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On a problem of Seiberg and Witten

by David E. Barrett (Ann Arbor, Mich.)

Abstract. We describe alternate methods of solution for a model arising in the work of
Seiberg and Witten on N=2 supersymmetric Yang–Mills theory and provide a complete
argument for the characterization put forth by Argyres, Faraggi, and Shapere of the curve
Im aD/a = 0.

1. The problem. In their work on N = 2 supersymmetric Yang–Mills
theory, Seiberg and Witten pose the following problem [SW, §6].

Problem. Find a holomorphic section
(

aD(u)

a(u)

)
of the flat C

2 bundle

over C \ {±1} with holonomy

(1.1)

(
−1 2
0 −1

)
counterclockwise about u = ∞,

(
1 0
−2 1

)
counterclockwise about u = 1,

(
−1 2
−2 3

)
counterclockwise about u = −1

satisfying the asymptotics
(
aD(u)
a(u)

)
≈

( i
π

√
2u log u√

2u

)
near u = ∞,

(
aD(u)
a(u)

)
≈

(
c+(u− 1)

a+ + i
π
c+(u− 1) log(u− 1)

)
near u = 1,

(1.2)
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(
aD(u)
a(u)

)
≈

(
a(u) + c−(u+ 1)

a− + i
π
c−(u+ 1) log(u+ 1)

)
near u = −1(1.2)cont.

and the positivity condition

(1.3) τ :=
daD

da
has positive imaginary part.

(In (1.2) we are viewing
(

aD(u)

a(u)

)
as a multi-valued section of the triv-

ial C
2 bundle over C \ {±1}. Also, see §2 below for an indication of the

significance of the matrices in (1.1).)

Seiberg and Witten use elliptic integrals to construct a solution of this
problem. Bilal [Bil] uses a differential equations approach to construct the
same solution.

In the physical application of this problem the “curve of marginal stabil-
ity” γ defined by ImaD/a = 0 plays an important role. Seiberg and Witten
suggest that this curve should look “something like |u| = 1.” Fayyazuddin
[Fay] shows that γ is a disjoint union of simple closed curves and that the
puncture points ±1 lie in the same component of γ. Argyres, Faraggi, and
Shapere [AFS] provide a conformal mapping interpretation of γ implying
that γ is indeed a single simple closed curve. (Their argument relies on an
ad hoc assumption that a fundamental region maps onto a union of deck
transformations of the same fundamental region.)

In §§2 through 7 below we provide an alternate method of solving the
problem by applying very elementary complex-analytic arguments to suit-
ably chosen single-valued mappings and differentials manufactured from the

section
(

aD(u)

a(u)

)
. §§5, 10, and 11 combine to provide another method of so-

lution via conformal mapping. Both methods should in particular serve to
clarify uniqueness issues connected with this problem.

In §9 we show that aD and a must indeed satisfy the differential equation
used by Bilal and several other authors. §11 below contains a complete
argument for the Argyres–Faraggi–Shapere description of γ.

2. The ratio τ . The domain C \ {±1} is covered by the upper half-
plane {ζ : Im ζ > 0}; this covering can be chosen to map the hyperbolic
triangle with vertices 0, 1,∞ to the lower half-plane with 0, 1,∞ mapping
respectively to 1,−1,∞ [Ahl, 7.3.5].

aD, a, and τ can be viewed as single-valued functions of ζ. The problem is

set so that each matrix
(

α β

γ δ

)
in the holonomy subgroup of SL(2,R) comes

from the corresponding deck transformation ζ 7→ (αζ + β)/(γζ + δ). Thus
the deck transformation ζ 7→ (αζ + β)/(γζ + δ) takes τ to (ατ + β)/(γτ + δ).
In view of (1.3) it follows that τ induces a self-map of C \ {±1} homotopic
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to the identity. But such a self-map must in fact be the identity (see Ap-
pendix A) so that ζ and τ are related by a deck transformation. But the
asymptotic conditions (1.2) require ζ and τ to agree at 1,−1,∞, so that
finally τ ≡ ζ.

Henceforth we let τ denote the covering variable, but in the spirit of
[SW] we continue to write aD and a as multiple-valued functions of u.

3. The differentials daD, da. Now we can decouple the transforma-
tion laws for daD and da. In particular, da transforms to γdaD + δda =
(γτ + δ)da as dτ transforms to dατ+β

γτ+δ = (γτ + δ)−2dτ so that da2dτ defines

a single-valued cubic differential h(u)du3 on C\{±1}. (See [Leh, IV.1.4] for
terminology.)

We have

h(u) ≈





i

2πu2
near u = ∞,

−c2+i
π(u− 1)

near u = 1,

−c2−i
π(u+ 1)

near u = −1.

Thus

c2+ = −c2− = −1

4
and h(u) =

i

2π(u2 − 1)
.

This gives

aD(U) =

U\
1

τ da =

U\
1

τ

√
i

2π(u2 − 1)(dτ/du)
du

with a similar formula for a.

The next three sections outline a method for representing aD and a in
terms of τ without integration.

