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Abstract. We consider the problem of characterizing the range of the exponential
Radon transform. The proof uses extension properties of separately analytic functions,
and we prove a new theorem about extending such functions.

1. Introduction. Given a function h ∈ C∞
c (R2,R), we define the expo-

nential Radon transform Rµ(h) of h as

Rµ(h)(ω, p) :=
\

x·ω=p

h(x)eµx·ω⊥

dm(x).

In the definition above, µ is a non-zero fixed real number, ω := (cosα, sinα)
for some 0 ≤ α < 2π with ω⊥ := (− sinα, cosα) and dm is the 1-dimensional
Lebesgue measure on the line x ·ω = p. Problems of interest within integral
geometry are to invert, study uniqueness properties, and characterize the
image of the operator Rµ when it acts on various spaces. We will confine
ourselves to the last problem, more precisely to characterizing the image of
Rµ when it acts on C∞

c (R2,C).

1.1. Summary of the results. The first result that completely charac-
terizes the range of Rµ was proved in [5]. In that article, an infinite set of
rather strange differential conditions were given. In [8] there is a geometric
description of the range conditions occurring in [5] and also a new set of
range conditions. Later, in [1], a new description of the range, that was
geometrically pleasing and natural, was given (see (2.2)). In this paper, we
give a new proof of the theorem of [1] that describes the range. The proof is
based on Theorem 3.1, which relies heavily on Theorem 4.2, which in turn
is a new result about extending separately analytic functions.
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1.2. Comments about applications of range characterization. In appli-
cations one usually measures g = Rµ(h) and the object one would like to
recover is h (see e.g. [3]), i.e. we would like to invert Rµ. Range character-
ization of Rµ imposes conditions on g and these conditions can be used to
correct measured data and to restore incomplete data.

Correction of measured data. Usually the data we measure, i.e. g, does
not satisfy the range conditions because the mathematical model does not
represent all real aspects of the collection of the data. As an example one
has noisy data. One can then use the range conditions in order to correct the
measured data, i.e. to decrease the discrepancy between the measured and
ideal data. Using corrected data can bring us a more precise reconstruction
of h (see [10] and [6]).

Restoration of incomplete data. If we consider the emission tomography
problem when the data are known only for 0 ≤ α ≤ α0 where α0 < 2π, the
range conditions give us some additional information which helps to restore
the unknown part of the data. This enables us to find h based on incomplete
data (see [7]).

2. The main theorem. The well known relation between the expo-
nential Radon transform and the Fourier transform is known as the Fourier

slice theorem and reads as follows:

Theorem 2.1. Let g be the exponential Radon transform of a test func-

tion in R
2, i.e. g = Rµ(h) where h ∈ C∞

c (R2,C). Then

(2.1) ĝ(ω, ζ) = ĥ(ζω + iµω⊥).

The proof is simply to use Fubini’s theorem and the definitions (see
e.g. [7]).

By taking ζ = it in (2.1), we observe that the existence of ĥ is not
possible unless the following holds: for all σ, ω ∈ S1 and t ∈ R,

(2.2) ĝ(ω, it) = ĝ(σ,−it) whenever tω + µω⊥ = −tσ + µσ⊥.

This condition has the following simple geometric interpretation. In the
Im(C2)-plane we have a circle with radius µ centered at the origin, and the
family L := {ℓω}ω∈S1 of lines tangent to this circle. On each line ℓω we have
an entire function C ∋ ζ 7→ ĝ(ω, ζ). The condition in (2.2) simply states that
the values of the functions ζ 7→ ĝ(ω, ζ) must agree at the points where the
lines intersect.

This is obviously a necessary condition if there is to be a function (in

this case denoted by ĥ), defined on Im(C2), whose restriction to the lines ℓω
is ζ 7→ ĝ(ω, ζ).
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Thus, (2.2) gives us a necessary condition that a function g must satisfy
in order to be in the range of Rµ. The question is if this condition is sufficient.
The affirmative answer is given in the following theorem.

Theorem 2.2 (Range characterization of Rµ). Let g : S1 × R → C and

µ ∈ R \ {0}. Then the following are equivalent :

(i) There exists h ∈ C∞
c (R2,C) such that g = Rµ(h).

(ii) g ∈ C∞
c (S1 × R,C) and ĝ satisfies the condition in (2.2).

3. Proof of Theorem 2.2. First, without loss of generality, we can
assume that µ > 0.

Definition 3.1. We define the set Mµ ⊂ C
2 as the union of the com-

plexified lines in L, i.e.

Mµ := {z ∈ C
2 : z = ζω + iµω⊥, ζ ∈ C, ω ∈ S1},

and set

Kµ := {x ∈ R
2 : |x| ≥ µ} and KC

µ := {z ∈ C
2 : z = ix where x ∈ Kµ}.

The proof of Theorem 2.2 boils down to proving the following two the-
orems, the first one about analytic extension of functions defined on lower
dimensional sets in C

2, and the second about extending growth properties
valid on a submanifold in C

2 to corresponding growth properties on C
2.

Theorem 3.1. Let f : S1×C → C and assume that f satisfies the same

condition as ĝ does in (2.2), i.e. ζ 7→ f(ω, ζ) is an entire function on C for

all ω ∈ S1 and , for ℓω, ℓσ ∈ L where ω 6= σ and tω + µω⊥ = sσ + µσ⊥,

(3.1) f(ω, it) = f(σ, is).

