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Holomorphic functions of fast growth

on submanifolds of the domain

by Piotr Jakóbczak (Kraków)

Abstract. We construct a function f holomorphic in a balanced domainD in C
N such

that for every positive-dimensional subspace Π of C
N , and for every p with 1 ≤ p < ∞,

f |Π∩D is not L
p-integrable on Π ∩D.

1. Introduction. LetD be an open set in C
N , and let F be some class of

complex-valued functions in D which are holomorphic in D and satisfy some
other conditions there. Given an affine subspace M of positive dimension
in C

N , the problem is to determine what further properties (besides being
holomorphic) the functions from the class F have when restricted to the slice
M∩D. This problem was studied in many situations by several authors; see
e.g. [2], [5], [8], [9], [11].

In [4] we have shown that there exists a function f holomorphic in the
unit ball B in C

N such that for every positive-dimensional subspace Π of
C

N , f |Π∩B is not L2-integrable in Π∩B. The proof consists of construction
of a function f with sufficiently fast growth near the boundary of each set
of the form Π ∩ B, and the use of the well-known estimates relating the
growth near the boundary and the L2-norm of a holomorphic function. (See
also [10] for a much more explicit proof of this result.)

In the present note we carry out the construction from [4] for the more
general situation of domains which are balanced domains of holomorphy,
i.e. domains of holomorphy such that for every z = (z1, . . . , zN ) ∈ D and
every λ ∈ C with |λ| ≤ 1, the point λz = (λz1, . . . , λzN ) also belongs to
D. We obtain holomorphic functions with prescribed fast growth near the
boundary of such domains; then we apply our construction in order to obtain
functions which are holomorphic and not integrable on linear slices of the
domain, or which are not in O(δ) on any such slice, where O(δ) denotes the
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space of functions of δ-tempered growth, and δ is a given weight function
(see e.g. [1]; the precise definiton of O(δ) will be recalled later).

The author is very indebted to M. Jarnicki, J. Siciak, and P. Wojtaszczyk
for valuable suggestions and discussions.

2. A holomorphic function with prescribed growth on slices.

Let D be a balanced domain of holomorphy in C
N . Then there exists a

strictly plurisubharmonic smooth exhaustion function ̺ in D, i.e. a smooth
function ̺ which is strictly plurisubharmonic in D and for every real c, the
set {z ∈ D | ̺(z) < c} is relatively compact in D. For further use we need
the existence of a sequence {Dn}

∞
n=1 of strictly pseudoconvex, smoothly

bounded, balanced domains which exhaust D and every straight line in
C

N passing through zero intersects the boundary ∂Dn of every domain Dn

transversally. It seems that the existence of such a sequence is well known;
the proof of the following proposition was suggested to us by M. Jarnicki,
Ch. Kiselman and P. Pflug.

Proposition 1. Let D be a balanced domain of holomorphy in C
N .

Then there exists ε0 > 0 and a family {Dε}0<ε≤ε0
of strictly pseudoconvex ,

smoothly bounded , balanced domains such that
⋃

0<ε≤ε0
Dε = D, Dε ⊂ Dε′

for 0 < ε′ < ε ≤ ε0, and for every ε, every (real) straight line passing

through zero in C
N intersects ∂Dε transversally.

P r o o f. Let h be the Minkowski functional for D. Since D is a do-
main of holomorphy and is balanced, h is plurisubharmonic in C

N , and
h(λz) = |λ|h(z) for every z ∈ C

N and λ ∈ C. For ε > 0, denote by hε the
regularization

hε(z) =
\

CN

h(z − εy)φ(y) dm(y),

where φ is a smooth function in C
N , suppφ is the unit ball, φ(y) = φ(|y1|, . . .

. . . , |yN |) for every y = (y1, . . . , yN ) ∈ C
N , and

T
CN φ(y) dm(y) = 1. (Here

m denotes the usual Lebesgue measure in C
N .) It is well known that hε is

smooth and plurisubharmonic in C
N , for each z ∈ C

N , hε(z) tends decreas-
ingly to h(z) as ε decreases to zero, and hε(e

itz) = hε(z), z ∈ C
N , t ∈ R.