In [SW] the positivity condition (1.3) is motivated by the requirement
that

dsSW :=
√

Im τ |da|
defines a metric on C \ {±1}. Note that

dsSW =

( |dτ |
Im τ

)−1/2

|h(u)du3|1/2;

here |dτ |/Im τ is the Poincaré metric and |h(u)du3| is the cube of an incom-
plete flat metric on C \ {±1}.
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4. The mapping aD/a. The transformation laws for
(

aD(u)

a(u)

)
guarantee

that

g(u)du :=
2adτ

aD − τa
+ d log

dτ

du

is a single-valued meromorphic differential on C \ {±1} with asymptotics

g(u) ≈





−2

u
near u = ∞,

−1

u− 1
near u = 1,

−1

u+ 1
near u = −1.

Hence g(u)du is in fact meromorphic on the Riemann sphere Ĉ := C∪{∞}.
Away from ∞,±1 the poles of g(u)du must come from zeros of aD − τa;
since d

dτ
(aD − τa) = −a, a standard computation shows that such poles

must be simple with residue −2 ordτ (aD − τa). Thus

0 =
∑

u0∈Ĉ

Res
u0

g(u)du

= Res
∞

g(u)du + Res
1
g(u)du + Res

−1
g(u)du +

∑

u0∈C\{±1}

Res
u0

g(u)du

= 2 − 1 − 1 − 2 · #(zeros of aD − τa);

hence aD − τa does not vanish on C \ {±1} and

g(u)du =
−2udu

u2 − 1
= −d log(u2 − 1).

It follows that
aD

a
= τ − 2dτ

d log
(
(u2 − 1) dτ

du

) .

5. The Wrońskian. The Wrońskian

W = adaD − aDda

is also single-valued on C \ {±1} with asymptotics

W ≈





2i

π
du near u = ∞,

c+a+du near u = 1,
c−a−du near u = −1.

Thus

c+a+ =
2i

π
= c−a− and W =

2i

π
du.
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6. The section itself. From the previous three sections we have

da2dτ =
idu3

2π(u2 − 1)
,

2adτ

aD − τa
+ d log

dτ

du
= −d log(u2 − 1)

and

(aD − τa)da =
2

iπ
du.

Thus

a =
1

2
√
dτ

(
2adτ

aD − τa

)
(aD − τa)da√

da2dτ
(6.1)

=

√
2i(u2 − 1)

πdτdu
d log

(
(u2 − 1)

dτ

du

)
,

aD =
2du

iπda
+ τa(6.2)

=

√
2i(u2 − 1)

πdτdu

(
− 2dτ + τd log

(
(u2 − 1)

dτ

du

))
.

7. Verification. Direct calculation shows that the functions a, aD de-
fined in (6.1), (6.2) satisfy the asymptotic conditions (1.2) (for the branches
set up in §2) and that they satisfy the holonomy conditions (1.1) up to sign;
to check that the signs work out correctly it suffices to examine, say, the
asymptotics of a at u = ∞ and of aD at u = 1.

To check the positivity condition (1.3) note that d(aD − τa) = −adτ so
that daD does indeed equal τda.

8. Function theory. The multiple-valued differential d(a/(aD − τa))
satisfies the asymptotics

d(a/(aD − τa)) ≈





Cdu

u2
near u = ∞,

du

iπ(u− 1)
near u = 1,

du

iπ(u+ 1)
near u = −1.

Note that due to residue considerations no single-valued differential can
satisfy these conditions (nor could such a differential exist on an amenable
covering of C \ {±1}). (Compare [Bar], [Dil], [BD].)
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9. The differential equation. Our evaluation of the Wrońskian may
be written

a
daD

du
− aD

da

du
=

2i

π
.

Differentiating with respect to u we have

a
d2aD

du2
− aD

d2a

du2
= 0

so that

1

a

d2a

du2
=

1

aD

d2aD

du2
.

The left-hand side of this equation is single-valued near u = ∞ while the
right-hand side is single-valued near u = 1, so together the two sides define
a meromorphic function φ on C \ {±1} with asymptotics

φ(u) ≈





− 1

4u2
near u = ∞,

ic+
πa+

1

u− 1
= − 1

8(u− 1)
near u = 1,

ic−
πa−

1

u− 1
=

1

8(u+ 1)
near u = −1;

in view of §4, aD and a have no common zeros and thus φ is in fact holo-
morphic on C \ {±1}. It follows that φ(u) = 1

4(1−u2) and that

d2aD

du2
=

aD

4(1 − u2)
,

d2a

du2
=

a

4(1 − u2)
.

Bilal [Bil] uses the differential equations for aD and a to represent them in
terms of hypergeometric functions; this leads in turn to the Seiberg–Witten
representation in terms of elliptic integrals. We wish to note, however, that
contrary to a statement in §6.1 of [Bil], the possibility of finding differen-
tial equations of the form a′′D = ψDaD, a

′′ = ψa (ψD and ψ single-valued)
depends on the prescribed asymptotics for aD, a, not just the holonomy con-
ditions; if aD and a are replaced, respectively, by ηaD and ηa for some η
holomorphic and non-constant on C \ {±1} then the holonomy conditions
will still hold but a′′D/aD and a′′/a will now be multiple-valued.

