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The holomorphic extension of Ck CR functions on

tube submanifolds

by Al Boggess (College Station, Tex.)

Abstract. We show that a CR function of class Ck, 0≤k<∞, on a tube submanifold
of Cn holomorphically extends to the convex hull of the submanifold. The extension and
all its derivatives through order k are shown to have nontangential pointwise boundary
values on the original tube submanifold. The Ck-norm of the extension is shown to be no
bigger than the Ck-norm of the original CR function.

1. Definitions and main results. Recently, Boivin and Dwilewicz
[BD] have generalized Bochner’s Tube Theorem by showing that contin-
uous CR functions on a tube submanifold of C

n holomorphically extend
to its convex hull. In this paper, we generalize this result to CR func-
tions of class Ck, for k a nonnegative integer. The technique we use (an-
alytic discs) is different than the one used in [BD], and in the case of
bounded CR functions provides an estimate on the norm of the exten-
sion.

For any submanifold S in C
n = R

2n, let Ck(S) be the space of complex-
valued functions on S with continuous derivatives through order k. We will
identify an element in Ck(S) with the restriction of an element of Ck(R2n)
to S. For f ∈ Ck(S), let

‖f‖k(S) = sup
t∈S

∑

|α|≤k

|Dαf(t)|.

Here,

Dα =
∂α1+...+α2n

∂tα1

1 . . . ∂tα2n

2n

for any multi-index α=(α1, . . . , α2n). Of course, if S is not compact, ‖f‖k(S)

could be infinite.
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We will be working in C
n = R

n + iRn with coordinates x + iy, x ∈ R
n,

y ∈ R
n. The set S of interest will be a connected tube of the form M =

N + iRn where N is a smooth submanifold of R
n (not necessarily compact).

Our main theorem is the following.

Theorem 1 (Extension Theorem). Suppose N is a connected submani-

fold of R
n, and let M = N+iRn be the tube over N . Let N̂ and M̂ = N̂+iRn

denote the interior of the convex hull of N and M , respectively. If M̂ is

nonempty then each CR function f on M of class Ck (0 ≤ k < ∞) extends

to a unique holomorphic function F on M̂ with ‖F‖
k(M̂)

≤ ‖f‖k(M).

Remark 1. To say that F extends f means that the boundary values of
F on M equal f in the following nontangential sense: let S be any convex
simplex contained in N̂ with vertex x0 ∈ N ; then

lim
S∋x→x0, y→y0

DαF (x + iy) = Dαf(x0 + iy0) for |α| ≤ k.

The above result for k = 0 with this notion of nontangential boundary values
(but without the estimate on the extension) is the main result in [BD].

Remark 2. We are not assuming ‖f‖k(M) < ∞ for the above theorem.
Of course, if ‖f‖k(M) = ∞, then the estimate on the extension is trivial.

A key result that is used in the proof of the above theorem is the following
global Ck-version of Baouendi and Treves’ Approximation Theorem for CR
functions on tubes. For completeness, we include a proof.

Theorem 2 (Approximation Theorem, [BT]). Let N be a connected sub-

manifold of R
n and let M = N + iRn be the tube over N . Let 0 ≤ k < ∞ be

an integer. If f is a CR function of class Ck on M then there exists a se-

quence of entire functions Fj on C
n such that for each compact set K ⊂ M ,

lim
j 7→∞

‖Fj − f‖k(K) = 0.

2. Proof of the Approximation Theorem. Fix any compact set
K ⊂ M . Choose R > 0 and A > 0 so that K⊂{z=x+ iy : |x|≤A, |y|≤R}.
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Choose a smooth function g depending only on y with g(y) = 1 on {|y| ≤
R + 2A + 1} and g(y) = 0 for {|y| ≥ R + 2A + 2}. For any z = x + iy, let

Tz = {x + it : t ∈ R
n}

(i.e. the tube over the point x passing through z). For z = x + iy ∈ M , let

Gε(z) =
1

εnπn/2

\
ζ∈Tz

f(ζ)g(ζ)eε−2[ζ−z]2 dζ

where dζ = dζ1 ∧ . . . ∧ dζn and where for w ∈ C
n, [w]2 = w2

1 + . . . + w2
n.

Another description of Gε is given by

Gε(z) =
1

εnπn/2

\
t∈Rn

(fg)(x + it)e−ε−2|t−y|2 dt.

