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In [5, 6] T. Q. T. Le, J. Murakami, T. Ohtsuki and the author gave an invariant

of three-manifolds by using the Kontsevich integral. It turns out that it contains the

order of the first homology and the Casson–Walker–Lescop invariant (C. Lescop’s gener-

alization [8] to closed 3-manifolds of the Casson–Walker invariant which is K. Walker’s

generalization [9] to rational homology 3-spheres of the Casson invariant [1] for integral

homology 3-spheres).

Since the definition in [5, 6] uses complicated integrals, it is convenient for topologists

(including the author himself) to give a combinatorial approach to our invariant. Unfor-

tunately, the author cannot give a combinatorial proof of its existence but can explain

how to calculate it without using integrals. If you can draw circles and dotted lines, you

can calculate our invariant. (Of course the author assumes you can calculate fractions.)

There is nothing new in this article; no precise definitions or proofs. If the reader is

interested in our invariant, please try our paper [6].

1991 Mathematics Subject Classification: Primary 57N10; Secondary 57M25.

Key words and phrases: Casson–Walker–Lescop invariant, Kontsevich integral, Vassiliev in-

variant, chord diagram.

The author is an EPSRC Visiting Fellow (grant number GR/K/46743) in the University of

Liverpool.

This research is supported in part by Grand-in-Aid for Scientific Research on Priority Areas

231 ‘Infinite Analysis’, the Ministry of Education, Science, Sports and Culture, Japan.

The paper is in final form and no version of it will be published elsewhere.

[243]



244 H. MURAKAMI

Acknowledgements. The author thanks the organizers of the Conference for prepar-

ing a lovely apartment for his family (Hiromi, Tomoko, and Ayumu) during their stay in

Warszawa. Thanks are also due to the Stefan Banach International Mathematical Center

for its hospitality.

1. q-tangles. In this section we introduce the notion of q-tangles (or non-associative

tangles). For more systematic treatment we refer the reader to [2]

Let B be a family of triples (B,P0, P1), where B = [0, 1]× [0, 1], P0 and P1 are sets of

n and m points on its bottom [0, 1]× {0} and top [0, 1]× {1} respectively together with

pairs of parentheses describing which points are closer.

r r r r r
r r r

( ) (( ) )

( )

An elementary q-tangle is a set of strings S in (B,P0, P1) ∈ B with ∂S ∈ [0, 1]×{0, 1},
S∩[0, 1]×{0} = P0, and S∩[0, 1]×{1} = P1 which is constructed from one of the following

types of strings by repeatedly replacing a string with some parallel parenthesized strings.
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So for example the following is also an elementary q-tangle.

· · · · · · · · · · · ·· · ·

(( ) (( ) ( )))

((( ) ( )) ( ))

A q-tangle is a composition of several elementary q-tangles. Here two elementary

q-tangles in (B,P0, P1), (B′, P ′0, P
′
1) ∈ B can be composed by identifying [0, 1]× {1} ⊂ B

and [0, 1] × {0} ⊂ B′ if P1 = P ′0. For a given framed link (link diagram modulo isotopy

and Reidemeister moves II, III), we can change it to a q-tangle. An example is given in

Figure 1.
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2. A framed link invariant Žf . In this section, we define Kontsevich’s universal

Vassiliev invariant [4] via q-tangles.

A chord diagram is a union of circles S1 with chords which are homeomorphic to an

interval I such that their boundaries are on circles. We will use solid lines for circles

and dotted lines for chords. Let A(`) be the linear span over C of chord diagrams with `

circles modulo the following 4-term relation.

-
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A(`) is graded by the number of chords.

Now for a given framed link L, lower degree terms of its Kontsevich invariant Ẑf (L) ∈
A(`) can be calculated as follows.

First we define Ẑf for elementary q-tangles. (So in this case Ẑf takes values in a

linear combination of chord diagrams on arcs rather than on circles.) We define

Ẑf
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Here orientations of arcs are irrelevant in the first two. For precise values of the first, the

second, the fifth, and the sixth, we refer the reader to [6].

If an arc is replaced with n parallel arcs we replace

6
with

66p p pp p p6︸︷︷︸
n

,

where

66
=

66
+

66
,

666
=
666

+
666

+
666

and so on.

If the orientation of an arc is reversed we put

6pppk chords
{

= (−1)k

?

ppp .

For a framed link L, we first isotope it to a q-tangle and decompose it into some

elementary q-tangles. Then Ẑf (L) is defined as the composition of Ẑf of each elementary

q-tangle. Here the composition of chord diagrams on arcs is defined by attaching arcs to

one another.

Next we define a version of Ẑf (L), Žf (L) which will be used to define a three-manifold

invariant. Put

ν = Ẑf

(
��
��
-

)

=

{ � �
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48

( � �
−
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+ · · ·

}

◦
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48

(
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+ · · ·

}

=��
��
-

+
1

24��
��
-

− 1

24��
��
-

+ · · · ,

where ◦ denotes the composition of chord diagrams. We define Žf (L) as the connect-sum

of Ẑf (L) and ` ν’s. Here we connect-sum ν one to each circle in Ẑf (L). (To connect-sum

two chord diagrams (on circles), we first cut two circles into two arcs and then connect
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them into a circle. The points where we cut circles do not matter thanks to the four-term

relation.) Note that Žf (L) is also an invariant of framed links.