Since h(0) = 0, there exists ε0 > 0 so small that hε0
(0) < 1 (and hence

hε(0) < 1 for all 0 < ε ≤ ε0). For 0 < ε ≤ ε0, set

̺ε(z) = hε(z) + ε‖z‖2.

Then ̺ε is a smooth and strictly plurisubharmonic function in C
N . LetDε =

{z ∈ C
N | ̺ε(z) < 1}. Then 0 6∈ ∂Dε (because ̺ε(0) < 1), Dε′ ⊂ Dε′′ for

0 < ε′′ < ε′, and the domains Dε tend increasingly to D as ε decreases
to zero; moreover, every domain Dε is pseudoconvex. Using the maximum
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principle for subharmonic functions and the fact that hε(e
itz) = hε(z) for

z ∈ C
N and t ∈ R, we have for λ ∈ C, |λ| ≤ 1 and z ∈ C

N ,

(1) hε(λz) ≤ max
t∈R

hε(e
itz) = hε(z),

and hence

̺ε(λz) ≤ ̺ε(z), z ∈ C
N , λ ∈ C, |λ| ≤ 1.

Hence every domain Dε is balanced.
Now fix ε with 0 < ε ≤ ε0, and z ∈ ∂Dε. By (1) the function

φ : [0,∞) ∋ t 7→ hε(tz)

is non-decreasing. Denote by ψ the function

ψ : [0,∞) ∋ t 7→ ̺ε(tz).

Then

ψ′(t) = 〈grad ̺ε(tz), z〉R = φ′(t) + 2εt‖z‖2,

where 〈·, ·〉R denotes the standard real scalar product in C
N = R

2N . Further,

(2) 〈grad ̺ε(z), z〉R = φ′(1) + 2ε‖z‖2 > 0

(here we use the fact that 0 6∈ ∂Dε). It follows form (2) that ∂Dε is smooth
(and so Dε is strictly pseudoconvex), and that

(3) ∂Dε is transversal to every (real) straight line passing through zero.

This ends the proof.

Fix ε with 0<ε ≤ ε0. It is well known that for a given compact subset
K of C

N , and for ε′ sufficiently close to ε, the regularizations hε′ are ar-
bitrarily close to hε on K. Therefore the same is true for the functions ̺ε′

and ̺ε. Hence, given an arbitrary neighborhood U of Dε, there exists ε′ < ε
such that Dε′ ⊂ U . Suppose now that f is a function holomorphic in some
neighborhood U of Dε, and fix Dε′ ⊂ U as above. Then f is holomorphic
in Dε′ . Since Dε′ is a balanced domain of holomorphy, there exists a series∑∞

s=0Qs of homogeneous polynomials which converges to f uniformly on
compact subsets of Dε′ ; in particular, the convergence is uniform on Dε.
This yields the following proposition:

Proposition 2. Let the domain D and the family {Dε}0<ε≤ε0
be as in

Proposition 1. Then given ε with 0 < ε ≤ ε0, every function holomorphic

in a neighborhood of Dε can be uniformly approximated on Dε by functions

which are holomorphic in the whole domain D.

In the sequel, given K ⊂ C
N and f ∈ C(K), we denote by ‖f‖K the

usual supremum norm on K.
Suppose now that δ is a positive, bounded and continuous function in a

domain G in C
N . Denote by O(δ) the space of all functions holomorphic in
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G such that there exists a positive integer k with

sup{|δk(z)f(z)| | z ∈ G} <∞.

If moreover δ satisfies the conditions:

(i) |z|δ is bounded on C
N ,

(ii) |δ(z) − δ(z′)| ≤ |z − z′| for all z, z′ ∈ C
N ,

then it is called a weight function (see [1]). The theory of functions from the
space O(δ) was investigated by several authors (see e.g. [1]).

We will prove the following theorem on the existence of holomorphic
functions with bad boundary behavior on submanifolds:

Theorem 1. Let D be a balanced domain of holomorphy in C
N , and

δ a positive and continuous function in D. Then there exists a function f

holomorphic in D such that for every positive-dimensional subspace Π of

C
N , f |Π∩D 6∈ O(δ|Π∩D).

