global spherical shell,
introduced by Kato (see [Ka-3]). Thus we obtain the following
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Corollary 1.4. Let X be a disk-convex complex space which has a pluri-

closed Hermitian metric form. Then the following are equivalent :

(a) X has the meromorphic extension property in bidimension (n, 1) for

all n ≥ 1, and thus in all bidimensions (n, k).

(b) X contains no two-dimensional spherical shells.

3. A wide class of complex manifolds without two-dimensional spheri-
cal shells is for example the class of manifolds X for which the Hurewicz
homomorphism π3(X) → H3(X, Z) vanishes.

We now need to state a lemma which is one of the key points in the proof
of the results listed in this section, and which we shall use in the solution of
the complex Plateau problem.

Recall first a few well known facts from pluripotential theory. Let D be
an open subset of C

n and S a subset of D. Consider the class of functions

(1.3) U(S,D) := {u ∈ P−(D) : u|S ≥ 1}

where P−(D) denotes the class of nonnegative plurisuperharmonic functions
in D.

Definition 1.4. The lower regularization w∗ of the function

(1.4) w(ζ, S,D) := inf{u(ζ) : u ∈ U(S,D)}

is called the P-measure of S in D, i.e.

(1.5) w∗(z, S,D) := lim inf
ζ→z

w(ζ, S,D).

Note that w∗ is plurisuperharmonic in D.

Definition 1.5. A point s0 ∈ S is called a locally regular point of S if
w∗(s0, S ∩ ∆(s0, ε),∆(s0, ε)) = 1 for all ε > 0.

We also say that the set S is locally regular at s0.

Consider now a meromorphic mapping f : ∆p × ∆q(a) → X into a
complex space X. Here ∆q(a) is a polydisk in C

q of radii a, ∆q(1) = ∆q.
Let S be some closed subset of ∆p and s0 ∈ S. Suppose that for each
s ∈ S the restriction fs := f |{s}×∆q(a) is well defined and meromorphically
extends onto a q-disk ∆q(b), b > a. Denote by νj = νj(K) the minimum of
the volumes of j-dimensional compact analytic subsets contained in some
compact set K⊂X (see Lemma 2.3.1 from [Iv-3]). Fix some a < c < b. Put

(1.6) ν = min{vol(Aq−j)νj : j = 1, . . . , q},

where Aq−j runs over all (q − j)-dimensional analytic subsets of ∆q(b) in-
tersecting ∆q(c).
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Lemma 1.5. Suppose that there exists a neighborhood U ∋ s0 in ∆p such

that for all s1, s2 ∈ S ∩ U ,

(1.7) |vol(Γfs1
) − vol(Γfs2

)| < ν/2,

and that s0 is a locally regular point of S. Then there exists a neighborhood

Vc ∋ s0 in ∆p such that f meromorphically extends onto Vc × ∆q(c).

For the proof see [Iv-3], Lemma 2.4.1.

2. Three-dimensional contours. In this section we prove part (b) of
our Theorem from the Introduction.

We suppose that M bounds an abstract smooth Stein domain, i.e. there
is a complex manifold D with boundary M such that D \ M is Stein, and
that a CR-imbedding f : M → X is given. All that we need to prove is
that f extends meromorphically onto D. Clearly we can suppose that f is
already holomorphically extended to some neighborhood of M in D.

Proposition 2.1. Let (D,M) be as above and suppose additionally that

dim M = 3.

(a) Any CR-map f : M → X, where X is a disk-convex complex space

admitting a pluriclosed Hermitian metric form, extends meromorphically

onto D \ S where S is a finite subset of D.

(b) If f(M) is homologous to zero in X, or if X does not contain spher-

ical shells, then S is empty.

P r o o f. Let ̺ : D → [0, 1] be a strictly plurisubharmonic Morse exhaust-
ing function (see [H-L], p. 93). Define D+

ε = {z ∈ D : ̺(z) > ε}. Let E be
the set of ε such that f can be meromorphically extended onto D∗

ε \ Sε,
where Sε is a discrete set. E is obviously closed and nonempty. All we need
to prove is that E is open.

Let ε0 = inf{ε ∈ E}. If ε0 is a regular value of ̺ then the needed result
immediately follows from Theorem 1.3(2).