Then the function F : KC
µ → C defined as

(3.2) F (i(tω + µω⊥)) := f(ω, it)

extends to an entire function on C
2.

Remark 3.1. Observe that elements in the family L = {ℓω}ω∈S1 are
given as

ℓω : t 7→ tω + µω⊥.

Here ω ∈ S1 denotes the parameter of this family.

Theorem 3.2. Let N ∈ N and F ∈ O(C2,C) where ζ 7→ F (ζω + iµω⊥)
satisfies the one-dimensional Paley–Wiener growth estimates uniformly with

respect to ω, i.e. there is a constant CN > 0 (independent of ω) and r > 0
such that

(3.3) |F (ζω + iµω⊥)| ≤ CN (1 + |ζ|)−Ner|Im ζ| for all ζ ∈ C.
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Then F satisfies the corresponding two-dimensional Paley–Wiener growth

estimates, i.e. there is a constant C ′
N > 0 and r′ > 0 such that

(3.4) |F (z)| ≤ C ′
N (1 + |z|)−Ner′|Im z| for all z ∈ C

2.

Assuming the validity of Theorems 3.1 and 3.2 we can prove Theorem 2.2.

Proof of Theorem 2.2. The proof is naturally divided into two parts.

(i)⇒(ii). Let g be in the range of Rµ, i.e. there exists h ∈ C∞
c (R2,C) such

that g = Rµ(h). Then it is clear that g ∈ C∞
c (S1 × R,C) and Theorem 2.1

shows that (2.2) holds.

(ii)⇒(i). Let g ∈ C∞
c (S1 × R,C) be given and assume that ĝ satisfies

(2.2). Then, by Theorem 3.1, there exists F ∈ O(C2,C) such that

(3.5) F (i(tω + µω⊥)) = ĝ(ω, it)

for all t ∈ R and ω ∈ S1. By the 1-dimensional Paley–Wiener theorem ĝ
satisfies the assumptions of Theorem 3.2. Thus, we can consider the inverse
Fourier transform of F . Denote it by h. Moreover, by Theorem 3.2 and the
2-dimensional Paley–Wiener theorem, h ∈ C∞

c (R2,C). Finally, Theorem 2.1
with ζ = it gives g = Rµ(h).

This concludes the proof of Theorem 2.2.

Thus, it remains to prove Theorems 3.1 and 3.2. We begin with proving
the former. For that we need results from the theory of several complex
variables.

4. Results from the theory of several complex variables. The
proof of Theorem 3.1 relies heavily on extension properties of separately
analytic functions. The result that we eventually need is Corollary 4.1.

We begin with the following standard result (see e.g. Lemma 1A in [2])
on the removal of singularities of analytic functions.

Proposition 4.1. Assume that Ω ⊂ C
2 is open and H is analytic in

Ω \ {z ∈ Ω : Im z = 0}. Then H extends to an analytic function on Ω.

Now, let us turn to extension of separately analytic functions; we begin
with defining the concept of a separately analytic function w.r.t. a decom-
position of a set.

Definition 4.1. Let K1, U1 ⊂ C
n, K2, U2 ⊂ C

m and assume that U1, U2

are open and connected, and K1,K2 are subsets of U1 and U2, respectively.
Let X ⊂ C

n+m be defined as

(4.1) X := (K1 × U2) ∪ (U1 ×K2),
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and assume that H : X → C. We say that H is separately analytic in X
w.r.t. the decomposition (4.1) if

z 7→ H(z,w) is analytic in U1 for all w ∈ K2,

w 7→ H(z,w) is analytic in U2 for all z ∈ K1.

We are interested in the case where n = m = 1 and K1,K2 are intervals
in R. We need the following notation.

Notation 4.1. Let U ⊂ C be an open set. Then HAR(U, V ) and
SH(U, V ) denote the sets of harmonic resp. subharmonic functions in U
with values in V . If U is a closed set, we extend the definition to mean that
the function is harmonic or subharmonic on some open neighborhood of U .

Definition 4.2. Let U ⊂ C and K ⊂ U be an interval. Define hU,K :
U → R as the bounded function 0 ≤ hU,K ≤ 1 that solves the following
generalized Dirichlet problem:

hU,K ∈ HAR(U \K,R), hU,K |K ≡ 0, hU,K |∂U ≡ 1.

We say that the pair (K,U) is regular if the Dirichlet problem has a unique
solution. It is clear that if U has a “sufficiently nice” boundary and K is an
interval, then (K,U) is regular. hU,K is called the zero-one maximal function

for the pair (U,K).

The following extension theorem is a special case of a very general result
(Theorem 7.1 of [11]) due to Siciak about extending separately analytic
functions.

Theorem 4.1. Let K1,K2 ⊂ R be closed intervals, U1, U2 ⊂ C open

and connected sets where Kj ⊂ Uj and (Kj , Uj) are regular for j = 1, 2.
Define X ⊂ C

2 as in (4.1) and let H : X → C be separately analytic in

X w.r.t. the decomposition (4.1). Then H extends analytically to Ω ⊂ C
2

where

Ω := {z ∈ U1 × U2 : h1(z1) + h2(z2) < 1} and hj := hUj ,Kj
for j = 1, 2.

Our aim is to prove Corollary 4.1 which is an extension theorem where
we “remove a line” and at the same time have regularity at infinity. Let us
first prove a simpler version of that result, namely Theorem 4.2, where we
only “remove a curve”.