Let {Dε}0<ε≤ε0
be the family of domains constructed in Proposition 1.

Choose an arbitrary sequence {εn}
∞
n=1 with ε0 > ε1 > ε2 > . . . and

limn→∞ εn = 0. We have Dεn
⊂ Dεn+1

for n = 1, 2, . . . For each n, choose a

neighborhood Un of ∂Dεn
such that Un ⊂ D, and Un∩Uk = ∅ for n 6= k. It

follows from the proof of Proposition 1 that for every n and every z ∈ ∂Dεn
,

grad ̺εn
(z) 6= 0 (where ̺εn

is a defining function for Dεn
, obtained in the

proof of Proposition 1). Shrinking the neighborhoods Un if necessary we
may assume that

(4) for every n and for every z ∈ Un, grad ̺εn
(z) 6= 0.

Moreover, according to the proof of Proposition 1, we have

(5) Dεn
= {z ∈ C

N | ̺εn
(z) < 1},

and ̺εn
is smooth and strictly plurisubharmonic in C

N , and satisfies the
condition

(6) ̺εn
(λz) ≤ ̺εn

(z), z ∈ C
N , λ ∈ C, |λ| ≤ 1.

Therefore there exists a positive number ωn such that for every 0 < ω ≤ ωn,
the domains

(7) Dεn,−ω = {z ∈ C
N | ̺εn

(z) < 1 − ω}

are strictly pseudoconvex, smoothly bounded, and balanced, Dεn
\ Un ⊂

Dεn,−ω, and (as in (3)) ∂Dεn,−ω is transversal to every (real) straight line
passing through zero.

Now fix n ∈ N, and call Dεn
= G, ̺εn

= ̺, Dεn,−ω = G−ω, Un = U .
It is well known that every strictly pseudoconvex domain is locally strictly
convex with respect to convenient holomorphic coordinates in some neigh-
borhood of a given point of its boundary. Examining the proof of this result
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(see e.g. [6], Lemma 3.2.3), and shrinking U once more, we conclude that
the following holds:

Proposition 3. For every x ∈ ∂G there exist neighborhoods Zx, Ux, Vx,
and Wx of x with Zx ⋐ Ux ⋐ Vx ⋐ Wx, strictly convex domains Px, Tx, Sx,
and Rx in C

N such that Px ⋐ Tx ⋐ Sx ⋐ Rx, and a biholomorphic mapping

φx : Wx → Rx such that

(8) ̺n ◦ φ−1
x is a strictly convex smooth function in Rx,

φx(Zx) = Px, φx(Ux) = Tx, φx(Vx) = Sx, and

(9) U ⊂
⋃

x∈∂G

Zx.

Now let x∈∂G be fixed. By a small perturbation of the function ̺n we
can obtain a strictly pseudoconvex domain B ⊂ C

N with smooth boundary
such that B ⊂ G, G ∩ Ux ⊂ B, (∂G \ Vx) ∩ B = ∅, φx(B ∩Wx) is convex,
there exists η with 0 < η < ωn such that G−η ⊂ B, and B is star-shaped.
(Note that since the deformation of G is performed only near x∈ ∂G, the
domainB need not be balanced (although G is). ThereforeB is a star-shaped
domain of holomorphy. It follows from [9] that every function holomorphic in
B can be approximated uniformly on compact subsets of B by polynomials.
In particular,

(10) every function holomorphic in B can be approximated uniformly
on compact subsets of B by functions holomorphic in the whole
domain D.

Also, there exists θ with 0 < θ < η such that ((G \G−θ) \ Vx)∩B = ∅, and
hence

(11) B ∩ (Wx \ Vx) ⊂Wx ∩G−θ.

Assume now that K and L are compact subsets of φx((G \ G−θ) ∩ Ux)
such that

(12) K is a subset of a real (2N − 1)-dimensional hyperplane Π of C
N ,

and φx(G−θ ∩Wx) and L lie on one side of Π.

