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1. Introduction. The aim of these notes is to study the evaluation of a spin network.

The evaluation of a spin network is defined in (Penrose [1971b]). The most important

example is the evaluation of a tetrahedron which is closely related to the classical 6j-

symbol. The aim of these notes is to combine two ideas; the first is a generating function

for the classical 6j-symbols due to Schwinger, the second is the general formula for the

evaluation of a spin network given in (Kauffman and Lins [1994]). The original paper

by Schwinger was written in 1952 but not published until it appeared in (Schwinger

[1965]). A clear account of this generating function was then given in (Bargmann [1962]).

These papers compute this generating function by representing the universal enveloping

algebra of SL(2;C) by operators on a Bargmann-Fock space. The book (Kauffman and

Lins [1994]) is mainly concerned with the quantum version of the evaluation of a spin

network. However it does give a proof of Racah’s formula for the classical tetrahedron

symbol using the chromatic evaluation of the tetrahedron spin network and there is a

discussion of the chromatic evaluation of a general planar spin network. In these notes

we combine these two lines and give a generating function for the classical evaluation of

an arbitrary planar spin network. The proof we give is purely combinatorial and is based

on the chromatic evaluation; there is another proof based on the methods of Schwinger

and Bargmann.

I would like to thank John Barrett for several helpful conversations.

2. Spin networks. In this section we follow (Penrose [1971b]). A spin network is a

trivalent graph embedded in S2 together with a labelling of each edge by a non-negative

integer such that, for each vertex the three labels of the edges at the vertex form an

admissible triple. A pair of embedded graphs are equivalent if they are isotopic. A triple
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(a, b, c) of non-negative integers is admissible if a+ b+ c is even and if each of the three

integers a + b − c, a − b + c and −a + b + c is non-negative. Often the trivalent graph

embedded in S2 is the 1-skeleton of the dual cell complex of a triangulation of S2.

Let G be a trivalent graph embedded in S2 and let N (G) be obtained by taking

the boundary of a regular neighbourhood of G together with an edge for each edge of

G. The edges of N (G) are called internal edges. It is conventional to draw each edge

corresponding to an edge of G as a rectangle, or a bar. The diagram N (G) is called the

strand network associated to G. The labelling of the edges of G determines a labelling of

the edges of N (G). This is shown in Figure 1. The two sets of labels are related by the

following inverse transformations:

a = m+ n, m = (a+ b− c)/2,

b = m+ p, n = (a− b+ c)/2,

c = n+ p, p = (−a+ b+ c)/2.

The triple (a, b, c) is admissible if and only if each of m, n and p is a non-negative integer.

Also a labelling of the edges of N (G) by non-negative integers arises from an admissible

labelling of the edges of G if and only if, for each rectangle or bar, the sums of the two

labels on the two sides of the bar are equal.

p

a

b c

m n

Fig. 1:

The evaluation of a spin network is given as follows: first draw each internal edge

labelled by n as n parallel strands; then at each vertex connect the strand ends in pairs

such that no two strands associated with the same internal edge are connected. Call

a state a vertex connection at each vertex. Then the sign of a state S, ε(S), is −1 to

the power of the number of crossings and |S| is the number of closed loops. Then the

evaluation of a spin network, G, with internal edges labelled T is

Z(G; T ) =
∑

S

ε(S)(−2)|S|. (1)

Note that this evaluation does not involve division by a factor n! for each edge of G

labelled n.

For each internal edge e introduce a formal variable ze and adopt multi-index notation,

so that

T ! =
∏

e∈E(G)

T (e)! and zT =
∏

e∈E(G)

zT (e)
e

where E(G) is the set of internal edges of G. Then the object of these notes is to give,
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for each G, a formula for the exponential generating function

Z(G) =
∑

T

Z(G; T )

(

zT

T !

)

.

Example 1. Take G = O, the graph with one vertex and one edge. This is a de-

generate spin network but still has an evaluation. Then the usual evaluation of O la-

belled by n is (−1)n(n + 1); however since we have not divided by n! the evaluation is

Z(O, n) = (−1)n(n+ 1)!. This gives

Z(O) =
∑

n≥0

Z(O;n)

(

zn

n!

)

=
∑

n≥0

(−1)n(n+ 1)zn = (1 + z)−2. (2)

A multi-cycle on G is a non-empty subset of the set of edges of G such that any

vertex of G is a vertex of either zero or two elements of the subset. This is usually called

a 2-regular subgraph. Note that this subgraph is not required to be connected. Denote the

set of multi-cycles on G by Λ(G). Now each multi-cycle, l, on G can be drawn canonically

as a multi-cycle on N (G); this is illustrated in Figure 2. Hence each l ∈ Λ(G) gives a

subset, p(l), of the set of internal edges. The rule for determining this set of internal edges

is to look at each vertex of G which contains some edge of l: then this vertex contains

precisely two edges of l and these two edges determine one of the three internal edges

associated with the vertex. This set of internal edges is p(l).