Definition 4.3. △R and △C denote the real and complex diagonals in
R

2 and C
2 respectively, i.e.

△R := {x ∈ R
2 : x1 = x2} and △C := {z ∈ C

2 : z1 = z2}.

Theorem 4.2. Assume that H : R
2 \△R → C has the following proper-

ties:

z1 7→ H(z1, x2) extends analytically to C \ {x2} for all x2 ∈ R,
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z2 7→ H(x1, z2) extends analytically to C \ {x1} for all x1 ∈ R.

Then H extends analytically to Ω := C
2 \ △C.

4.1. Proof of Theorem 4.2. The idea is to use Theorem 4.1 locally at every
point w∈Ω in order to show that H extends analytically to a neighborhood
Ωw of w in C

2. In order to use Theorem 4.1 one needs sets where H is
separately analytic. We choose these sets in such a way that we can use our
assumption of separate analyticity of H, and at the same time show that
the set (1) Ωw contains w. The proof is divided into the following steps:

Step 1. Choose the sets where we use our separate analyticity assump-
tion.

Step 2. Apply Theorem 4.1 to extend H to Ωw.

Step 3. Describe Ωw.

Step 4. Show that Ωw contains w.

Fix w = (a1, a2) + i(b1, b2) ∈ Ω = C
2 \ △C. Then we have two cases:

Rew 6∈ △R and Imw ∈ R
2 arbitrary, and Rew ∈ △R and Imw 6∈ △R.

4.1.1. The case Rew 6∈ △R and Imw ∈ R
2 arbitrary. Without loss of

generality, we can assume that a1 > a2.

Choosing the sets in Step 1. Our choices will depend on w. We start by
defining ε0, q ∈ R, both depending on w. We know that a1 > a2, so choose q
with

(4.2) a2 < q < a1.

Also, choose ε0 > 0 small (2) enough that

a2 < q − ε0 < q + ε0 < a1 and |q| + ε0 < 1/ε0.

We are now ready to define the sets in Step 1. For arbitrary 0 < ε < ε0,
define

K1,ε: = [q + ε, 1/ε], V1: = ]−∞, q], U1: = C \ V1,

K2,ε: = [−1/ε, q − ε], V2: = ]q,∞[, U2: = C \ V2.

Finally, define Xε ⊂ C
2 as

(4.3) Xε := (K1,ε × U2) ∪ (U1 ×K2,ε).

Applying Theorem 4.1 as described in Step 2. The idea is to apply The-
orem 4.1 to H w.r.t. the sets defined in Step 1 above.

(1) Ωw is the analogue of the set Ω in Theorem 4.1.

(2) ε0 will denote the upper bound for a parameter ε > 0 and the conditions given on
ε0 are there only to ensure that our sets, which depend on ε, are well defined. We will be
interested in the limiting case ε → 0+, thus the value of the upper bound ε0 is actually
not that important, since the conditions for ε0 are automatically satisfied for small ε.
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For j = 1, 2, let hj,ε := hUj ,Kj,ε
and

hε(z) := h1,ε(z1) + h2,ε(z2).

Our functionH is separately analytic in Xε w.r.t. the decomposition in (4.3),
and the sets in (4.3) depend only on w and ε. Thus, we can use Theorem 4.1
on H with

X : = Xε, K1: = K1,ε, U1: = U1,

K2: = K2,ε, U2: = U2.

Hence, H extends analytically to Ωw,ε ⊂ C
2 where Ωw,ε := {z ∈ U1 × U2 :

hε(z) < 1}. Observe that hε and Ωw,ε depend only on w and ε. However,
0 < ε < ε0 is arbitrary, so if

Ωw :=
⋃

0<ε<ε0

Ωw,ε,

then H extends analytically to Ωw.

Describing Ωw. We are interested in what happens when ε → 0+, so it
is natural to define

K1 := [q,∞[ and K2 := ]−∞, q].

For j = 1, 2, we also define hj := hUj ,Kj
and

h(z) := h1(z1) + h2(z2).

Lemma 4.1. With the sets and functions defined as above,

Ωw = {z ∈ U1 × U2 : h(z) < 1}.

To prove Lemma 4.1, it is enough to show that for j = 1, 2,

lim
ε→0

hj,ε(z) = hj(z).

This is proved by using the Phragmén–Lindelöf principle. See [9, Lemma 4.1]
for the details.

Showing that w ∈ Ωw. It is easy to see that

h1(x+ iy) =
1

π
|arg(x− q + iy)|,(4.4)

h2(x+ iy) = 1 −
1

π
|arg(x− q + iy)|,(4.5)

where arg(z) is the argument of z in [−π, π].

Remark 4.1. Table 1 summarizes the observations that we make from
(4.5) and (4.4) about h1 and h2.
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Table 1. Observations about the values of the functions h1 and h2

Location in (x, y)-space Value of h1(x+ iy) Value of h2(x+ iy)

x = q 1/2 1/2

x < q, i.e. x + iy is on the left
hand side of the line x = q

> 1/2 < 1/2

x > q, i.e. x+ iy is on the right
hand side of the line x = q

< 1/2 > 1/2

We know that w = (w1, w2) = (a1 + ib1, a2 + ib2) and in order to show
that w ∈ Ωw, it suffices to show that h(w) < 1. Observe that a1 > a2. Using
(4.5)–(4.4) and Remark 4.1, we get

h1(a1 + ib1) < 1/2 and h2(a2 + ib2) < 1/2.