Consider the case of ε0 not being a regular value of ̺.
Lemma 2.2 below will be proved for arbitrary dimension n ≥ 2 and used

also in §3.
Denote by Mε0

= {z : ̺(z) = ε0} the critical level set. Fix a critical
point z0 ∈ Mε0

. All we need to prove is that for any neighborhood W of z0

the envelope of holomorphy of W ∩ D+
ε contains some neighborhood of z0.

For convenience we can suppose that z0 = 0 and ε0 = 0. Write

(2.1) ̺(z) = Q(z) + 〈z, z〉 + Q(z) + O(‖z‖3),

where Q(z) is a holomorphic polynomial and 〈z, z〉 the Levi Hermitian form
of ̺. By a linear coordinate change we transform 〈 , 〉 to the sum of squares
of absolute values. Then by a unitary coordinate change we transform Q
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to the sum of squares with real nonnegative coefficients. Now (2.1) has the
form

(2.2) ̺(z) =

p∑

j=1

ajz
2
j +

p∑

j=1

ajz
2
j +

n∑

j=1

|zj |
2 + O(‖z‖3).

In coordinates zj = xj + iyj we rewrite (2.2) as follows:

̺(z) = 2

p∑

j=1

aj(x
2
j − y2

j ) +

n∑

j=1

(x2
j + y2

j ) + O(‖z‖3)(2.3)

=

p∑

j=1

[(1 + 2aj)x
2
j + (1 − 2aj)y

2
j ] +

n∑

j=p+1

(x2
j + y2

j ) + O(‖z‖3).

Renumber the coordinates in such a way that aj ≥ 1/2 for j = 1, . . . , q and
aj < 1/2 for j = q + 1, . . . , p. Then

̺(z) ≥

q∑

j=1

[(2aj + 1)x2
j − (2aj − 1)y2

j ] + δ

p∑

j=q+1

|zj |
2 + O(‖z‖3)(2.4)

≥

q∑

j=1

[(2aj−δ1 + 1)x2
j − (2aj + δ1−1)y2

j ] + δ

p∑

j=q+1

|zj |
2 =: ̺1(z),

for some δ > 0 and δ1 can be chosen arbitrarily small for small ‖z‖. As
obviously D+ := {z ∈ B

n : ̺1(z) > 0} ⊂ D+
ε0

, all we need to prove is the
following

Lemma 2.2. The envelope of holomorphy of D+ contains the origin.

P r o o f. Consider two cases.

Case 1: q ≤ n − 1. In this case D+ contains the following “Hartogs
figure”:

H :=
{

z ∈ B
n :

q∑

j=1

[(2aj −δ1 +1)x2
j −(2aj +δ1−1)y2

j ] > 0, δ

n∑

j=q+1

|zj |
2 < 1

}

or

H :=
{

z ∈ B
n :

q∑

j=1

[(2aj−δ1+1)x2
j−(2aj+δ1−1)y2

j ] >−ε, δ

n∑

j=q+1

|zj |
2 > ε

}
.

The envelope of holomorphy of H obviously contains the origin.

Case 2: q = n. In this case

(2.5) D+ =
{
z ∈ B

n :
n∑

j=1

[(2aj − δ1 + 1)x2
j − (2aj + δ1 − 1)y2

j ] > 0
}

.
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Put bj := 2aj − δ1 +1, cj := 2aj + δ1 −1, j = 1, . . . , n. For small δ1, bj > cj .
Write (2.5) in the form

(2.6) D+ =
{

z ∈ B
n :

n∑

j=1

bjx
2
j >

n∑

j=1

cjy
2
j

}
.

In the new coordinates zj →
√

bj zj , (2.6) takes the form

(2.7) D+ =
{

z ∈ B
n :

n∑

j=1

x2
j >

n∑

j=1

δjy
2
j

}
,

where δj := cj/bj < 1, j = 1, . . . , n. Put δ0 := max{δ1, . . . , δn} < 1. Then

(2.8) D+ ⊃ D+
1 = {z ∈ B

n : ‖x‖2 > δ0‖y‖
2}.

The set D+
1 clearly contains the following complete “tube torus”:

(2.9) T := {x + iy ∈ C
n : ‖x‖ = 1, ‖y‖ ≤ 1/δ0},

where 1/δ0 =: η > 1.
We now prove that already the envelope of holomorphy of T contains

the origin. For this consider the following continuous family of complex
hypersurfaces:

(2.10) Ct = {z ∈ C
n : z2

1 + . . . + z2
n = t}

or

(2.11) Ct = {x + iy ∈ C
n : ‖x‖2 − ‖y‖2 = t, (x, y) = 0},

where (x, y) = x1y1 + . . . + xnyn. Consider the intersection of Ct with the
ball of radius 2 − t:

(2.12) C̃t = {x + iy ∈ B
n
2−t : ‖x‖ − ‖y‖ = t, (x, y) = 0}.