(This can happen, since by (8), φx(G−θ ∩Wx) is convex in C
N .) The hyper-

plane Π has the form

Π = {z ∈ C
N | Re〈z − cz0, z0〉C = 0}

with some z0 ∈ C
N , ‖z0‖ = 1, and c > 0. (Here 〈·, ·〉C denotes the standard

complex euclidean scalar product in C
N .) The function

h(z) = b exp(a〈z − cz0, z0〉C), z ∈ C
N , a, b > 0,

is such that |h|Π | ≡ b, and |h(z)| < b for those z ∈ C
N which lie on the

same side of the hyperplane Π as the point 0.
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Choosing conveniently a and b, and using (12), we may assume that

(13) ‖h‖φx(G−θ∩Wx)∪L ≤ m′,

and

(14) inf
K

|h| ≥M ′,

where 0 < m′ < M ′ are given constants. Let ψ be a smooth function in
C

N with 0 ≤ ψ ≤ 1, ψ|Vx
≡ 1, and ψ|CN\Wx

≡ 0. Consider the function g

defined as ψ(h◦φx) in Wx and 0 in CN \Wx. Then g is smooth in CN . The
form ∂g is ∂-closed in C

N , and

(15) supp∂g ⊂Wx \ Vx.

Moreover, by (11), (13), and (15),

‖∂g‖B = ‖(h ◦ φn,x)∂ψ‖B ≤ ‖h‖φx(B∩(Wx\Vx))‖∂ψ‖CN

≤ ‖h‖φx(Wx∩G−θ)‖∂ψ‖CN ≤ m′‖∂ψ‖CN .

By [3] or [7] there exists c > 0 (depending only on B) and a function
v ∈ C∞(B) such that ∂v = ∂g in B, and

‖v‖B ≤ cm′‖∂ψ‖CN .

Then f = g − v is holomorphic in B, and

‖f‖G−η∪φ−1
x (L) ≤ ‖h‖φx(G−θ∩Wx)∪L + ‖v‖B ≤ m′ + cm′‖∂ψ‖CN ,

and by (14),

inf
φ−1

x (K)
|f | ≥ inf

K
|h| − ‖v‖B ≥M ′ − cm′‖∂ψ‖CN .

Hence, by choosing M ′ and m′ conveniently, we obtain

(16) inf
φ−1

x (K)
|f | ≥M

and

(17) ‖f‖G−η∪φ−1
x (L) < m,

where 0 < m < M are given positive numbers.
By (10) there exists a function k holomorphic in D such that

(18) inf{|k(z)| | z ∈ φ−1
x (K)} > M

and

(19) ‖k‖G−η∪φ−1
x (L) < m.

We now return to the previous notations, i.e. we have the sequence
{Dεn

}∞n=1 of balanced, strictly pseudoconvex, and smoothly bounded do-
mains from (5), defined by the smooth and strictly plurisubharmonic func-
tions ̺εn

satisfying (6), and the numbers ωn for which (7) holds. To simplify
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notations, we write Dεn
=Dn and Dεn,−ω =Dn,−ω. Let n be fixed. Since Un

is compact, by (9) there exist a finite number of points xn,1, . . . , xn,in
∈ ∂Dn

such that Un ⊂ Zn,xn,1
∪ . . . ∪ Zn,xn,in

. Let S be the unit sphere in C
N ,

S = {w ∈ C
N | ‖w‖ = 1}. Note that for every w ∈ S, the half-line

Iw = {tw | 0 ≤ t <∞} intersects every ∂Dn,−ω, 0 < ω ≤ ωn. Hence

(20) every Iw intersects some Zn,xn,j
.

