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Remarks on the proof of a generalized Hartogs Lemma
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Jean-Pierre Rosay (Madison, Wisc.)

Abstract. This paper is an outgrowth of a paper by the first author on a general-
ized Hartogs Lemma. We complete the discussion of the nonlinear ∂ problem ∂f/∂z =
ψ(z, f(z)). We also simplify the proofs by a different choice of Banach spaces of functions.

1. Introduction. The goal of this note is the proof of the following:

Proposition. Let F be the space of continuously differentiable functions
defined on C2, with compact support. Then for every ψ ∈ F there exists a
unique function f defined on C, tending to 0 at infinity , which is a solution
to

∂f

∂z
= ψ(z, f(z)).

This solution depends continuously on ψ ∈ F if the support of ψ is restricted
to be in a given compact set , and if we use the sup norm for f and the C1
norm for ψ.

The solution of this nonlinear ∂ problem is a crucial ingredient in [1].
However, this note presents some clarification and simplification. There are
two differences with respect to [1]: In [1], the Proposition does not appear
in this generality, and here a different choice of Banach function spaces
eliminates any hard analysis in the proof (e.g. absolutely no singular integral
operators theory is needed).

In order to better motivate this note, we briefly remind the reader of
how the above result has been used in [1]. In [1], inspired by [2], the first
author established the following theorem:

Theorem [1]. Let f be a smooth function defined on C. Assume that
f ≡ 0 for |z| ≥ 1. Let h be a holomorphic function defined on an open set
containing the union of the graph of f in C2 ({(z, f(z)) ∈ C2}) and of the
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open set V = {(z, w) ∈ C2 : |z| > 1, |w| < 1}. Then the restriction of h to V
extends holomorphically to an open set containing {(z, w) ∈ C2 : |w| < 1}.

An immediate consequence, by means of Laurent decomposition, is the
theorem which is explicitly stated in [1]:

Theorem [1]. Let U be the open unit disk in C. Let f be a continuous
function on U with values in U , and let S be its graph. Then every holo-
morphic function defined on a connected neighborhood of (∂U × U) ∪ S in
C× U extends holomorphically to the polydisk U2.

The theorems do not extend to higher dimensions as shown in [3]. The
proof of the first theorem consists in an application of the Kontinuitätssatz.
Roughly speaking, one introduces a family of functions ft, 0 ≤ t ≤ 1, defined
on C, depending continuously on t, such that: f1 = f and f0 = 0, ft tends
to 0 at infinity, and ft is holomorphic in the neighborhood of any point
(z, ft(z)) not in the open set where the function u to be extended is defined.
Such a family of functions can be defined by imposing the condition

∂ft
∂z

= tϕ(z, ft(z)), and ft(z) tends to 0 as |z| → ∞.

The function ϕ is determined on the graph of f by the fact that f1 has
to satisfy the equation, and ϕ should have a “small” support containing this
graph. The solution of the above problem (which can also be presented in
terms of deformation of almost complex structures and pseudo-holomorphic
curves) is given by the Proposition.

In fact, the functions ft should be thought of as taking values in some
hull of holomorphy, on which ϕ is to be defined, but the ∂ problem to be
solved does reduce to C2.

2. Proof of the Proposition

2.1. Uniqueness. Assume that f and g tend to 0 at infinity and satisfy
∂f/∂z = ψ(z, f(z)) and ∂g/∂z = ψ(z, g(z)). We have to show that f = g.

Set h = f − g. We immediately see that h tends to 0 at infinity, ∂h/∂z
has compact support, and for some constant C > 0,∣∣∣∣∂h∂z

∣∣∣∣ ≤ C|h|.
This implies h = 0 for the following reason: Let λ be defined by

λ(z) = −∂h/∂z
h(z)

at the points z where h(z) 6=0, and (say) λ(z)=0 if h(z)=0. Set u= 1
πz ∗ λ.

Then u is a continuous function, tending to 0 at infinity, with ∂u/∂z = λ.
The function euh is then holomorphic on the Riemann sphere, off its zero set
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(we have simply used the technique of integrating factor). By the maximum
principle, h ≡ 0.

2.2. Existence. We look for a solution to

(∗) ∂f

∂z
= ψ(z, f(z)).

There is a somewhat arbitrary choice of a Banach space of functions to be
made for f . We will consider f ∈ E , where E is the space of continuous
functions f on C, with continuous ∂ derivative in the sense of distributions,
such that f and ∂f/∂z both tend to 0 at infinity. The space E is equipped
with the norm ‖f‖ = sup(|f | + |∂f/∂z|). For f ∈ E the equation (∗) is
equivalent to

(∗∗) f =
1
πz
∗ ψ(z, f(z)).

If α is, say, a continuous function with compact support in C, the E norm
of 1

πz ∗ α is ∥∥∥∥ 1
πz
∗ α

∥∥∥∥ = sup
(∣∣∣∣ 1
πz
∗ α

∣∣∣∣ + |α|
)
.

We restrict ψ as well, somewhat arbitrarily, by requiring ψ ∈ F0, where
F0 is the space of continuously differentiable functions on C2 with support
in the unit polydisk (no loss of generality), always equipped with the C1
norm denoted by ‖ · ‖1.