3. A three-manifold invariant Λ1. In this section we describe relations on A(`) to

construct a three-manifold invariant.

We add the following two relations to make Žf invariant under the orientation revers-

ing and the second Kirby move (handle sliding) respectively.

D′ = (−1)kD

(Orientation independence relation)

and

-

�
�
�
��

p p p
=

�
�
�
��
-

�
�
�
�����

p p p
,

(KII relation)

where D′ is the chord diagram obtained from D with the orientation of a circle reversed

and k is the number of chords attached to the circle.

Using these relations we deduce the following useful relations. From the orientation

independence relation with k = 1, we have

��
��
-

= −��
��
�

and so

��
��
-

= 0.

From the KII relation with one chord, we have

-

�
�
�
�� =

�
�
�
��
-

�
�
�
����� .
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Since the right hand side equals

-
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+

-

��
��
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,

we have��
��
-

= 0. From the KII relation with three chords, we have
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(3.1)

-

��
��
-

+

-

��
��
-

+

-
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In particular, capping off the right two chords we have

-
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-

+ 2

-

��
��
-

= 0.
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So we have

��
��
-

= −1

2 ��
��
-

.

Using this relation we have from (3.1)

−1

2


-

��
��
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+

-

��
��
-

+

-

��
��
-

 = 0.

So we have (assuming that��
��
-

6= 0) the following 3-term relation.

+ + = 0.

In particular, we have

��
��
-

= −2��
��
-

.

We denote A(`) modulo the orientation independence relation and the KII relation

by A(`)
. Let Λ′1(L) the image of Žf (L) in A(`)

. Then it is proved in [6] that Λ′1(L) is

invariant under the second Kirby moves (handle slidings).

Now we must stabilize it by split union of ∞± with ∞± the trivial knot with ±1

framing. To do this we introduce more equivalence relation in A(`)
. We call D ∈ A(`)

and D′ ∈ A(`′)
are stably equivalent if DtΘ1tΘ1t· · ·tΘ1 = D′tΘ1tΘ1t· · ·tΘ1 in

A(m)
for some m, where Θ1 =��

��
-

and t denotes the disjoint union of chord diagrams.

Let A(∞)

1 denote
⋃
`≥0A

(`)
modulo stable equivalence. If we regard t as a multiplication

in A(∞)

1 , then the unit is ∅(= Θ1 = Θ1 t Θ1 = . . . ) and an element D = a∅ + . . . with

a 6= 0 is invertible with its inverse D−t. Here A(∞)

1 is graded by the number of chords

minus the number of circles. We define

Λ1(L) := 2σ0(L)
(

Λ′1(∞+)−σ+(L)t t Λ′1(∞−)−σ−(L)t t Λ′1(L)
)
∈ A(∞)

1 ,

whereD−nt is the disjoint union of n copies ofD−t, σ±(L) is the number of±-eigenvalues

of the linking matrix, and σ0(L) is the number of zeros of its eigenvalues. Now the main

theorem of [5, 6] is as follows. We put Θ2 =��
��
-

.

Theorem 3.1 Let M be a 3-manifold and L a framed link presenting M . Then

Λ1(L) defines an invariant of M and denoted by Λ1(M). Moreover let Λ1,0(M) and
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Λ1,1(M) be the coefficients of ∅(= Θ1 tΘ1 t · · · tΘ1) and Θ2(= Θ2 tΘ1 tΘ1 · · · tΘ1)

in Λ1(M) respectively. Then we have

Λ1,0(M) = |H1(M ;Z)| and Λ1,1(M) = −6λ(M),

where |H1(M ;Z)| is the order of the first homology (which is zero if it has infinite number

of elements) and λ(M) is the Casson–Walker invariant generalized by Lescop (which

equals |H1(M ;Z)|λW (M)/2 if M is a rational homology 3-sphere and λC(M) if it is

an integral homology 3-sphere with λW and λC the Walker and the Casson invariant

respectively [1, 9]).

4. Example. In this section we calculate Ẑf (K), Žf (K), and Λ1(K) up to degree two

precisely, where K is the (2, k)-torus knot with n framing (k : odd).

We decompose K as in Figure 1. Here k denotes k half-twists.

6 ?

? 6

' $
��

� �
& %

k

k − n

( ( ))

(( ) ))

(( ) ))

( ( ))

(( ) )

(( ) )

Fig. 1. (2, k)-torus knot with n framing

Then Ẑf (K) is{
6?

� �
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48

(
6?

� �
−
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� � )
+ · · ·

}

◦
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6

??6

� �
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(
6
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� �
− 6
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� � )
+ · · ·

}
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◦

{
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6
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+ · · ·
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8
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+ · · ·

}
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6
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6
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6
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6
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6
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6
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+ · · ·
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(
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6
+
6
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6
)

+ · · ·

}

◦

{
6
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6
+
n− k

2

6

??

6
+

(n− k)2

8

6

??