Thus, h(w) = h1(w1) + h2(w2) < 1, i.e. w ∈ Ωw.

4.1.2. The case Rew ∈ △R and Imw 6∈ △R. The points in Ω (= C
2\△C)

that remain to be discussed are those where a1 = a2 and b1 6= b2. The
solution of the associated Dirichlet problem is symmetric w.r.t. the real
axis. This can be seen by observing the solutions directly (see (4.4)–(4.5)).
Thus, with this method, we cannot distinguish between points on △C and
points on △′

C
where

△′
C := {w ∈ C

2 : w1 = w2}.

Hence, we begin with studying points w ∈ Ω \ △′
C
, i.e. a ∈ △R and

|b1| 6= |b2|. Without loss of generality, we can assume that |b1| > |b2|. Again,
we have to choose q ∈ R and this time we know that a := a1 = a2 and
|b1| > |b2|, so we replace the choice of q in (4.2) with q > a1. The choices

of all other quantities are the same as before. Now, we have to show that
h(w) < 1. Let

α1 := |arg(a− q + ib1)|, α2 := |arg(a− q + ib2)|.

Using (4.4)–(4.5) gives us

h1(a+ ib1) = α1/π and h2(a+ ib2) = 1 − α2/π.

Thus,

h(w) = h1(w1) + h2(w) =
α1

π
+ 1 −

α2

π
= 1 −

α2 − α1

π
.

Since |b1| > |b2|, we know that α2 > α1, so h(w) < 1, i.e. w ∈ Ωw. Thus, we
have proved that H extends analytically to a neighborhood Ωw of w ∈ Ω′

with Ω′ := Ω \ △′
C
. Since w ∈ Ω′ is arbitrary, we conclude that H extends

analytically to Ω′.
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Finally, we study points w ∈ △′
C
. The bianalytic transformation

(w1, w2) 7→

(
1

2
(w1 + w2),

i

2
(w1 − w2)

)
=: (z1, z2)

maps points w ∈ △′
C

to points z where Im z = 0. Thus, by Proposition 4.1,
H extends analytically across △′

C
except at (0, 0) where the assumption in

Proposition 4.1 does not hold. Hence, H extends analytically to Ω if it is
analytic in Ω′. This concludes the proof of Theorem 4.2.

4.2. A version of Theorem 4.2 with analyticity at infinity. What we
actually need is a version of Theorem 4.2 that includes analyticity at infinity;
but first some definitions.

Definition 4.4. Define Ĉ := C ∪ {∞} and R̂ := R ∪ {∞}, i.e. Ĉ and R̂

are the usual real and complex projective spaces. We also embed R̂ into Ĉ

in the usual way, i.e. the ∞ in Ĉ is the same as in R̂.

The topologies of Ĉ and R̂ are well known and it is also well known
that Ĉ is a complex-analytic manifold. Moreover, functions defined on C or
R that extend continuously to ∞ can be defined on Ĉ and R̂, respectively.
Thus, we can talk about functions defined on subsets of Ĉ and R̂.

Definition 4.5. Let f be defined in Ĉ. Then f is analytic at ∞ if the
function ζ 7→ f(1/ζ) is analytic at ζ = 0 in the usual sense.

Definition 4.6. Let R̂
2 := R̂ × R̂ and Ĉ

2 := Ĉ × Ĉ with the product
topology. Define the “projective” versions of △R and △C as

△̂R := {x ∈ R̂
2 : x1 = x2}

and

△̂C := {z ∈ Ĉ
2 : z1 = z2}.

Remark 4.2. It is important that we see elements in R̂
2 and Ĉ

2 as
pairs of elements from R̂ and Ĉ, respectively, since it would be incorrect
and unnatural to try to introduce a group structure (such as addition or

multiplication) between the first and second coordinates for points in R̂
2

and Ĉ
2. Thus, with our definition, (∞,∞) ∈ △̂R.

There is also a geometric reason which motivates Definition 4.6 (see
Remark 4.3).

We now state and prove the following version of Theorem 4.2 with reg-
ularity at infinity.

Theorem 4.3. Assume that H : R̂
2 \ △̂R → C has the following proper-

ties:

x1 7→ H(x1, x2) extends analytically to Ĉ \ {x2} for all x2 ∈ R̂,(4.6)
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x2 7→ H(x1, x2) extends analytically to Ĉ \ {x1} for all x1 ∈ R̂.(4.7)

Then H extends analytically to Ĉ
2 \ △̂C.

P r o o f. By Theorem 4.2, H extends analytically to C
2\△C, and we need

to prove that H extends analytically to Ĉ
2 \ △̂C. Thus, if we prove that H

is analytic at (∞, z2) and (z1,∞) for all z1, z2 6= ∞, we are finished.
From (4.6) we see that for all fixed real x2 6= ∞,

z1 7→ H(z1, x2) is analytic except at z1 = x2,(4.8)

z1 7→ H(1/z1, x2) is analytic at z1 = 0,(4.9)

and

(4.10) z1 7→ H(z1,∞) is analytic for z1 6= ∞.

Now, define H̃(x1, x2) := H(1/x1, 1/x2) for all x1, x2 ∈ R; since H is defined

on R̂
2 \ △̂R, H̃ is defined on R

2 \ △R. From (4.8)–(4.9) we see that for all
x2 ∈ R,

z1 7→ H̃(z1, x2) is analytic except at z1 = x2 for all x2 6= 0,

and when x2 = 0, (4.10) shows that

z1 7→ H̃(z1, 0) is analytic except at z1 = 0.