Fig. 2:

A more systematic way of producing these sets of internal edges is as follows. Each

component of the complement of G ⊂ S2 gives a multi-cycle by taking the edges of G

which lie on the boundary of the component. More generally, each subset of the set of

components of the complement of G ⊂ S2 gives a multi-cycle by taking the edges of G

which lie on the boundary of an odd number of elements of the subset. Then two subsets

determine the same multi-cycle if and only if they are complementary subsets. It is clear

that if l is a cycle corresponding to a component of the complement of G ⊂ S2 then the set

of internal edges, p(l), makes up the corresponding boundary component of the regular

neighbourhood of G. Now consider a subset of the set of components of the complement

of G ⊂ S2 and take the union of the corresponding sets of internal edges. Modify this
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set of internal edges by the following two rules: if all three internal edges at a vertex are

included then remove all three of these internal edges: if two of the internal edges at a

vertex are included then replace these two internal edges by the third remaining internal

edge at the vertex. These rules at different vertices do not interact and so they can be

applied at all vertices in any order. The resulting set of internal edges is p(l).

Then the main result of these notes is:

Theorem 2. For any planar trivalent graph, G, Z(G) is given by

Z(G) =
(

1 +
∑

l∈Λ(G)

∏

e∈p(l)

ze

)−2

. (3)

This theorem is proved in the next section. Here we give two examples. Although we

give these as separate examples, in fact the θ-net is a special case of the tetrahedron as

in can be obtained from the tetrahedron by putting one of the external edge labels equal

to zero.

Example 3. The first example of this is the evaluation of the θ-net with external

edges labelled by (a, b, c), where (a, b, c) is an admissible triple and internal edges labelled

(m,n, p). The associated strand network is drawn in Figure 3. The left hand diagram

shows the labels on the internal edges; any other labelling evaluates to zero. The right

hand diagram shows the formal variables associated to each internal edge; the formal

variable associated to the internal edge labelled i, j is zij , for i = 1, 2 and j = 1, 2, 3.

2,3p

n n

p

mm 2,1

1,2

1,1

1,3

2,2

Fig. 3:

The evaluation is given by

θ(m+ n, n+ p, p+m) = (−1)(m+n+p)(m+ n+ p+ 1)!m!n!p!.

Then the generating function is

Z(θ) = (1 + z11z21 + z12z22 + z13z23)
−2.

Expanding this generating function gives

Z(θ) = (1 + z11z21 + z12z22 + z13z23)
−2

=
∑

N≥0

(−1)N (N + 1)(z11z21 + z12z22 + z13z23)
N



SPIN NETWORK EVALUATIONS 451

=
∑

N≥0

(−1)N (N + 1)
∑

m+n+p=N

(

N !

m!n!p!

)

(z11z21)
m(z12z22)

n(z13z23)
p

=
∑

m+n+p≥0

(−1)m+n+p (m+ n+ p+ 1)!

m!n!p!
(z11z21)

m(z12z22)
n(z13z23)

p

=
∑

m+n+p≥0

(−1)m+n+p(m+ n+ p+ 1)m!n!p!
(z11z21)

m(z12z22)
n(z13z23)

p

(m!n!p!)2
.

The next example is the tetrahedron symbol. The original references are (Schwinger

[1965]) (where the signs are different) and (Bargmann [1962]). The following calculation

is given in (Biedenharn and Louck [1981, 5.9 Appendix D]). This calculation shows that

the generating function for the tetrahedron symbol gives a formula equivalent to Racah’s

well-known formula for the 6j-symbol.

Example 4. The strand network associated to the tetrahedron is drawn in Figure 4.

This diagram shows the formal variables associated to each internal edge; the formal

variable associated to the internal edge labelled i, j is zij , for i = 1, 2, 3 and j = 1, 2, 3, 4.

2,23,1

3,42,4

1,2

1,3

2,33,3

1,4

3,22,1

1,1

Fig. 4:

For j = 1, 2, 3, 4 put Rj = z1jz2jz3j and for i = 1, 2, 3 put Ci = zi1zi2zi3zi4. Then the

generating function is

Z(T ) =
(

1 +
∑

j=1,2,3,4

Rj +
∑

i=1,2,3

Ci

)−2

.
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Expanding this generating function gives

Z(T ) =
(

1 +
∑

j=1,2,3,4

Rj +
∑

i=1,2,3

Ci

)−2

=
∑

N≥0

(−1)N (N + 1)
(

∑

j=1,2,3,4

Rj +
∑

i=1,2,3

Ci

)N

=
∑

N≥0

(−1)N (N + 1)
∑

|α|+|β|=N

(

N !