Viewed this way, Gε is the convolution of fg in the tube direction with
an approximation to the identity (given by the spatial slices of the heat
kernel). Since g = 1 on K, the following lemma can easily be established
using standard techniques (e.g. see p. 13 in [SW]).

Lemma 1. Let k be a nonnegative integer and let f : M → C be of class

Ck (not necessarily CR). For the compact set K as above,

lim
ε→0

‖Gε − f‖k(K) = 0.

Since the domain of integration defining Gε(z) depends on z, this func-
tion is not, in general, analytic in z. However, if f is CR on M , then Gε

can be modified so that its domain of integration can be made independent
of z as the next lemma shows. By a translation, assume that the origin 0
belongs to N .

Lemma 2. For z ∈ C
n, let

Fε(z) =
1

εnπn/2

\
ζ∈T0

f(ζ)g(ζ)eε−2[ζ−z]2 dζ.

For each ε > 0, Fε is entire. If f is CR on M , then ‖Fε − f‖k(K) → 0 as

ε → 0.

P r o o f. Fε(z) is analytic in z in view of the following observations: the
domain of integration, T0 = {0 + it : t ∈ R

n}, is independent of z; the

kernel eε−2[it−z]2 is analytic in z and has exponential decay in t uniformly
in z belonging to a compact set in C

n; and the function t 7→ f(0 + it)g(t) is
continuous and compactly supported.

For each x ∈ N , let γ : [0, 1] → N be a smooth path which connects
0 = γ(0) to x = γ(1) (recall that N is connected by assumption). Let

T̃z = {γ(u) + it : t ∈ R
n, 0 ≤ u ≤ 1}.
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The (manifold) boundary of T̃z is Tz − T0. So by Stokes’ theorem

(1) Fε(z) = Gε(z) −
1

εnπn/2

\
ζ∈T̃z

dζ{g(ζ)f(ζ)eε−2[ζ−z]2 dζ}.

We must show the integral on the right converges to zero uniformly for
z ∈ K as ε → 0. In view of the presence of dζ = dζ1 ∧ . . . ∧ dζn, the dζ

reduces to ∂ζ in the last integral. Since f is CR, the ∂ζ only applies to g(ζ)
which has support in the set

{R + 2A + 1 ≤ |Im ζ| ≤ R + 2A + 2}.

For ζ = s + it in this set and for z = x + iy ∈ K = {z = x + iy : |x| ≤ A,
|y| ≤ R}, we have

Re[ζ − z]2 = |x − s|2 − |t − y|2 ≤ 4A2 − (2A + 1)2 ≤ −1.

Therefore, the exponential term in the integral is dominated above (in abso-

lute value) by e−ε−2

which converges to zero as ε → 0. In a similar manner,
derivatives of this term can be easily shown to converge to zero as ε → 0.
This completes the proof of the lemma.

By taking an increasing sequence of compact sets and a corresponding
decreasing sequence of ε’s, we can construct the desired sequence Fj for the
Approximation Theorem.

Remark 1. If f is bounded (or more generally if f is Lp in the tube
direction, 1 ≤ p ≤ ∞), then the integral in (1) converges to zero as R → ∞.
Thus under these assumptions, we may replace g by 1 and conclude that
Fε(z) = Gε(z) for each ε > 0.

Remark 2. Technically speaking, the proof of the above lemma assumes
that f is continuously differentiable for the Stokes theorem step (which
is not assumed if k = 0). However, Stokes’ theorem applies to currents
(in fact Stokes’ theorem becomes the definition of the exterior derivative
of a current) and so the above argument can be dualized and applied to
our context where f is assumed to be a distribution given by a continuous
function.

3. Analytic discs. To prove the Extension Theorem, we will show that
the sequence of entire functions constructed in the Approximation Theorem
converges on the interior of the convex hull of the given tube, M = N + iRn.
This is accomplished by showing that the interior of the convex hull of M
can be realized as the union of centers of analytic discs with boundaries that
are contained in M . The Mean Value Principle for analytic functions then
implies that the sequence of entire functions converges on the interior of the
convex hull of M .
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To be precise, an analytic disc is an analytic map A : D = {ζ ∈ C :
|ζ|<1} → C

n with boundary values A|{|ζ|=1} in L2({|ζ| = 1}). The bound-

ary of the analytic disc A is its restriction to the unit circle. We will often
identify the boundary of the disc with its image. The key lemma on the
existence of analytic discs for tubes is the following.