Thus, for all fixed x2 ∈ R,

z1 7→ H̃(z1, x2) is analytic except at z1 = x2.

Similarly, (4.7) shows that for all fixed x1 ∈ R,

z2 7→ H̃(x1, z2) is analytic except at z2 = x1.

By applying Theorem 4.2, we extend H̃ to an analytic function in C
2\△C. In

particular, H̃ is analytic as a function of two variables at (z1, 0) and (0, z2)

for all z1, z2 ∈ C \ {0}. Now, H(z1, z2) = H̃(1/z1, 1/z2), so H is analytic at

(z1,∞) and (∞, z2). Hence, H extends analytically to Ĉ
2 \ △̂C.

Definition 4.7. Define the following two curves in R
2 and C

2:

ΓR := {(ξ, η) ∈ R
2 : ξ = −1/η} and ΓC := {(ξ, η) ∈ C

2 : ξ = −1/η}.

Also define their “projective” versions in R̂
2 and Ĉ

2:

(4.11)
Γ̂R: = {(ξ, η) ∈ R̂

2 : ξ = −1/η},

Γ̂C: = {(ξ, η) ∈ Ĉ
2 : ξ = −1/η}.

Remark 4.3. For the same reasons as explained in Remark 4.2, (4.11)

is the natural definition of Γ̂R and Γ̂C. There is also a geometric reason
for choosing this definition. We will see later that the geometric meaning
of ξ and η is that they parameterize points on a circle and that η and
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−1/η correspond to antipodal points. Thus, ΓR is the set where ξ and η
parameterize antipodal points on the circle, so it is geometrically natural to
define either of them as a function of the other instead of defining them as
a solution to a polynomial equation.

We now prove the result that we really need.

Corollary 4.1. Assume that G : R̂
2 \ Γ̂R → C has the following prop-

erties:

ξ 7→ G(ξ, η) extends analytically to Ĉ \ {−1/η} for all η ∈ R̂,(4.12)

η 7→ G(ξ, η) extends analytically to Ĉ \ {−1/ξ} for all ξ ∈ R̂.(4.13)

Then G extends analytically to Ĉ
2 \ Γ̂C.

P r o o f. The mapping (ξ, η) 7→ (ξ,−1/η) maps the curve Γ̂C in Ĉ
2 to the

curve △̂C in Ĉ
2. Moreover, this mapping is bianalytic in Ĉ

2, and it trans-
forms the conditions stated in the corollary into the corresponding conditions
of Theorem 4.3. Thus, the corollary follows directly from Theorem 4.3.

5. Proof of Theorems 3.1 and 3.2. First of all, the existence of F
follows immediately from (3.1). Thus, there exists a function F : KC

µ → C

such that

(5.1) f(ω, it) = F (i(tω + µω⊥)).

5.1. Geometric observations. We begin with some geometric observa-
tions. The main observation is a relationship between the set of lines in L
and the set of points in Kµ. We have the following two situations:

1. Given x ∈ K◦
µ, we can find ω, σ ∈ S1 and t ∈ R such that

x = µω⊥ + tω = µσ⊥ − tσ,

i.e. ℓω, ℓσ ∈ L and x ∈ ℓω ∩ ℓσ. Then one can easily show that

(5.2)

ω =
tx− µx⊥

|x|2
,

σ =
−tx− µx⊥

|x|2
,

t2 = |x|2 − µ2.

2. Given ω, σ ∈ S1 we find x ∈ K◦
µ such that x ∈ ℓω ∩ ℓσ: using (5.2) we

can show that

(5.3) x = µ
(ω + σ)⊥

1 + ω · σ
.

5.2. Proof of Theorem 3.1. Our strategy is to relate the present extension
problem to the one considered in Corollary 4.1. This relation is established
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by choosing a new way to represent the lines in L that only involves rational
functions.

The geometric observation above shows that for each x ∈ Kµ there
exist exactly two points on the circle corresponding to the lines in L that
pass through x. Thus, by choosing a parameterization of the points on the
circle, we have a parameterization of the elements in L. The idea is to
choose a rational parameterization of the points on the circle. Thus, define
ξ := tan(α/2) and

(5.4) ω := (cosα, sinα) =

(
1 − ξ2

1 + ξ2
,

2ξ

1 + ξ2

)
.

Let ℓ(ξ) denote the line ℓω where ξ corresponds to ω by (5.4). Then we can
write L = {ℓ(ξ)}ξ∈R where

(5.5) ℓ(ξ) : t 7→ t

(
1 − ξ2

1 + ξ2
,

2ξ

1 + ξ2

)
+ µ

(
−2ξ

1 + ξ2
,
1 − ξ2

1 + ξ2

)
.

Now, define the map ϕ : R
2 → KC

µ as follows:

ϕ(ξ, η) := ix where {x} := ℓ(ξ) ∩ ℓ(η).

Thus, ϕ is the mapping that expresses the relationship between elements in
L, when parameterized by ξ, and points in KC

µ . Let us explicitly write down
ϕ in terms of ξ and η.

If x ∈ K◦
µ, there are exactly two elements ℓω, ℓσ ∈ L such that x ∈ ℓω∩ℓσ,

and if ξ and η correspond to ω and σ as in (5.4), then by (5.3) and a little
computation,

(5.6) x =
−µ

1 + ξη
(ξ + η, ξη − 1).

