On a problem of Seiberg and Witten

by David E. Barrett (Ann Arbor, Mich.)

Abstract

We describe alternate methods of solution for a model arising in the work of Seiberg and Witten on $N=2$ supersymmetric Yang-Mills theory and provide a complete argument for the characterization put forth by Argyres, Faraggi, and Shapere of the curve $\operatorname{Im} a_{D} / a=0$.

1. The problem. In their work on $N=2$ supersymmetric Yang-Mills theory, Seiberg and Witten pose the following problem [SW, §6].

Problem. Find a holomorphic section $\binom{a_{D}(u)}{a(u)}$ of the flat \mathbb{C}^{2} bundle over $\mathbb{C} \backslash\{ \pm 1\}$ with holonomy

$$
\begin{array}{ll}
\left(\begin{array}{cc}
-1 & 2 \\
0 & -1
\end{array}\right) & \text { counterclockwise about } u=\infty, \\
\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
-1 & 2 \\
-2 & 3
\end{array}\right) & \text { counterclockwise about } u=1, \\
\text { counterclockwise about } u=-1
\end{array}
$$

satisfying the asymptotics

$$
\begin{array}{ll}
\binom{a_{D}(u)}{a(u)} \approx\binom{\frac{i}{\pi} \sqrt{2 u} \log u}{\sqrt{2 u}} & \text { near } u=\infty, \tag{1.2}\\
\binom{a_{D}(u)}{a(u)} \approx\left(\begin{array}{cc}
c_{+}(u-1) & \\
a_{+}+\frac{i}{\pi} c_{+}(u-1) \log (u-1)
\end{array}\right) & \text { near } u=1,
\end{array}
$$

[^0]$(1.2)_{\text {cont. }} \quad\binom{a_{D}(u)}{a(u)} \approx\binom{a(u)+c_{-}(u+1)}{a_{-}+\frac{i}{\pi} c_{-}(u+1) \log (u+1)} \quad$ near $u=-1$
and the positivity condition
\[

$$
\begin{equation*}
\tau:=\frac{d a_{D}}{d a} \quad \text { has positive imaginary part. } \tag{1.3}
\end{equation*}
$$

\]

(In (1.2) we are viewing $\binom{a_{D}(u)}{a(u)}$ as a multi-valued section of the trivial \mathbb{C}^{2} bundle over $\mathbb{C} \backslash\{ \pm 1\}$. Also, see $\S 2$ below for an indication of the significance of the matrices in (1.1).)

Seiberg and Witten use elliptic integrals to construct a solution of this problem. Bilal [Bil] uses a differential equations approach to construct the same solution.

In the physical application of this problem the "curve of marginal stability" γ defined by $\operatorname{Im} a_{D} / a=0$ plays an important role. Seiberg and Witten suggest that this curve should look "something like $|u|=1$." Fayyazuddin [Fay] shows that γ is a disjoint union of simple closed curves and that the puncture points ± 1 lie in the same component of γ. Argyres, Faraggi, and Shapere [AFS] provide a conformal mapping interpretation of γ implying that γ is indeed a single simple closed curve. (Their argument relies on an ad hoc assumption that a fundamental region maps onto a union of deck transformations of the same fundamental region.)

In $\S \S 2$ through 7 below we provide an alternate method of solving the problem by applying very elementary complex-analytic arguments to suitably chosen single-valued mappings and differentials manufactured from the section $\binom{a_{D}(u)}{a(u)} \cdot \S \S 5,10$, and 11 combine to provide another method of solution via conformal mapping. Both methods should in particular serve to clarify uniqueness issues connected with this problem.