10. The Schwarzian derivative. Since neither d(aD/a) = W/a2 nor
d(a/aD) = −W/a2

D ever vanishes, the map

aD/a : C̃ \ {±1} → Ĉ

is unbranched and thus the Schwarzian derivative
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S =
d2

du2
log

d(aD/a)

du
− 1

2

(
d

du
log

d(aD/a)

du

)2

is holomorphic. Since all branches of aD/a are related by post-composition
with linear fractional transformations, S is single-valued on C \ {±1} [Leh,
II.1.1]. From (1.2) we have

S ≈





1

2u2
near u = ∞,

− 2ic+
πa+(u− 1)

=
1

4(u− 1)
near u = 1,

− 2ic−
πa−(u+ 1)

= − 1

4(u+ 1)
near u = −1.

Thus

S =
1

2(u2 − 1)
.

Alternately, S can be determined from the differential equations in §9 by
a standard argument [Mat], [FeBi], [Leh, II.1.2]. ([Mat] similarly uses the
differential equations to evaluate the Wrońskian.)

11. The curve

Theorem (cf. [AFS]). The map aD/a has a branch mapping the lower

half-plane onto the region

Ω := {z ∈ C : 0 < Re z < 1, Im z > 0} ∪
{
z ∈ C :

∣∣∣∣z −
1

2

∣∣∣∣ <
1

2

}
.

All branches of aD/a are obtained from this one by repeated Schwarz

reflection.
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Corollary. The curve

γ := {u ∈ C \ {±1} : (aD/a)(u) ∈ R ∪ {∞}} ∪ {±1}
is a connected simple closed curve of class C1.

Proof of Theorem. We consider a branch of aD/a on the lower half-plane
satisfying (1.2) for u near ∞. Since S is real along each of the intervals

I1 = (−∞,−1), I2 = (−1, 1), I3 = (1,∞),

this branch will map each Ij into a line or circle Cj . Examination of (1.2)
reveals that

C1 = {z : Re z = 1} ∪ {∞} and C3 = {z : Re z = 0} ∪ {∞}.
Our branch also satisfies (1.2) for u near 1. (This follows from the set-up

in §2, but we may also argue this without the use of (1.3): since aD/a
transforms like ζ, the structure of the deck group

{
ζ 7→ αζ + β

γζ + δ
: det

(
α β
γ δ

)
= 1,

(
α β
γ δ

)
≡ I mod 2

}

reveals that the only branches of aD/a satisfying

aD

a
(1) ∈ C3 ∩ (R ∪ {∞}) = {0,∞}

are those obtained by continuing the branch in (1.2) around u = 1. The
determination of C3 fixes the branch of the logarithm.)

Using (1.2) to analyze a/aD for u near 1 we find that

C2 =

{
z :

∣∣∣∣z −
1

2

∣∣∣∣ =
1

2

}
.

We saw in the previous section that aD/a has no branch points; thus,
traveling from right to left, I3 will map downwards along C3 a total of
ν3 + 1/2 times, I2 will map counterclockwise along C2 a total of ν2 + 1/2
times, and I1 will map upwards along C1 a total of ν1 + 1/2 times. An
application of the argument principle reveals that the number of branch
points of aD/a in the lower half-plane is equal to ν1 + ν2 + ν3. Since there
are no such branch points we must in fact have ν1 = ν2 = ν3 = 0. Another
application of the argument principle reveals that aD/a maps the lower
half-plane bijectively to Ω.

Standard arguments show that repeated continuation of aD/a across the
intervals Ij is accomplished by Schwarz reflection.

Remark. Differentiating aD/a we find that the Theorem and the result
of §5 are sufficient to determine aD and a. It follows that the positivity
assumption (1.3) is in fact redundant.
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Proof of Corollary. The transformation laws for aD/a show that γ is well
defined, the absence of branch points for aD/a implies that γ is smooth and
real-analytic away from ±1, and the asymptotics (1.2) reveal that γ is of
class C1 also at ±1.

The Theorem shows that γ intersects the lower half-plane in a single arc
joining the points ±1, and a Schwarz reflection argument shows that the
same holds for the upper half-plane.

Appendix A. Homotopically trivial self-maps

Theorem. If X is a Riemann surface with non-abelian fundamental

group and f : X → X is a holomorphic self-map that is homotopic to the

identity then f is in fact the identity map of X.

P r o o f. X is covered by the unit disk ∆, and the deck group of the
covering contains infinitely many non-commuting hyperbolic elements [Bea,
Thm. 5.1.3]. Then [Hub, Satz 2] implies that f is an automorphism of X
lifting to an automorphism of ∆ commuting with the deck group. But this
implies [Bea, Thm. 4.3.6] that the lifted map is the identity map of ∆ so
that f is the identity map of X.
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