α!β!

)

(

∏

j=1,2,3,4

R
αj

j

)(

∏

i=1,2,3

Cβi

i

)

=
∑

α,β

(−1)(|α|+|β|) (|α|+ |β|+ 1)!

α!β!

∏

i,j

z
αj+βi

ij

where α = (α1, α2, α3, α4) and β = (β1, β2, β3) are multi-indices. The coefficient of
∏

i,j z
kij

ij /kij ! is

(

∏

i,j

kij !
)

∑

α,β:αj+βi=kij

(−1)(|α|+|β|) (|α| + |β|+ 1)!

α!β!
.

If the set of equations αj+βi = kij has no solution then the coefficient of
∏

i,j z
kij

ij /kij !

is zero. Otherwise there is a unique solution to the equations

qi − pj = kij and
∑

j

pj =
∑

i

qi.

This can be seen as follows. First sum qi − pj = kij over both i and j. This gives
∑

j

pj =
∑

i

qi =
∑

i,j

kij .

Now sum qi − pj = kij over i with j fixed and also over j with i fixed. This gives

3pj =
∑

i,j

kij −
∑

i

kij and 4qi =
∑

i,j

kij +
∑

j

kij .

Then putting (z − pj) for αj and (qi − z) for βi, the coefficient of
∏

i,j z
kij

ij /kij ! is

(

∏

i,j

kij !
)

∑

z

(−1)z(z + 1)!

(
∏

i(qi − z)!)(
∏

j(z − pj)!)
.

These two examples have the property that every multi-cycle has one component. The

simplest example which shows that we need to include multi-cycles with more than one

component is the following:

Example 5. Let G = OO, the disjoint union of two copies of O. It is clear that Z(G)

is multiplicative under disjoint union and so

Z(OO) = (1 + x)−2(1 + y)−2 = (1 + x+ y + xy)−2.

3. Chromatic evaluation. The chromatic evaluation of a spin network is defined by

a tensorial calculation. This evaluation is mentioned in (Penrose [1971a]) and is discussed

in (Moussouris [1979]) and (Kauffman and Lins [1994, Chapter 8]). Let V be a finite

dimensional vector space. Then there is a standard action of the symmetric group S(n)
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on ⊗nV , for each n > 0. Put a copy of V on each strand in the strand network and, for

each external edge labelled n, put the following anti-symmetric quasi-idempotent in the

corresponding rectangle on the strand network,
∑

σ∈S(n)

ε(σ)σ

where ε(σ) is the sign of the permutation σ. This is a quasi-idempotent and not an

idempotent as we have not divided by n!. The tensor associated to each strand of the

strand network is the identity map. Inserting these tensors and contracting in the usual

way gives the chromatic evaluation of the spin network. The first observation is that this

evaluation is also given by

ZN (G; T ) =
∑

S

ε(S)(N)|S|

where the notation is the same as in (1) and N is the dimension of V . This observa-

tion shows that the original evaluation is obtained from the chromatic evaluation by

substituting −2 for N , which is (Kauffman and Lins [1994, 8.2 Theorem 3]).

Definition 6. The chromatic generating function is defined by

ZN (G) =
∑

T

ZN (G; T )

(

zT

T !

)

.

The aim of this section is to prove the following theorem:

Theorem 7. For any planar trivalent graph, G, the chromatic generating function

ZN (G) is given by

ZN (G) =
(

1 +
∑

l∈Λ(G)

∏

e∈p(l)

ze

)N

.

Then theorem (2) is obtained as an immediate corollary by substituting −2 for N .

The proof of this theorem we give here is purely combinatorial and is based on the proof

of (Kauffman and Lins [1994, 8.4 Theorem 4]).

Example 8. The simplest illustration of this theorem is the case G = O. If the label

is n then the chromatic evaluation is

ZN (O, n) =

(

N

n

)

n!.

This gives the following chromatic generating function

ZN (O) =
∑

n≥0

ZN (O;n)

(

zn

n!

)

=
∑

n≥0

(

N

n

)

zn = (1 + z)N .

Putting −2 for N gives (2) as expected.

P r o o f. An alternative description of the chromatic evaluation is that it is the number

of diagrams which satisfy the two conditions

1. no loop can go through a given bar more than once

2. loops that share an internal edge receive different colours
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Note that with this description of the chromatic evaluation the special case of the

theorem with N = 1 is clear. For the general case: assume we are given a coloured

diagram satisfying these two conditions. Let I be the subset of the set of colours that are

actually used. Construct a function L on multi-cycles as follows. For each colour, n ∈ I,

the set of all loops coloured n is a multi-cycle. This gives a set of |I| multi-cycles and L(l)

is the number of times l occurs in this set. Note that |L| = |I| and that L determines T .