In $\S 9$ we show that a_{D} and a must indeed satisfy the differential equation used by Bilal and several other authors. §11 below contains a complete argument for the Argyres-Faraggi-Shapere description of γ.
2. The ratio τ. The domain $\mathbb{C} \backslash\{ \pm 1\}$ is covered by the upper halfplane $\{\zeta: \operatorname{Im} \zeta>0\}$; this covering can be chosen to map the hyperbolic triangle with vertices $0,1, \infty$ to the lower half-plane with $0,1, \infty$ mapping respectively to $1,-1, \infty$ [Ahl, 7.3.5].
a_{D}, a, and τ can be viewed as single-valued functions of ζ. The problem is set so that each matrix $\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ in the holonomy subgroup of $\operatorname{SL}(2, \mathbb{R})$ comes from the corresponding deck transformation $\zeta \mapsto(\alpha \zeta+\beta) /(\gamma \zeta+\delta)$. Thus the deck transformation $\zeta \mapsto(\alpha \zeta+\beta) /(\gamma \zeta+\delta)$ takes τ to $(\alpha \tau+\beta) /(\gamma \tau+\delta)$. In view of (1.3) it follows that τ induces a self-map of $\mathbb{C} \backslash\{ \pm 1\}$ homotopic
to the identity. But such a self-map must in fact be the identity (see Appendix A) so that ζ and τ are related by a deck transformation. But the asymptotic conditions (1.2) require ζ and τ to agree at $1,-1, \infty$, so that finally $\tau \equiv \zeta$.

Henceforth we let τ denote the covering variable, but in the spirit of [SW] we continue to write a_{D} and a as multiple-valued functions of u.
3. The differentials $d a_{D}, d a$. Now we can decouple the transformation laws for $d a_{D}$ and $d a$. In particular, $d a$ transforms to $\gamma d a_{D}+\delta d a=$ $(\gamma \tau+\delta) d a$ as $d \tau$ transforms to $\frac{\alpha \tau+\beta}{\gamma \tau+\delta}=(\gamma \tau+\delta)^{-2} d \tau$ so that $d a^{2} d \tau$ defines a single-valued cubic differential $h(u) d u^{3}$ on $\mathbb{C} \backslash\{ \pm 1\}$. (See [Leh, IV.1.4] for terminology.)

We have

$$
h(u) \approx \begin{cases}\frac{i}{2 \pi u^{2}} & \text { near } u=\infty \\ \frac{-c_{+}^{2} i}{\pi(u-1)} & \text { near } u=1 \\ \frac{-c_{-}^{2} i}{\pi(u+1)} & \text { near } u=-1\end{cases}
$$

Thus

$$
c_{+}^{2}=-c_{-}^{2}=-\frac{1}{4} \quad \text { and } \quad h(u)=\frac{i}{2 \pi\left(u^{2}-1\right)} .
$$

This gives

$$
a_{D}(U)=\int_{1}^{U} \tau d a=\int_{1}^{U} \tau \sqrt{\frac{i}{2 \pi\left(u^{2}-1\right)(d \tau / d u)}} d u
$$

with a similar formula for a.
The next three sections outline a method for representing a_{D} and a in terms of τ without integration.

In [SW] the positivity condition (1.3) is motivated by the requirement that

$$
d s_{\mathrm{SW}}:=\sqrt{\operatorname{Im} \tau}|d a|
$$

defines a metric on $\mathbb{C} \backslash\{ \pm 1\}$. Note that

$$
d s_{\mathrm{SW}}=\left(\frac{|d \tau|}{\operatorname{Im} \tau}\right)^{-1 / 2}\left|h(u) d u^{3}\right|^{1 / 2}
$$

here $|d \tau| / \operatorname{Im} \tau$ is the Poincaré metric and $\left|h(u) d u^{3}\right|$ is the cube of an incomplete flat metric on $\mathbb{C} \backslash\{ \pm 1\}$.
4. The mapping a_{D} / a. The transformation laws for $\binom{a_{D}(u)}{a(u)}$ guarantee that

$$
g(u) d u:=\frac{2 a d \tau}{a_{D}-\tau a}+d \log \frac{d \tau}{d u}
$$

is a single-valued meromorphic differential on $\mathbb{C} \backslash\{ \pm 1\}$ with asymptotics

$$
g(u) \approx \begin{cases}\frac{-2}{u} & \text { near } u=\infty \\ \frac{-1}{u-1} & \text { near } u=1 \\ \frac{-1}{u+1} & \text { near } u=-1\end{cases}
$$