Moreover, by Proposition 3, every such half-line Iw intersects every ∂Dn,−ω,
0 < ω ≤ ωn, transversally. By (8), for every j = 1, . . . , in, the sets

φn,xn,j
(Dn,−ω ∩Wn,xn,j

)

are convex in C
N for every 0 < ω ≤ ωn, and the lines φn,xn,j

(Iw) intersect
φn,xn,j

(∂Dn,−ω ∩Wn,xn,j
) transversally (for those w and ω for which the in-

tersection is not empty). Hence it is rather easy to find for each j = 1, . . . , in
a finite number of real (2N−1)-dimensional hyperplanes Θn,j,1, . . . , Θn,j,sn,j

of C
N , a family Kn,j,1, . . . ,Kn,j,sn,j

of compact subsets of C
N , and a number

ωn,j with 0 < ωn,j < ωn, as well as a number ωn,0, 0 < ωn,0 < ωn, such
that:

• Kn,j,l ⊂ Θn,j,l ∩ Tn,xn,j
, l = 1, . . . , sn,j.

(21) If for some w∈S, the half-line Iw intersects Zn,xn,j
, then φn,xn,j

(Iw)
(which is contained in Wn,xn,j

) intersects some Kn,j,l.

• For every l = 1, . . . , sn,j , the sets φn,xn,j
(Wn,xn,j

∩Dn,−ωn,j
) and

Kn,j,1, . . . ,Kn,j,l−1 lie on the same side of Θn,j,l as the point zero,

(we set Kn,j,0 = ∅),

ωn,0 > ωn,1 > . . . > ωn,in
, so Dn,−ωn,1

⋐ . . . ⋐ Dn,−ωn,in
,

and

Kn,j,l ⊂ φn,xn,j
(Wn,xn,j

∩ (Dn,−ωn,j
\Dn,−ωn,j−1

)),

j = 1, . . . , in, l = 1, . . . , sn,j.

Now we repeat essentially the construction from [4]. We order the sets
Kn,j,l into the sequence

(22) {K1,1,1,K1,1,2, . . . ,K1,1,s1,1
,K1,2,1, . . . ,K1,2,s1,2

, . . . ,

K1,i1,1, . . . ,K1,i1,s1,i1
,K2,1,1, . . . ,K2,1,s2,1

, . . .} =: {K1,K2, . . .}.

Every subspace Π of C
N consists of real half-lines Iw, and, by (20) and (21),

(23) for every w ∈ S, the half-line Iw intersects infinitely many sets of
the form φ−1

n,xn,j
(Kn,j,l).

To each Kn,j,l = Ks we attach a function fn,j,l = fs with the properties
which we now describe inductively. By (16) and (17), and by the positivity



152 P. Jakóbczak

of δ, there exists a function f1 holomorphic in D such that

inf{|f1(z)| | z ∈ φ−1
1,x1,1

(K1)} ≥ 1 and ‖δf1‖D1,−ω1,1

≤ 2−1.

Suppose that the functions f1, . . . , fr are already chosen. Then we have

Kr+1 = Knr+1,jr+1,lr+1

for uniquely determined nr+1, jr+1 with 1 ≤ jr+1 ≤ inr+1
, and lr+1 with

1 ≤ lr+1 ≤ snr+1,jr+1
. Moreover,

Dnr+1,−ωnr+1,j
⊂ Dnr+1,−ωnr+1,jr+1

, j = 1, . . . , jr+1 − 1, if jr+1 > 1,

or

Dnr,−ωnr,inr
⊂ Dnr+1,−ωnr+1,1

if jr+1 = 1,

and the set

φnr+1,xnr+1,jr+1
(Dnr+1,−εnr+1,jr+1

∩Wnr+1,jr+1
)

∪Knr+1,jr+1,1 ∪ . . . ∪Knr+1,jr+1,lr+1−1

lies on the same side of the hyperplane Θnr+1,jr+1,lr+1
as the point zero.

By (17)–(19) and the fact that δ is positive, there exists a function fr+1 =
fnr+1,jr+1,lr+1+1, holomorphic in D, such that

(24) inf{|δr+1fr+1(z)| | z ∈ φ−1
nr+1,xnr+1,jr+1

(Kr+1)}

≥ (r + 1) +

r∑

p=1

‖δr+1fp‖Kr+1
+ 1,

and if we define

Lr = Dnr+1,−ωnr+1,jr+1

∪ φ−1
nr+1,xnr+1,jr+1

(Knr+1,jr+1,1 ∪ . . . ∪Knr+1,jr+1,lr+1−1),

then

‖fr+1‖Lr
(= ‖fnr+1,jr+1,lr+1+1‖Lr

) ≤ 2−(r+1),(25)

‖δpfr+1‖Lr
(= ‖δpfnr+1,jr+1,lr+1+1‖Lr

) ≤ 2−(r+1), p = 1, . . . , r.(26)

Set

f(z) =

∞∑

r=1

fr(z), z ∈ D.