Claim. For every M > 0, there exists ε > 0 such that if ψ ∈ F0 with
‖ψ‖1 ≤ M and if (∗∗) is solvable (with f in E), then for every ψ′ ∈ F0

satisfying ‖ψ − ψ′‖1 ≤ ε the equation f ′ = 1
πz ∗ ψ

′(z, f ′(z)) is solvable, and
f ′ depends continuously on ψ′.

The proposition then follows immediately. (In finitely many steps, con-
nect 0, for which the equation is trivially solvable, to ψ).

The claim follows from any precise version of the implicit function the-
orem, provided we are able to show that the map

Φ : f → f − 1
πz
∗ ψ(z, f(z)))

satisfies the following:

(a) Φ is a continuously differentiable map from the Banach space E into
itself.

(b) At each point f ∈ E , DΦ, the differential of Φ, is an invertible linear
map.

(c) DΦ depends continuously on (ψ, f) in the operator norm.
(d) Finally, related to the uniformity question: If ‖ψ‖1 ≤M and f ∈ E ,

then the operator norms of DΦ and DΦ−1 at f are bounded by a constant
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depending only on M , and for every δ > 0, there exists η > 0 depending
only on M such that if ‖ψ − ψ′‖1 ≤ η and ‖f − f ′‖ ≤ η, then the operator
norm of DΦ(f)−DΦ′(f ′) is ≤ δ.

Let us first discuss points (a)–(c). It is easy to see that Φ maps contin-
uously E into itself. The ∂ derivative of the function f − 1

πz ∗ ψ(z, f(z)) is
∂f/∂z − ψ(z, f(z)). Evaluating Φ at f + θ (think of θ as an infinitesimal
increment) leads to the differential

DΦ(f, θ) = θ − 1
πz
∗ (ψw(z, f(z)) θ(z) + ψw(z, f(z)) θ(z)).

The operator

θ → 1
πz
∗ (ψw(z, f(z)) θ(z) + ψw(z, f(z)) θ(z))

is a compact operator from E into itself. This easily follows from the fact
that any bounded set in E clearly consists of equicontinuous functions. So
DΦ is a Fredholm map of index 0, since it is the perturbation of the identity
by a compact operator. In order to check (b), it is enough to check that DΦ
is injective, i.e., to check that

θ − 1
πz
∗ (ψw(z, f(z)) θ(z) + ψw(z, f(z)) θ(z)) = 0

implies θ = 0, which has been done in 2.1, since clearly θ satisfies a differ-
ential inequality |∂θ/∂z| ≤ C|θ|. So uniqueness is absolutely crucial in the
proof of existence! (c) does not present difficulties.

Finally, we have to check (d), which is just a more precise version of (b),
given by the following lemma (which itself is just a precise version of 2.1):

Lemma. For every M > 0, there exists C > 0 such that for every θ ∈ E ,
and every continuous function χ with support in the unit disk {z ∈ C :
|z| ≤ 1} satisfying (pointwise) |χ| ≤M |θ|, we have∥∥∥∥θ − 1

πz
∗ χ

∥∥∥∥ ≥ C‖θ‖.
P r o o f. By definition of the norm, we have to show an inequality

|θ|+ |θz| ≤
1
C

(
sup

∣∣∣∣θ − 1
πz
∗ χ

∣∣∣∣ + sup |θz − χ|
)
.

Let E be the subset of C on which |θz| ≥ (M + 1)|θ|. On E, one even
gets a pointwise inequality:

|θz − χ| ≥
∣∣∣∣( 1
M + 1

+
M

M + 1

)
θz

∣∣∣∣− |χ| ≥ ∣∣∣∣ θz
M + 1

∣∣∣∣ + |Mθ| − |χ|

≥
∣∣∣∣ θz
M + 1

∣∣∣∣ ≥ |θ|.
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Off the set E, this is no longer a pointwise inequality. We use the tech-
nique of integrating factor. The function euθ is holomorphic on Ec if u is
obtained by solving ∂u/∂z = −θz/θ on Ec, u vanishing at infinity. Due to
the support condition on θz, |u| is bounded by KM (for some universal con-
stant K). By the maximum principle, the supremum of |euθ| on the set Ec

is reached on the boundary of E (necessarily nonempty). On this boundary
|θ| is dominated by

∥∥θ − 1
πz ∗ χ

∥∥, as seen just above. So |θ|, and therefore
|θz| (since we are on Ec), are bounded as desired.

2.3. Discussion of uniqueness. We have pointed out in 2.2 that unique-
ness as shown in 2.1 is crucial in the proof of existence. The failure of
uniqueness is the exact point where the proof breaks down for higher di-
mensions (for which a counterexample to the theorems is known [3]). The
failure of the uniqueness result, which would be needed in C3, is extremely
easy to see:

With notations hopefully clear: It is not true that∣∣∣∣∂h1

∂z

∣∣∣∣ ≤ C(|h1|+ |h2|) and
∣∣∣∣∂h2

∂z

∣∣∣∣ ≤ C(|h1|+ |h2|),

and vanishing at infinity, imply h1 = h2 = 0.
Indeed, take h1 = h2 = 1/z for |z| large, and simply arrange that h1 and

h2 never vanish simultaneously.
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