Hence $g(u) d u$ is in fact meromorphic on the Riemann sphere $\widehat{\mathbb{C}}:=\mathbb{C} \cup\{\infty\}$. Away from $\infty, \pm 1$ the poles of $g(u) d u$ must come from zeros of $a_{D}-\tau a$; since $\frac{d}{d \tau}\left(a_{D}-\tau a\right)=-a$, a standard computation shows that such poles must be simple with residue $-2 \operatorname{ord}_{\tau}\left(a_{D}-\tau a\right)$. Thus

$$
\begin{aligned}
0 & =\sum_{u_{0} \in \widehat{\mathbb{C}}} \operatorname{Res}_{u_{0}} g(u) d u \\
& =\operatorname{Res}_{\infty} g(u) d u+\operatorname{Res}_{1} g(u) d u+\operatorname{Res}_{-1} g(u) d u+\sum_{u_{0} \in \mathbb{C} \backslash\{ \pm 1\}} \operatorname{Res}_{u_{0}} g(u) d u \\
& =2-1-1-2 \cdot \#\left(\text { zeros of } a_{D}-\tau a\right)
\end{aligned}
$$

hence $a_{D}-\tau a$ does not vanish on $\mathbb{C} \backslash\{ \pm 1\}$ and

$$
g(u) d u=\frac{-2 u d u}{u^{2}-1}=-d \log \left(u^{2}-1\right)
$$

It follows that

$$
\frac{a_{D}}{a}=\tau-\frac{2 d \tau}{d \log \left(\left(u^{2}-1\right) \frac{d \tau}{d u}\right)}
$$

5. The Wrońskian. The Wrońskian

$$
\mathcal{W}=a d a_{D}-a_{D} d a
$$

is also single-valued on $\mathbb{C} \backslash\{ \pm 1\}$ with asymptotics

$$
\mathcal{W} \approx \begin{cases}\frac{2 i}{\pi} d u & \text { near } u=\infty \\ c_{+} a_{+} d u & \text { near } u=1 \\ c_{-} a_{-} d u & \text { near } u=-1\end{cases}
$$

Thus

$$
c_{+} a_{+}=\frac{2 i}{\pi}=c_{-} a_{-} \quad \text { and } \quad \mathcal{W}=\frac{2 i}{\pi} d u
$$

6. The section itself. From the previous three sections we have

$$
\begin{aligned}
d a^{2} d \tau & =\frac{i d u^{3}}{2 \pi\left(u^{2}-1\right)} \\
\frac{2 a d \tau}{a_{D}-\tau a}+d \log \frac{d \tau}{d u} & =-d \log \left(u^{2}-1\right)
\end{aligned}
$$

and

$$
\left(a_{D}-\tau a\right) d a=\frac{2}{i \pi} d u
$$

Thus

$$
\begin{align*}
a & =\frac{1}{2 \sqrt{d \tau}}\left(\frac{2 a d \tau}{a_{D}-\tau a}\right) \frac{\left(a_{D}-\tau a\right) d a}{\sqrt{d a^{2} d \tau}} \tag{6.1}\\
& =\sqrt{\frac{2 i\left(u^{2}-1\right)}{\pi d \tau d u}} d \log \left(\left(u^{2}-1\right) \frac{d \tau}{d u}\right) \\
a_{D} & =\frac{2 d u}{i \pi d a}+\tau a \tag{6.2}\\
& =\sqrt{\frac{2 i\left(u^{2}-1\right)}{\pi d \tau d u}}\left(-2 d \tau+\tau d \log \left(\left(u^{2}-1\right) \frac{d \tau}{d u}\right)\right)
\end{align*}
$$

7. Verification. Direct calculation shows that the functions a, a_{D} defined in (6.1), (6.2) satisfy the asymptotic conditions (1.2) (for the branches set up in $\S 2$) and that they satisfy the holonomy conditions (1.1) up to sign; to check that the signs work out correctly it suffices to examine, say, the asymptotics of a at $u=\infty$ and of a_{D} at $u=1$.