Thus,

(5.7) ϕ(ξ, η) =
−iµ

1 + ξη
(ξ + η, ξη − 1).

Observe that ϕ is naturally defined on Ĉ
2 \ Γ̂C, so we will consider it as a

map from Ĉ
2 \ Γ̂C to Ĉ

2.
Let G := F ◦ ϕ; we start by extending G. It is here that we relate our

extension problem to the one treated in Corollary 4.1.

5.2.1. Proving that G is analytic in Ĉ
2 \ Γ̂C. We know that G is defined

in R̂
2 \ Γ̂R and we need to prove that G is separately analytic also at infinity,

i.e. that (4.12) and (4.13) of Corollary 4.1 hold.
Let us show that (4.13) holds, i.e. Gξ(η) := G(ξ, η) extends analytically

to Ĉ \ {−1/ξ} for all ξ ∈ R̂. Fix ξ ∈ R̂ and let η vary. Geometrically, this
corresponds to fixing the line ℓ(ξ) and letting ℓ(η) vary. When η varies,
we are moving along ℓ(ξ), which is the same as varying t, where t is the
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natural parameter on ℓ(ξ). We know that ζ 7→ f(ω, ζ) is an entire function
for all ω ∈ S1, in particular t 7→ f(ω, it) extends to an entire function for
all ω ∈ S1. To use this, we need to find a relationship between t and η
(remember that ξ is fixed). But x = tω+µω⊥, so taking the scalar product
of this expression with ω gives t = x · ω. Now, by (5.3) and (5.4), we get

t = µ
ξ − η

1 + ξη
.

Thus, for fixed ξ, the relationship between t and η is expressed by a rational
function. It follows that Gξ can be extended to an analytic function on all of

Ĉ except at the point η = −1/ξ. Note that η = ∞ corresponds to t = −1/ξ,
thus Gξ is also analytic at η = ∞ as long as ξ 6= 0. When ξ = ∞, the
relationship between t and η takes the form t = 1/η. Hence, G∞ is analytic

in all of Ĉ except at η = 0.

Thus, G satisfies (4.13) and the proof of (4.12) is similar. By Corol-

lary 4.1, G extends to an analytic function in Ĉ
2 \ Γ̂C.

5.2.2. Proving that F is entire in C
2. Since G is symmetric, F is well

defined by the relation G = F ◦ϕ. To get information about F from G, one
would like to invert ϕ. This can be done locally, and we will show that F
is analytic at z ∈ C

2 in each of the cases listed below.

Case 1: z ∈ ϕ(C2 \ △C).

Case 2: z ∈ ϕ(△C).

Case 3: z 6∈ ϕ(C2).

Observe that C
2 ∩ ϕ(ΓC) = ∅, so it is enough to invert ϕ at points

(ξ, η) ∈ Ĉ
2 \ Γ̂C.

Proof that F is analytic at z in Case 1. The determinant of the Jacobian
matrix of ϕ at (ξ, η) is given by

2µ2(η − ξ)

(1 + ξη)3
,

which is non-zero outside △C. Thus, by the implicit function theorem and
the analyticity of G in (ξ, η) ∈ C

2 \ ΓC, we conclude that F is analytic at
z ∈ ϕ(C2 \ △C).

Proof that F is analytic at z in Case 2. We will show that ϕ is locally
a fold near points of △C. Let π(p, q) := (p, q2) denote the usual fold in the
second variable. We also define φ(p, q) := (p+ q, p− q). Then

ϕ ◦ φ(p, q) =
−iµ

1 + p2 − q2
(2p, p2 − q2 − 1)
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so ϕ ◦ φ = ψ ◦ π where

ψ(w) :=
−iµ

1 + w2
1 − w2

(2w1, w
2
1 − w2 − 1).

Now, let (ξ, η) ∈ △C \ ΓC be arbitrary. We know that G is analytic at

(ξ, η), so if G̃ := G ◦ φ, then G̃ is analytic at points (p, q) ∈ φ−1(△C \ ΓC).

G is also symmetric, which implies that G̃ is an even function in the second
variable q. Thus, there exists a function F̃ such that

G̃ = F̃ ◦ π,

and F̃ is analytic at (p, q) ∈ φ−1(△C \ ΓC). Since

G = F ◦ ϕ, ϕ ◦ φ = ψ ◦ π, and G̃ = G ◦ φ,

we get F̃ = F ◦ ψ. Points (ξ, η) ∈ △C \ ΓC correspond to points w =
(0, w2) = (0, η), and by the implicit function theorem ψ is locally invertible
near (0, w2). Thus, F is analytic at z ∈ ϕ(△C).

Proof that F is analytic at z in Case 3. Here we use the analyticity of G
at certain points at infinity, and the fact that ϕ is locally invertible there.

Observe that the points we are interested in are of the form z = (z1,−iµ).

Then we seek points (ξ, η) ∈ Ĉ
2 \ C

2 where ϕ is invertible and such that
(z1,−iµ) = ϕ(ξ, η). More precisely, if ξ′ = 1/ξ, then the determinant of the
Jacobian matrix of ϕ in the variables (ξ′, η) is given by

2µ2(1 − ξ′η)

(ξ′ + η)3
.