This is a continuous family of irreducible analytic hypersurfaces with bound-
aries such that

∂C̃t = {x + iy ∈ ∂B
n
2−t : ‖x‖2 − ‖y‖2 = t, (x, y) = 0}

= {x + iy : ‖x‖2 + ‖y‖2 = 2 − t, ‖x‖2 − ‖y‖2 = t, (x, y) = 0}

= {x + iy : ‖x‖2 = 1, ‖y‖2 = 1 − t} ⊂ T.

But C̃0 ∋ 0 and C̃1 ⊂ T . So, by the continuity principle the envelope of
holomorphy of T contains the origin.

End of proof. So, as in the case of a regular value, we can extend our
map f meromorphically to a neighborhood of the critical level Mε0

minus

a discrete set. As a result we obtain an extension f̂ of our map onto D \ S
where S is a finite subset of D not intersecting M = ∂D. If we put T := f∗w
then ddcT̃ is a nonpositive measure supported on S (see Lemma 2.6.1 from
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[Iv-2]). We have\
S

ddcT̃ =
\
D

ddcT̃ =
\

∂D

dcT =
\

f(∂D)

dcw =
\

M

dcw = 0

if M is homologous to zero in X, or if X does not contain spherical shells.
Part (b) of the Theorem is proved.

3. Higher-dimensional contours. We now prove part (a) of our The-
orem. We need the following statement. Let S be a closed subset in the
product W = Bn−1 ×B2 of two balls such that S ∩ (Bn−1 × ∂B2) = ∅. For
z′ ∈ Bn−1 set B2

z′ := {z′}×B2. Let a meromorphic mapping f : W \S → X
be given, where X carries a pluriclosed metric form w. Suppose that f is
holomorphic in a neighborhood of Bn−1 × ∂B2. Denote by T the preimage
of w by f and let T̃ be the trivial extension of T onto W . We suppose here
that T̃ exists (see [Lg]).

Lemma 3.1. Suppose that for all z′ ∈ Bn−1, f(B2
z′) is homologous to

zero in X. Then:

(i) ddcT̃ = 0 in the sense of currents.

(ii) There is a (1, 0)-current γ on W , smooth in the neighborhood of

Bn−1 × ∂B2, such that T̃ = i(∂γ − ∂γ).

For the proof see [Iv-2], Lemma 2.6.2.
Note that only at the end of the proof in §2 did we use the fact that

the dimension of D is two. So the following proposition clearly enables us
to finish the proof also of part (a) of the Theorem, i.e. for dimD ≥ 3.

Proposition 3.2. Every holomorphic map f from Hn
1 (r) into a disk-

convex complex space X which admits a pluriclosed Hermitian metric ex-

tends meromorphically onto ∆n provided n ≥ 2.

P r o o f. It will be convenient for us to prove simultaneously the main
statement of the proposition, and the following weaker statement. Define
An(a, b) := ∆n(b) \ ∆n(a), for 0 ≤ a < b.

Every holomorphic map f : An(1/2, 1) → X, where X is from Proposi-

tion 3.2, extends meromorphically onto ∆n, provided n ≥ 2 and f(∂∆n
3/4) is

homologous to zero in X.

We prove both statements by induction on n. For n = 2 the second
statement follows directly from Theorem 1.3. So it is sufficient to prove that
for any n ≥ 2 the second statement implies the statement of the proposition
for this n.

So let a holomorphic mapping f : Hn
1 (r) → X be given. For every

z ∈ ∆ the restriction fz of f to ∆n
z := {z} × ∆n is holomorphic on

An(r, 1). So, by the assumption fz meromorphically extends onto ∆n, be-
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cause f(∂∆n
z ) ∼ f(∂∆n

0 ) ∼ 0 in X! Lemma 1.5 immediately gives us (after
shrinking ∆n+1 and taking different slopes of z2, . . . , zn+1-direction) the
meromorphic extension of f onto ∆n+1 \ S where S is a zero-dimensional
pluripolar compact set in ∆n+1.

Because I(f) is an analytic set a positive dimension outside a zero-
dimensional set, I(f) is analytic in ∆n+1 \ Hn

1 , and thus empty. So the
fundamental set of f is discrete in ∆n+1 \ S.