To check the positivity condition (1.3) note that $d\left(a_{D}-\tau a\right)=-a d \tau$ so that $d a_{D}$ does indeed equal $\tau d a$.
8. Function theory. The multiple-valued differential $d\left(a /\left(a_{D}-\tau a\right)\right)$ satisfies the asymptotics

$$
d\left(a /\left(a_{D}-\tau a\right)\right) \approx \begin{cases}\frac{C d u}{u^{2}} & \text { near } u=\infty \\ \frac{d u}{i \pi(u-1)} & \text { near } u=1 \\ \frac{d u}{i \pi(u+1)} & \text { near } u=-1\end{cases}
$$

Note that due to residue considerations no single-valued differential can satisfy these conditions (nor could such a differential exist on an amenable covering of $\mathbb{C} \backslash\{ \pm 1\}$). (Compare [Bar], [Dil], [BD].)
9. The differential equation. Our evaluation of the Wrońskian may be written

$$
a \frac{d a_{D}}{d u}-a_{D} \frac{d a}{d u}=\frac{2 i}{\pi}
$$

Differentiating with respect to u we have

$$
a \frac{d^{2} a_{D}}{d u^{2}}-a_{D} \frac{d^{2} a}{d u^{2}}=0
$$

so that

$$
\frac{1}{a} \frac{d^{2} a}{d u^{2}}=\frac{1}{a_{D}} \frac{d^{2} a_{D}}{d u^{2}}
$$

The left-hand side of this equation is single-valued near $u=\infty$ while the right-hand side is single-valued near $u=1$, so together the two sides define a meromorphic function ϕ on $\mathbb{C} \backslash\{ \pm 1\}$ with asymptotics

$$
\phi(u) \approx \begin{cases}-\frac{1}{4 u^{2}} & \text { near } u=\infty \\ \frac{i c_{+}}{\pi a_{+}} \frac{1}{u-1}=-\frac{1}{8(u-1)} & \text { near } u=1 \\ \frac{i c_{-}}{\pi a_{-}} \frac{1}{u-1}=\frac{1}{8(u+1)} & \text { near } u=-1\end{cases}
$$

in view of $\S 4, a_{D}$ and a have no common zeros and thus ϕ is in fact holomorphic on $\mathbb{C} \backslash\{ \pm 1\}$. It follows that $\phi(u)=\frac{1}{4\left(1-u^{2}\right)}$ and that

$$
\frac{d^{2} a_{D}}{d u^{2}}=\frac{a_{D}}{4\left(1-u^{2}\right)}, \quad \frac{d^{2} a}{d u^{2}}=\frac{a}{4\left(1-u^{2}\right)}
$$

Bilal [Bil] uses the differential equations for a_{D} and a to represent them in terms of hypergeometric functions; this leads in turn to the Seiberg-Witten representation in terms of elliptic integrals. We wish to note, however, that contrary to a statement in $\S 6.1$ of [Bil], the possibility of finding differential equations of the form $a_{D}^{\prime \prime}=\psi_{D} a_{D}, a^{\prime \prime}=\psi a\left(\psi_{D}\right.$ and ψ single-valued) depends on the prescribed asymptotics for a_{D}, a, not just the holonomy conditions; if a_{D} and a are replaced, respectively, by ηa_{D} and ηa for some η holomorphic and non-constant on $\mathbb{C} \backslash\{ \pm 1\}$ then the holonomy conditions will still hold but $a_{D}^{\prime \prime} / a_{D}$ and $a^{\prime \prime} / a$ will now be multiple-valued.
10. The Schwarzian derivative. Since neither $d\left(a_{D} / a\right)=\mathcal{W} / a^{2}$ nor $d\left(a / a_{D}\right)=-\mathcal{W} / a_{D}^{2}$ ever vanishes, the map

$$
a_{D} / a: \widetilde{\mathbb{C}} \backslash\{ \pm 1\} \rightarrow \widehat{\mathbb{C}}
$$

is unbranched and thus the Schwarzian derivative

$$
\mathcal{S}=\frac{d^{2}}{d u^{2}} \log \frac{d\left(a_{D} / a\right)}{d u}-\frac{1}{2}\left(\frac{d}{d u} \log \frac{d\left(a_{D} / a\right)}{d u}\right)^{2}
$$