Since z = (z1,−iµ) corresponds to ξ′ = 0 and η = −iµ/z1, the determinant
is 2µ2/η3 at (0, η), which is non-zero when η 6= ∞. Thus, ϕ is locally
invertible near (ξ′, η) = (0, η), which corresponds to (ξ, η) = (∞, η). Our

assumption on the analyticity of G at points in Ĉ
2 \ Γ̂C implies that F is

analytic at z = (z1,−iµ) when z1 6= 0. Since (0,−iµ) is the only point
where F might not be analytic, it is removable, i.e. F extends analytically
to (0,−iµ). Thus F is analytic at all points z in Case 3.

We have shown that F is an entire function in C
2. This concludes the

proof of Theorem 3.1.

5.3. Proof of Theorem 3.2. Fix N ∈ N. From (3.3) we know that there
is a constant CN > 0 (independent of ω) and r > 0 such that

|F (ζω + iµω⊥)| ≤ CN (1 + |ζ|)−Ner|Im ζ|.

But

1 + |ζω + iµω⊥| ≤ 1 + |ζ| + µ ≤ (1 + µ)(1 + |ζ|),

|Im(ζω + iµω⊥)| ≥ |Im ζ|,
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so for z ∈Mµ there exists C1,N > 0 (depending only on N) such that

(5.8) |F (z)| ≤ C1,N (1 + |z|)−Ner|Im z|.

We want to prove that F satisfies (5.8) (with a different constant) on all
of C

2. By analyticity, it is enough to show that (5.8) holds outside a fixed
bounded set in C

2.

5.3.1. Extending inequality (5.8 ) to a slightly larger set. We begin with

showing that (5.8) holds on a slightly larger set, M̃µ (to be defined below),
which is easier to work with. For |z| ≥ µ, it is easy to show that the condition
z = x+ iy ∈Mµ is equivalent to

(5.9) |y · x⊥| = µ|x|.

If we define M̃µ as the set of points z ∈ C
2 satisfying (5.9), then M̃µ differs

from Mµ by a bounded set (3), and it follows that F must satisfy (5.8) on

M̃µ.

5.3.2. Showing that F is of exponential type on C
2. Our goal here is to

show that F is of exponential type on C
2. Let us begin with some notation.

For z = x+ iy ∈ C
2, define

̺(z) := Im(z1z2) = y · x⊥

and observe that the set {z ∈ C
2 : ̺(z) = 0} equals

CR
2 := {ζx ∈ C

2 : x ∈ R
2 and ζ ∈ C}.

CR
2 is sometimes called the Beurling cone and it divides C

2 into two com-
ponents.

To prove that F is of exponential type, we apply the maximum principle
to the restriction of F to a suitably chosen complex line in C

2 passing
through an arbitrary point z0. To be more precise, if w ∈ C

2, define ℓw,z ⊂
C

2 as the complex line in C
2 through z with complex direction w, i.e.

ℓw,z := {z + ζw ∈ C
2 : ζ ∈ C}.

Without loss of generality, we can assume that ̺(z0) < 0. As already noted,
the idea is to choose (4) the line ℓw,z0

, i.e. choose w ∈ C
2, that is not parallel

to the “cone” M̃µ. Then z0 is contained in a component of ℓw,z0
\ M̃µ, and

we can apply the maximum principle to F on this component to show that
(5.14) holds at z0. Since z0 ∈ C

2 \ M̃µ is arbitrary, and since (5.14) also

holds at points in M̃µ, we conclude that F is of exponential type in C
2.

Observe that if z0, w ∈ C
2 where w 6= 0 and if z0 and w lie in different

components of C
2 \ CR

2, then the component in ℓw,z0
\ CR

2 containing z0

(3) One can show that M̃µ =Mµ ∪ {x+ iy ∈ C
2 : x = 0 and |y| < µ}.

(4) The choice of w must of course be independent of z0. Actually, the direction of w
may depend on z0, the important fact is that w does not depend on the norm of z0.
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is bounded. This follows from the observation that

̺(z0 + ζw) = |ζ|2̺(w + ζ−1z0)(5.10)

= |ζ|2(̺(w) +O(|ζ|−1)) as |ζ| → ∞,

and the fact that ̺(z0) and ̺(w) have different signs. Define (5)

̺µ(z) := ̺(z) − µ|x| where z = x+ iy, so {z ∈ C
2 : ̺µ(z) = 0} ⊂ M̃µ.

Choose w so that ̺(w) > 0 (take e.g. w := (1, i)). Noting that ̺µ(z)−̺(z) =
O(|z|) as |z| → ∞, and using (5.10) we see that the set

(5.11) Ω−
w,z0

:= {z0 + ζw ∈ C
2 : ζ ∈ C and ̺µ(z0 + ζw) < 0} ⊂ ℓw,z0

is bounded. Thus, by the maximum principle,

|F (z0)| ≤ max
z∈∂Ω

−

w,z0

|F (z)|.

Since ∂Ω−
w,z0

⊂ M̃µ, we know that (5.8) holds at all points of ∂Ω−
w,z0

, so for

z0 ∈ C
2 \ M̃µ, there exists z ∈ ∂Ω−

w,z0
such that

(5.12) |F (z0)| ≤ C1,0e
r|z| with C1,0 > 0 as in (5.8).

The lemma below simply states the following. Let z0 6∈ M̃µ and z ∈

ℓw,z0
∩ M̃µ where we have chosen w as described before. Then |z0| is of the

same order of magnitude as |z|.
This is rather easy to see for the case where we replace our “cone”

M̃µ with the Beurling cone. The proof of the lemma can be found in [9,
Lemma 5.1].