Put T := f∗w, where w is a pluriclosed metric form on X. Then T
has locally summable coefficients in ∆n+1 and its trivial extension T̃ is
plurinegative with ddcT̃ supported on S. Observe that T̃ = T is pluriclosed
outside S.

Lemma 3.1 tells us that ddcT̃ = 0 and moreover there is a (1, 0)-current
γ in any given ball W ⊂ ∆n+1, ∂W ∩ S = ∅, smooth on W \ S, such that

T̃ = i(∂γ−∂γ). Note that the conditions of Lemma 3.1 are satisfied, because
S is zero-dimensional and n + 1 ≥ 3. It remains to repeat the arguments
from the proof of Lemma 2.6.3 of [Iv-2] to estimate the volume of the graph
of f in the neighborhood of S. Namely,

Vol(Γf |W\S
)

=
\

W\S

(T + ddc‖z‖2)n+1 =

n+1∑

j=0

Cj
n+1

\
W\S

T j ∧ (ddc‖z′‖2)n+1−j

≤ C
\

W\S

T j ∧ (ddc‖z′‖2)n+1−j = C lim
εց0

\
W\S

T̃ j
ε ∧ (ddc‖z′‖2)n+1−j

≤ C lim
εց0

\
W

T̃ j
ε ∧ (ddc‖z′‖2)n+1−j

= C lim
εց0

\
W

(∂γ1,0
ε + ∂γ1,0

ε )j ∧ (ddc‖z′‖2)n+1−j

= C lim
εց0

\
W

(d(γ1,0
ε + γ1,0

ε ))j ∧ (ddc‖z′‖2)n+1−j

= C lim
εց0

\
∂W

(γ1,0
ε + γ1,0

ε ) ∧ d(γ1,0
ε + γ1,0

ε )j−1 ∧ (ddc‖z′‖2)n+1−j

= C
\

∂W

(γ1,0 + γ1,0) ∧ d(γ1,0 + γ1,0)j−1 ∧ (ddc‖z′‖2)n+1−j < ∞.

From the Bishop theorem we get an extension of the graph of f onto ∆n+1.

4. Open questions. Let us propose some open questions arising nat-
urally from the exposition. Our point of departure will be the following
observation due to Gauduchon:
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Every compact complex manifold of dimension k+1 carries a Hermitian

metric form w with ddcwk = 0.

Really, the condition to carry a ddc-closed strictly positive (k, k)-form for
a compact complex manifold is equivalent to that of carrying a bidimension
(k+1, k+1) current T with ddcT ≥ 0 but 6≡ 0. In the case of dimX = k+1
this is a nonconstant plurisubharmonic function, which does not exist on X
compact. In fact in [Ga] a stronger statement was proved, but we shall not
need it here.

Let us introduce the class Gk of normal complex spaces carrying a non-
degenerate positive ddc-closed strictly positive (k, k)-form. Note that the
sequence {Gk} is rather exhaustive: Gk contains all compact complex mani-
folds of dimension k + 1.

Note also that compact spaces from Gk have bounded cycle geometry in
dimension k (see 1.4 from [Iv-2]). We conjecture that meromorphic mappings
into spaces of class Gk are “almost Hartogs-extendable” in bidimension (n, k)
for all n ≥ 1:

Conjecture 1. Every meromorphic map f : Hk
n(r) → X with X ∈ Gk

which is disk-convex in dimension k, extends to a meromorphic map from

∆n+k \ A to X, where A is an analytic subvariety of ∆n+k (maybe empty)
of pure codimension k +1. Moreover , if A 6= ∅, then for every sphere S

2k+1

embedded in ∆n+k\A in such a way that [S2k+1] 6= 0 in H2k+1(∆
n+k\A, Z),

also f(S2k+1) is not homologous to zero in X.

In [Iv-2] this conjecture is proved for the case k = 1.

Conjecture 2. Let M be a strictly pseudoconvex , compact contour of

real dimension 2k + 1 in a k-disk-convex complex manifold X ∈ Gk, k ≥ 2.
Then the Plateau problem for M has a solution iff M is homologous to zero

in X.

This conjecture would follow from the first one, but is probably easier.

Conjecture 3. Let M be a strictly pseudoconvex , compact , three-di-

mensional contour in a compact manifold X. Then M bounds an abstract

Stein domain.

To our knowledge, this question is open even for X = CP
3.
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