By (25), the function f is well defined and holomorphic in D. By (20),
(23), (24), and (26), for every w ∈ S there exists a sequence {zr}

∞
r=1 of

points of Iw ∩D such that for infinitely many r,

(27) |δr(zr)f(zr)| ≥ r.

Therefore f is not in O(δ|Π∩D) for any subspace Π of C
N . This ends the

proof of Theorem 1.
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Given a domain G in C
N and a number p with 1 ≤ p < ∞, we denote

by LpH(G) the space of all functions holomorphic in G such that\
G

|f(z)|p dm(z) <∞

(m denotes here the 2N -dimensional Lebesgue measure in C
N). If G is a

domain in a complex subspace M of C
N , the space LpH(G) can be defined

similarly, with m being the Lebesgue measure on M .

In the same way as Theorem 1 we can prove the following theorem on
functions from the space LpH (for the case of the ball, see [4], Theorem 1):

Theorem 2. Let D be a balanced domain of holomorphy in C
N . Then

there exists a function f , holomorphic in D , such that for every positive-

dimensional subspace Π of C
N and for every p with 1 ≤ p < ∞, f |D∩Π 6∈

LpH(D ∩Π).

P r o o f. It is well known that if G is a domain in C
M , 1 ≤ p < ∞, and

f ∈ LpH(G) then for every z0 ∈ G,

|f(z0)| ≤
MM/p

(π dist(z0, ∂G)2)M/p
‖f‖G,p,

where ‖f‖G,p denotes the Lp-norm of f in G and dist(z0, ∂G) is the
Euclidean distance of z0 to ∂G. For z0 sufficiently close to ∂G, we have
dist(z0, ∂G) < 1. Hence for 1 ≤ p <∞,

1 ≤
1

dist(z0, ∂G)2M/p
≤

1

dist(z0, ∂G)2M
.

Therefore, for all z0 ∈ G, and for every 1 ≤ p <∞, we have

1

dist(z0, ∂G)2M/p
≤ 1 +

1

dist(z0, ∂G)2M
.

Moreover, there exists c > 0 such that for all L = 1, . . . , N , and every
1 ≤ p <∞,

(L/π)L/p ≤ c.

Consider the construction of the function f from the proof of Theorem 1.
We now require that the function f , constructed as before, satisfies the
inequality

(28) |f(z)| ≥
r

dist(z0, ∂D)2N
+ 1

for all z ∈ Kr instead of (27). (Here the sets Kr are defined as in (22)).
It follows from the above considerations and from (28) that the function f
obtained in this way is holomorphic in D, and for every subspace Π of C

N

and every 1 ≤ p <∞, f 6∈ Lp(Π ∩D). This ends the proof.
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Now let D be a balanced domain of holomorphy in C
N , as before. Then

in particular Theorem 2 holds for D and p = 2. Moreover, since D is bal-
anced, every function f holomorphic in D can be developed into a series of
homogeneous polynomials,

f(z) =

∞∑

s=0

Qs(z),

where every Qs is a homogeneous polynomial of degree s, s = 0, 1, . . . In
[10], Thm. 1, Wojtaszczyk constructed explicitly a sequence {pn}

∞
n=1 of ho-

mogeneous polynomials of degree n in the unit ball B in C
N such that the

function

f(z) :=
∑

n

nln npn(z)

is holomorphic in B, and for each hyperplane Π ⊂ C
N and any p > 0,\

Π∩B

|f(z)|p dmΠ(z) = ∞

(mΠ is the Lebesgue measure onΠ). It would be interesting to know whether
the construction in the present note, given for an arbitrary balanced domain
of holomorphy, can be done more explicitly, e.g. as in [10].
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