Lemma 3. Suppose e0, . . . , em are vectors in N that span a convex simplex

S with nonempty interior in R
n (m ≥ n). Then each point z = x + iy with

x ∈ S and y ∈ R
n can be realized as the center of an analytic disc, A (i.e.

z = A(ζ = 0)), whose boundary is contained in
⋃m

j=0 Tej
⊂ M . Moreover ,

(1) If

x =

m∑

j=0

λjej ∈ S with λj ≥ 0 and
∑

j

λj = 1

then the boundary of the analytic disc A(·) = A(λ, y)(·) depends continuously

on λ = (λ0, . . . , λm) and y in the L2({|ζ| = 1})-norm.

(2) Given δ > 0, there exists a constant C > 0, depending only on δ
and the vertices e0, . . . , em, such that the measure of the set {ζ : |ζ| = 1,
|Im A(λ, y)(ζ) − y| ≥ C} is less than δ.

P r o o f. To establish this lemma, we will specify the desired analytic disc
A = u + iv : D → C

n by specifying A on the boundary {e2πit : 0 ≤ t < 1}
which we identify with the unit interval I = [0, 1). Partition the unit interval
I into a disjoint union of intervals, Ij , of length λj , j = 0, . . . ,m, where
I0 = [0, λ0), I1 = [λ0, λ0 +λ1), etc. Let χIj

be the characteristic function of
the interval Ij (one on Ij , zero everywhere else). Define u : I → N by

u(t) =

m∑

j=0

ejχIj
(t).

For y ∈ R
n, let

v = v(λ, y) = T (u(λ)) + y,

where T is the Hilbert transform.

Now let A(λ, y)(e2πit) = u(λ)(t)+iv(λ, y)(t). Then A(λ, y)(ζ) for |ζ| = 1
extends analytically to {|ζ| < 1} (by the definition of the Hilbert trans-
form). Its boundary lies in

⋃m
j=0 Tej

⊂ M since ReA = u takes values in
{e0, . . . , em}.

We claim A(ζ = 0) = x+ iy, where x =
∑

j λjej . Since v = T (u)+y and
since the Hilbert transform produces the unique harmonic conjugate which
vanishes at the origin, clearly Im(A)(ζ = 0) = y. The real part, ReA(0), is
obtained by averaging its boundary values:
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Re(A)(ζ = 0) =

1\
0

u(λ)(t) dt =

m∑

j=0

1\
0

ejχIj
dt =

m∑

j=0

λjej = x.

The length of Ij is λj and so u = u(λ) depends continuously on λ =
(λ0, . . . , λm) in the L2(I)-norm. Since T : L2(I) → L2(I) is continuous,
v(λ, y)=T (u(λ, y)) also depends continuously on λ and y in the L2(I)-norm.
This establishes (1). Note, however, that T is not continuous in the sup-
norm. So Tu is unbounded near the points of discontinuity of u. To establish
(2), let t0 =0, t1, t2, . . . , tm+1 = 1 be the endpoints of the intervals I0, . . . , Im

(the discontinuities of u). By examining the kernel of the Hilbert transform
and using the fact that the Hilbert transform maps constant functions to
zero, the following estimate can easily be established:

If t 6∈

m+1⋃

j=0

{|t − tj | ≤ δ} then |(Tu)(t)| ≤ C|ln δ|

where C is a uniform constant. Since the measure of the set on the left
is 2(m + 1)δ, the second claim in Lemma 3 is established (relabeling δ as
2(m + 1)δ and C as C|ln δ|).

This completes the proof of the lemma.

4.The extension.We wish to show that the sequence of entire functions
Fj which converges to our given CR function f on M (from the Approxi-
mation Theorem) also converges uniformly on the compact subsets of the
convex hull of M . It suffices to show that the Fj are uniformly Cauchy on
the compact subsets of each tube of the form S + iRn where S is the closed
convex hull of any given set of vertices e0, . . . , en ∈ N . From here on, we fix
a set of vertices e0, . . . , en ∈ N and the resulting simplex S.

As is clear from the proof, the analytic discs constructed for the proof of
Lemma 3 are unbounded in the tube (i.e. y) direction. In addition, the CR
function and the sequence of entire functions Fj may be unbounded in the
tube direction. Thus we will need the following lemma to control the growth
of f and Fj in the tube direction.