Now count the number of diagrams for a given L. The number of these diagrams is

T (L)!

(

N

|L|

)(

|L|

L

)

.

This is because there are
(

N
|L|

)

ways to choose the colours I,
(

|L|
L

)

ways to colour the

diagram once the colours have been chosen and it is shown in the proof of (Kauffman

and Lins [1994, 8.4 Theorem 4]) that there are T (L)! diagrams for a given L. We can insert

an arbitrary permutation on the strands running through any internal edge; the idea of

the proof is that any two diagrams are related by a unique insertion of a permutation on

each strand.

Hence the exponential generating function is

ZN (G) =
∑

|L|≤N

T (L)!

(

N

|L|

)(

|L|

L

)

zT (L)

T (L)!
=

∑

|L|≤N

(

N

|L|

)(

|L|

L

)

zT (L).

On the other hand,

(

1 +
∑

l∈Λ(G)

∏

e∈p(l)

ze

)N

=
N
∑

i=0

(

N

i

)

(

∑

l∈Λ(G)

∏

e∈p(l)

ze

)i

=
N
∑

i=0

(

N

i

)

∑

|L|=i

(

i

L

)

zT (L) =
∑

|L|≤N

(

N

|L|

)(

|L|

L

)

zT (L).

4. Quantum evaluation. In this article we have only been concerned with the clas-

sical evaluation of a spin network. There is also quantum evaluation, originally given in

terms of the representation theory of the quantised enveloping algebra of SU(2). This

approach also gives a tensorial description of this evaluation. An alternative description

of quantum evaluation is the main topic of the first nine chapters of (Kauffman and Lins

[1994]).

The usual classical evaluation involves division by a factor n! for each edge of G

with label n but this factor has not been included in the evaluation we have been using.

Similarly the quantum evaluation includes division by [E ]! where E is the multi-index

associated to the labels on the edges of G. If this factor is left out the quantum evaluation

gives a Laurent polynomial with integer coefficients and so it is natural to ask if this has

a combinatorial interpretation.

It is natural to ask whether theorem (2) has a q-analogue. Although the formula we

have arrived at has an obvious q-analogue this particular q-analogue is incorrect. (This

was pointed out to me by Rick Litherland.) Here we consider two particular spin networks,

the tetrahedral network and the double θ-network shown in Figure 5.
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Fig. 5:

For these two examples, there is an explicit formula for the quantum evaluation for a

general labelling. I do not know a formula for a general spin network which generalises

theorem (2) and which gives the correct answer for these two examples. Consequently,

the problem of finding a q-analogue of theorem (2) is unsolved.

The naive q-analogue of theorem (2) for the evaluation of a graph G with internal

edges labelled T is

[T ]!
∑

L:T (L)=T

(−1)|L|[|L|+ 1]!

[L]!
(4)

where for any integer n, [n]! is defined by [n]! = 0 if n < 0 and otherwise

[n]! =

n
∏

k=1

(

qk − q−k

q − q−1

)

and the notation [T ]! and [L]! is defined by

[T ]! =
∏

e∈E(G)

[T (e)]! and [L]! =
∏

l∈Λ(G)

[L(l)]!.

The formula (4) is shown to give the correct answer for the tetrahedral spin network

in (Masbaum and Vogel [1994]). This is proved by an inductive argument.

Next we discuss the double θ-network. This is the simplest spin network which is

2-connected and which has a multi-cycle with more than one component. The associated

strand network together with notation for the labels on the strands is shown in Figure 6.

If the labelling is not of this form then the evaluation is zero. Denote the common value

of a1 + b1 = a2 + b2 by n.

The quantum evaluation is given by using (Kauffman and Lins [1994, 5.1 Lemma 7

& 6.3 Corollary 2]). The result is

(−1)n+c1+c2
[n+ c1 + 1]![n+ c2 + 1]![a1]![b1]![c1]![a2]![b2]![c2]!

[n+ 1]
.

In particular, if all the labels are taken to be 1, this gives

[4]2[3][2]2. (5)

On the other hand, by theorem (2), the classical evaluation is given by the coefficient
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c

a

a

c

b

b
c

c

a

a b

b

1

1

2

2

1

1 2

2

2

21

1

Fig. 6:

of

xa1

1 xa2

2 yb11 yb22 zc11 zc22
in the formal power series expansion of

[(1 + z1)(1 + z2) + (x1 + x2)(y1 + y2)]
−2.

Then, again taking all labels to be 1, the prediction given by (4) is

[5]! + [5]!− [4]!− [4]!.

This prediction does not agree with (5) since 2([5]− 1) 6= [4][2] and so formula (4) is not

correct.
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