Lemma 5.1. Let z = z0+ζw where |w| ≥ 1, |z0| ≥ 1, ̺(z0) < 0, ̺(w) > 0
and ̺µ(z) = 0. Then there exist constants C1, C2 > 0, depending only on

w, such that

(5.13) C1|z0| ≤ |z| ≤ C2|z0|.

Using Lemma 5.1 in inequality (5.12) shows that

(5.14) |F (z0)| ≤ C1,0e
C2r|z0|.

Thus, F is of exponential type.

5.3.3. Estimating entire functions of exponential type. We begin with
stating the following version of the Phragmén–Lindelöf principle in C

n.

Theorem 5.1. Let u ∈ PSH(Cn,R) and assume that for some constants

C3, C4, C5 > 0:

(5) When ̺(z0) > 0, we define ̺µ(z) := ̺(z) + µ|x| and since {z ∈ C
2 : ̺µ(z) = 0} ⊂

M̃µ, we can argue similarly.
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1. u(x) ≤ C3 for all x ∈ R
n,

2. u(z) ≤ C4 + C5|z| for all z ∈ C
n.

Then u(z) ≤ C3 + C5|Im z| for all z ∈ C
n.

P r o o f. Let H
+ := {ζ ∈ C : Im z > 0}. The following 1-variable ver-

sion of Theorem 5.1 is a Phragmén–Lindelöf principle in C (see e.g. [9,
Lemma 5.3], or [4, exercise 18, p. 477]).

Lemma 5.2. Let u ∈ SH(H+,R) satisfy the following :

1. lim supζ→s u(ζ) ≤ C3 for all s ∈ R,

2. u(ζ) ≤ C4 + C5|ζ| for ζ ∈ H
+.

Then u(ζ) ≤ C3 + C5 Im ζ for ζ ∈ H
+.

The proof of Theorem 5.1 is now rather easy. Let x, y ∈ R
n and define

ux,y : C → R as

ux,y(ζ) := u(x+ ζy).

Then ux,y ∈ SH(C,R), ux,y(s) ≤ C3 for s ∈ R and

ux,y(ζ) = u(x+ζy) ≤ C4 +C5|x+ζy| ≤ C4 +C5|y| · |ζ|+C5|x| = C7 +C6|ζ|,

where C6 := C5|y| and C7 := C4 + C5|x|. Lemma 5.2 now implies that

ux,y(ζ) ≤ C3 + C6|Im ζ| = C3 + C5|y| · |Im ζ|.

Note that the constant C7, which depends on x and can be very large,
disappears. Let ζ = i, which gives

u(x+ iy) = ux,y(i) ≤ C3 + C5|y|

and concludes the proof of Theorem 5.1.

For N ∈ N, define FN : C
2 → C as FN (z) := zN

1 F (z). Since F ∈
O(C2,C), we have FN ∈ O(C2,C).

We know that (5.8) holds on M̃µ and that (5.14) holds in C
2, so

(5.15) |FN (z)| ≤ C1,Ne
r|Im z| for all z ∈ M̃µ,

and there exists r′ > 0 (slightly larger than C2r) such that

(5.16) |FN (z0)| ≤ C2,Ne
r′|z0| for all z0 ∈ C

2.

Now, define the 2-dimensional submanifold Mµ,0 ⊂Mµ as

Mµ,0 := {sω + iµω⊥ ∈ C
2 : s ∈ R and ω ∈ S1}.

Then (5.15) implies in particular that FN is uniformly bounded on Mµ,0,
i.e.

(5.17) |FN (z)| ≤ C1,N for all z ∈Mµ,0.
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Lemma 5.3. Let FN be as above. Then

(5.18) |FN (x)| ≤ C1,N for all x ∈ R
2.

From Lemma 5.3 we deduce that inequality (5.17) above implies that
FN is uniformly bounded on R

2. The idea of the proof is the following.
Construct an analytic disc attached to Mµ,0 for which the intersection with
R

2 is a circle centered at the origin with arbitrarily large radius. Thus, one
can apply the maximum principle on the circle to estimate FN at points in
R

2. The proof can be found in [9, Lemma 5.2].
Define uN (z) := log |FN (z)|. Combining (5.16) with (5.18) allows us to

apply Theorem 5.1 to uN (6). Then

uN (z) ≤ C3 + C5|Im z| = logC1,N + r′|Im z| for all z ∈ C
2,

i.e.

|FN (z)| ≤ C1,Ne
r′|Im z| for all z ∈ C

2.

Observe that for z ∈ C
2 with |z1| ≥ 1 and |z2| ≤ |z1|,

1 + |z| ≤ 1 + |z1| + |z2| ≤ 3|z1|

so

|z1|
−N ≤ 3N (1 + |z|)−N .

Thus, for such z ∈ C
2,

(5.19) |F (z)| = |z1|
−N |FN (z)| ≤ 3N (1 + |z|)−N |FN (z)|.

Now, defining FN (z) := zN
2 F (z) and repeating the above arguments, we

find that the inequality in (5.19) also holds for z ∈ C
2 where |z2| ≥ 1 and

|z1| ≤ |z2|. Thus, for z ∈ C
2 outside a fixed bounded set,

|F (z)| ≤ 3NC1,N(1 + |z|)−Ner′|Im z|

= C ′
N (1 + |z|)−Ner′|Im z| for all z ∈ C

2

with C ′
N := 3NC1,N . This concludes the proof of Theorem 3.2.
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