Lemma 4. There exists a nonvanishing entire function E such that

|E(z)| ≥ max{|f(z)|, |Fj (z)| : j = 0, 1, . . .}

for all z ∈
⋃n

k=0 Tek
.

We will postpone the proof of this lemma until after we complete the
proof of the Extension Theorem.

The above lemma implies that the sequence |Fj/E| is bounded by 1
on the set

⋃n
j=0 Tej

which contains the boundaries of the family of discs
constructed in Lemma 3.
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We will now show that the sequence F̃j = Fj/E is uniformly Cauchy
on any set of the form K1 = S + i{|y| ≤ C1}. Let z = x + iy be any
point in K1 and let A(λ, y) be the analytic disc given in Lemma 3 with
A(λ, y)(ζ = 0) = z. By the Mean Value Theorem

F̃j(z) =

1\
0

F̃j(A(λ, y)(e2πit)) dt.

From Lemma 3(2), for any δ > 0, there is a uniform constant C > 0 and
a set, Iδ, of measure at most δ such that |Im A(λ, y)(e2πit) − y| ≤ C for
all t ∈ [0, 1) − Iδ. Let K = S + i{|y| ≤ C + C1}. On the compact set K,

the sequence F̃j is uniformly Cauchy (from the Approximation Theorem).

Therefore, F̃j(A(λ, y)(e2πit)) is uniformly Cauchy for t in [0, 1)− Iδ. On Iδ,

|F̃j(A(λ, y)(e2πit))| ≤ 1 from Lemma 4. From this, the uniform convergence

of the F̃j on K1 easily follows.

Proof of Lemma 4. The following proof only uses the fact that f is
continuous and that Fj are continuous and converging uniformly on the
compact subsets of M (the fact that f is CR and Fj is entire is not needed).
Let ak, k = 1, 2, . . . , be a strictly increasing sequence of real numbers with
limk→∞ ak = ∞. Let S0 = {e0, . . . , en} be the set of vertices for the simplex
S and let

Mk = sup
z∈S0+i{|y|≤ak}

{|f(z)|, |Fj(z)| : j = 0, 1, . . .}.

Since the sequence Fj is converging uniformly on the compact set S0 +
i{|y| ≤ ak}, each Mk is finite. The sequence Mk is increasing. It suffices to
find an entire function, E, with |E(x + iy)| ≥ Mk+1 on ak ≤ |y| ≤ ak+1.

We first find a nonvanishing entire function of one complex variable,
E(z), with |E(0 + iy)| ≥ Mk+1 for ak ≤ |y| ≤ ak+1. To this end, let bk be
the average of ak and ak−1. Let Nk be a sequence of integer multiples of 4
so that (

|z|

bk

)Nk

≤
1

2k
for |z| ≤ ak−1

and

e(iy/bk)Nk
≥ Mk+1 for |y| ≥ ak.

Let

E(z) =
∞∏

j=1

e(z/bj)
Nj

.

The first inequality above guarantees that the infinite product defining E
converges uniformly on compact subsets of C to a nonvanishing entire func-
tion. Since the Nk are integer multiples of 4, each factor in E(z) is real and
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greater than or equal to 1 for z on the imaginary axis. The second inequality
guarantees that |E(iy)| ≥ Mk+1 on ak ≤ |y| ≤ ak+1.

Now we complete the proof of the lemma. By a complex linear change of
variables, assume that e0 is the origin and {ej : j = 1, . . . , n} is the standard
basis for R

n (i.e. ej is the vector with one in the jth component and zero

in all the rest). Let Ẽ(z1, z2, . . . , zn) = E(sin(2πz1)). Then Ẽ(z) is periodic
in z1 with period 1 and independent of z2, . . . , zn. Thus if we can show that
|E(sin(2πiy1))| ≥ Mk+1 for ak ≤ |y1| ≤ ak+1, then Ẽ will be our desired
entire function. Now for y ∈ R, sin(2πiy) = i sinh(2πy) whose magnitude
increases much faster than |y|. Since the {Mk} is an increasing sequence,
clearly the inequality |E(sin(2πiy))| ≥ Mk+1 for ak≤|y| ≤ ak+1 holds. This
completes the proof of the lemma.
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Reçu par la Rédaction le 18.12.1997
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