is holomorphic. Since all branches of a_{D} / a are related by post-composition with linear fractional transformations, \mathcal{S} is single-valued on $\mathbb{C} \backslash\{ \pm 1\}$ [Leh, II.1.1]. From (1.2) we have

$$
\mathcal{S} \approx \begin{cases}\frac{1}{2 u^{2}} & \text { near } u=\infty \\ -\frac{2 i c_{+}}{\pi a_{+}(u-1)}=\frac{1}{4(u-1)} & \text { near } u=1 \\ -\frac{2 i c_{-}}{\pi a_{-}(u+1)}=-\frac{1}{4(u+1)} & \text { near } u=-1\end{cases}
$$

Thus

$$
\mathcal{S}=\frac{1}{2\left(u^{2}-1\right)}
$$

Alternately, \mathcal{S} can be determined from the differential equations in $\S 9$ by a standard argument [Mat], [FeBi], [Leh, II.1.2]. ([Mat] similarly uses the differential equations to evaluate the Wrońskian.)

11. The curve

Theorem (cf. [AFS]). The map $a_{D} /$ a has a branch mapping the lower half-plane onto the region

$$
\Omega:=\{z \in \mathbb{C}: 0<\operatorname{Re} z<1, \operatorname{Im} z>0\} \cup\left\{z \in \mathbb{C}:\left|z-\frac{1}{2}\right|<\frac{1}{2}\right\} .
$$

All branches of a_{D} / a are obtained from this one by repeated Schwarz reflection.

Corollary. The curve

$$
\gamma:=\left\{u \in \mathbb{C} \backslash\{ \pm 1\}:\left(a_{D} / a\right)(u) \in \mathbb{R} \cup\{\infty\}\right\} \cup\{ \pm 1\}
$$

is a connected simple closed curve of class C^{1}.
Proof of Theorem. We consider a branch of a_{D} / a on the lower half-plane satisfying (1.2) for u near ∞. Since \mathcal{S} is real along each of the intervals

$$
I_{1}=(-\infty,-1), \quad I_{2}=(-1,1), \quad I_{3}=(1, \infty)
$$

this branch will map each I_{j} into a line or circle C_{j}. Examination of (1.2) reveals that

$$
C_{1}=\{z: \operatorname{Re} z=1\} \cup\{\infty\} \quad \text { and } \quad C_{3}=\{z: \operatorname{Re} z=0\} \cup\{\infty\}
$$

Our branch also satisfies (1.2) for u near 1. (This follows from the set-up in $\S 2$, but we may also argue this without the use of (1.3): since a_{D} / a transforms like ζ, the structure of the deck group

$$
\left\{\zeta \mapsto \frac{\alpha \zeta+\beta}{\gamma \zeta+\delta}: \operatorname{det}\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=1,\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \equiv I \bmod 2\right\}
$$

reveals that the only branches of a_{D} / a satisfying

$$
\frac{a_{D}}{a}(1) \in C_{3} \cap(\mathbb{R} \cup\{\infty\})=\{0, \infty\}
$$

are those obtained by continuing the branch in (1.2) around $u=1$. The determination of C_{3} fixes the branch of the logarithm.)

Using (1.2) to analyze a / a_{D} for u near 1 we find that

$$
C_{2}=\left\{z:\left|z-\frac{1}{2}\right|=\frac{1}{2}\right\} .
$$

We saw in the previous section that a_{D} / a has no branch points; thus, traveling from right to left, I_{3} will map downwards along C_{3} a total of $\nu_{3}+1 / 2$ times, I_{2} will map counterclockwise along C_{2} a total of $\nu_{2}+1 / 2$ times, and I_{1} will map upwards along C_{1} a total of $\nu_{1}+1 / 2$ times. An application of the argument principle reveals that the number of branch points of a_{D} / a in the lower half-plane is equal to $\nu_{1}+\nu_{2}+\nu_{3}$. Since there are no such branch points we must in fact have $\nu_{1}=\nu_{2}=\nu_{3}=0$. Another application of the argument principle reveals that a_{D} / a maps the lower half-plane bijectively to Ω.