6
+ · · ·

}

◦

{
6?� �

?

6 − 1

48

(
6?� �

?

6 − 6?� �
?

6
)

+ · · ·

}

◦

{
?6� � − 1

48

(
?6� � −

?6� �
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+ · · ·

}
.

So we have

Ẑf (K) =��
��
-

+

(
k

2
+
n− k

2

)
��
��
-

+

(
4× 1

48
+ 2× 1

24
+

(n− k)2

8
+
k

2
× n− k

2

)
��
��
-

+

(
4×

(
− 1

48

)
+ 2×

(
− 1

24

)
+
k2

8

)
��
��
-

+ · · ·

=��
��
-

+
n

2��
��
-

+

(
n2 − k2

8
+

1

6

)
��
��
-

+

(
k2

8
− 1

6

)
��
��
-

+ · · · .
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R e m a r k 4.1 Let K be the underlying unframed knot of K and Ẑ(K) be Ẑf (K)

modulo the following framing independence relation

6
= 0.

Since the second and the third terms vanish in Ẑf (K), we have

Ẑ(K) =��
��
-

+

(
k2

8
− 1

6

)
��
��
-

+ · · · .

We will normalize it so that Ẑ(trivial knot) =��
��
-

. Let Ẑ(trivial knot)−] be the

element in A(1) modulo the framing independence relation above such that

Ẑ(trivial knot)−]]Ẑ(trivial knot) =��
��
-

.

Since

Ẑ(trivial knot) =��
��
-

− 1

24��
��
-

+ · · ·

(put k = 1 in the formula of Ẑ(K)),

Ẑ(trivial knot)−] =��
��
-

+
1

24��
��
-

+ · · · .

Therefore

Z̃(K) := Ẑ(K)]Ẑ(trivial knot)−](4.1)

=

(
��
��
-

+

(
k2

8
− 1

6

)
��
��
-

+ · · ·

)
]

(
��
��
-

+
1

24��
��
-

+ · · ·

)

=��
��
-

+
k2 − 1

8 ��
��
-

+ · · ·

gives an invariant of an (unframed) knot K which is��
��
-

if K is trivial. (This coincides

with Z̃(K) in [3].) It is well-known that its second coefficient coincides with the coefficient

of z2 in the Conway polynomial of K, which is equal to half the second derivative of the

Jones polynomial at one. (Note that type two Vassiliev invariant for knots is unique up

to constant.)

Now we return to the calculation of Žf (K). From the definition



CASSON–WALKER–LESCOP INVARIANT 253

Žf (K) = Ẑf (K)]ν

=

{
��
��
-

+
n

2��
��
-

+

(
n2 − k2

8
+

1

6

)
��
��
-

+

(
k2

8
− 1

6

)
��
��
-

+ · · ·

}

]

{
��
��
-

+
1

24��
��
-

− 1

24��
��
-

+ · · ·

}

=

{
��
��
-

+
n

2��
��
-

+

(
n2 − k2

8
+

5

24

)
��
��
-

+

(
k2

8
− 5

24

)
��
��
-

+ · · ·

}
.

Since��
��
-

= 0 and��
��
-

= −2��
��
-

in A(`)
, we have

Λ′1(K) =
n

2
Θ1 +

(
n2 − 3k2

8
+

5

8

)
Θ2 + · · · ,

where Θ1 =��
��
-

and Θ2 =��
��
-

.

Putting k = 1 and n = ±1, we have

Λ′1(∞±) = ±1

2
Θ1 +

3

8
Θ2 + · · · .

So

Λ′1(∞±)−t = ±2Θ1 −
3

2
Θ2 + · · · .

Therefore we finally have

Λ1(MK) =

{
2 sign(n)Θ1 +

3

2
Θ2 + · · ·

}
t
{
n

2
Θ1 +

(
n2 − 3k2

8
+

5

8

)
Θ2 + · · ·

}

= |n|(Θ1 tΘ1) + sign(n)

(
n2 − 3k2

4
+

5

4
− 3|n|

4

)
(Θ2 tΘ1) + · · ·

if n 6= 0 and

Λ1(MK) =

(
−3k2

4
+

5

4

)
Θ2 + · · · =

(
−3k2

4
+

5

4

)
(Θ2 tΘ1) + · · · ∈ A(∞)

1

if n = 0.

So the first coefficient (the coefficient of Θ1 t Θ1) is the order of the first homology

of MK (which is zero by definition if the homology has infinite number of elements).

Moreover from C. Lescop’s formula [8], the Casson–Walker–Lescop invariant of n-surgery

of the (2, k)-torus knot is given as

sign(n)

{
v2(K)− (|n| − 1)(|n| − 2)

24

}
,
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where sign(0) = 1 and v2(K) is the coefficient of��
��
-

in Z̃(K). From (4.1), we know

that v2(K) =
k2 − 1

8
. Therefore the second coefficient of our invariant coincides with

−6λ(MK). This confirms our Theorem for the three-manifold obtained by Dehn surgery

of the (2, k)-torus knot with n framing.

Our invariant described here was generalized to a series of invariants by T. Q. T. Le,

J. Murakami, and T. Ohtsuki [7].
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