Standard arguments show that repeated continuation of a_{D} / a across the intervals I_{j} is accomplished by Schwarz reflection.

Remark. Differentiating a_{D} / a we find that the Theorem and the result of $\S 5$ are sufficient to determine a_{D} and a. It follows that the positivity assumption (1.3) is in fact redundant.

Proof of Corollary. The transformation laws for a_{D} / a show that γ is well defined, the absence of branch points for a_{D} / a implies that γ is smooth and real-analytic away from ± 1, and the asymptotics (1.2) reveal that γ is of class C^{1} also at ± 1.

The Theorem shows that γ intersects the lower half-plane in a single arc joining the points ± 1, and a Schwarz reflection argument shows that the same holds for the upper half-plane.

Appendix A. Homotopically trivial self-maps

Theorem. If X is a Riemann surface with non-abelian fundamental group and $f: X \rightarrow X$ is a holomorphic self-map that is homotopic to the identity then f is in fact the identity map of X.

Proof. X is covered by the unit disk Δ, and the deck group of the covering contains infinitely many non-commuting hyperbolic elements [Bea, Thm. 5.1.3]. Then [Hub, Satz 2] implies that f is an automorphism of X lifting to an automorphism of Δ commuting with the deck group. But this implies [Bea, Thm. 4.3.6] that the lifted map is the identity map of Δ so that f is the identity map of X.

References

[Ahl] L. Ahlfors, Complex Analysis, 3rd ed., McGraw-Hill, 1979.
[AFS] P. Argyres, A. Faraggi, and A. Shapere, Curves of marginal stability in $N=2$ super- $Q C D$, hep-th/9505190 on WWW at URL http://xxx.lanl.gov.
[Bar] D. Barrett, Failure of averaging on multiply-connected domains, Ann. Inst. Fourier (Grenoble) 40 (1990), 357-370.
[BD] D. Barrett and J. Diller, Poincaré series and holomorphic averaging, Invent. Math. 110 (1992), 23-27.
[Bea] A. Beardon, The Geometry of Discrete Groups, Springer, 1983.
[Bil] A. Bilal, Duality in $N=2$ SUSY SU(2) Yang-Mills theory: A pedagogical introduction to the work of Seiberg and Witten, hep-th/9601007 on WWW at URL http://xxx.lanl.gov.
[Dil] J. Diller, Failure of weak holomorphic averaging on multiply connected domains, Math. Z. 217 (1994), 167-177.
[Fay] A. Fayyazuddin, Some comments on $N+2$ supersymmetric Yang-Mills, Modern Phys. Lett. A 10 (1995), 2703-2708.
[FeBi] F. Ferrari and A. Bilal, The strong-coupling spectrum of the Seiberg-Witten theory, Nuclear Phys. B 469 (1996), 387-402.
[Hub] H. Huber, Über analytische Abbildungen Riemannscher Flächer in sich, Comm. Math. Helv. 27 (1953), 1-73.
[Leh] O. Lehto, Univalent Functions and Teichmüller Spaces, Springer, 1987.
[Mat] M. Matone, Koebe $1 / 4$-theorem and inequalities in $N=2$ supersymmetric $Q C D$, Phys. Rev. D 53 (1996), 7354-7358.
D. E. Barrett
[SW] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and confinement in $N=2$ supersymmetric Yang-Mills theory, Nuclear Phys. B 426 (1994), 19-52.

Department of Mathematics
University of Michigan
Ann Arbor, Michigan 48109-1109
U.S.A

E-mail: barrett@umich.edu

Reçu par la Rédaction le 8.1.1998
Révisé le 11.5.1998

[^0]: 1991 Mathematics Subject Classification: Primary 81T60; Secondary 30F30.
 Key words and phrases: supersymmetric Yang-Mills theory, flat vector bundles, Wrońskian, Schwarzian.

 Thanks to Bo Berndtsson for pointing out the relation between the Seiberg-Witten model and earlier work of Jeff Diller and the author. Thanks also to Jeff Diller for helpful conversations and to William Cherry for pointing out a mistake in an earlier version of this note. Supported in part by the National Science Foundation and MSRI.

