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Abstract. The crossed product construction is used to control in some examples the asymp-

totic behaviour of time evolution. How invariant states on a small algebra can be extended to

invariant states on a larger algebra reduces to solving an eigenvalue problem. In some cases (the

irrational rotation algebra) this eigenvalue problem has only trivial solutions and by reduction

of the subalgebra control on all invariant states can be found.

1. Introduction. When one started to develop an ergodic theory in the framework

of non-commuting systems [14] one had to assume some asymptotic behaviour of the

evolution. There is a hierarchy of assumptions starting from G-abelianness through weak

asymptotic abelianness leading to norm asymptotic abelianness. The purpose of these

assumptions is twofold: on the one hand G-abelianness guarantees that an invariant state

can be decomposed uniquely into extremal invariant states – as it is obviously true for

abelian systems. On the other hand, it allows one to characterize equilibrium systems:

these are those states where when the dynamics is locally disturbed, it is possible to find

a state in the folium that is invariant under the perturbed dynamics [6]. Here noncom-

mutativity of the observable algebra enters essentially. There is another description of

equilibrium states: [10], we demand that after an adiabatical perturbation the system

returns to its initial state. If we check what kind of asymptotic behaviour we need, we

notice that in the first case weak asymptotic abelianness is sufficient, whereas in the

second case scattering arguments were used that are based on the assumption of strong

asymptotic abelianness.

If we turn to physical models checking whether the assumption of asymptotic abelian-

ness is reasonable the only examples where we have good control on the asymptotic be-
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haviour already on the algebraic level are (quasi)free evolutions for Fermions or Bosons:

τt a(f) = a(eiht f).

For Fermions the anticommutators converge in norm to zero, which guarantees that the

commutators of even elements (observables) converge in norm to zero. Here it is the atti-

tude to consider only the even elements as relevant. This is not necessary because it can

be shown that in every invariant state the odd elements are weakly asymptotic abelian,

i.e. the expectation value of odd elements vanish. For Bosons, due to the unboundedness

of the creation- and annihilation operators we remain with strong convergence of the cor-

responding Weyl operators in every representation. If we look for physical models with

interaction we just find the XY-model [2] and the Luttinger model [9] for which we have

some information for the long time behaviour: on a subalgebra we have norm resp. strong

asymptotic abelianness but this does not carry over to the whole algebra and we have to

wonder whether we can at least save weak asymptotic abelianness.

Our strategy is to use the crossed product construction to enlarge a suitable algebra.

If we have sufficient control of the time evolution on the small algebra and sufficient

control via the crossed product on the embedding then we are able to control the time

evolution on the extended algebra: We have either to solve an algebraic cocycle equation

or an eigenvalue equation to find the set of invariant states. In both cases, when there are

only trivial solutions, i.e. if the corresponding crossed product symmetry is unbroken, or

when one can find non-trivial solutions the system is weakly asymptotically abelian.

Finally we will apply the method to the known examples: We will extend the even

Fermi algebra and we will show that there are only two extensions possible, one leading to

the full Fermi algebra, the other leading to the XY-model and some generalizations [2, 11].

Also Bosonic free systems can be extended, allowing a large variety, one corresponding to

the Luttinger model [9, 7]. Finally we shall show how for the CAT map on the irrational

rotation algebra the crossed product construction not only allows to control the extension

but in addition is so stringent that we can control the whole state [12].

2. The crossed product construction. Assume Ae is a given algebra and α an

automorphism on Ae with α2A =W ∗AW , W ∈ Ae. We define the (generalized) crossed

product as

Â = Ae
α
⊲⊳ Z(2) ⊂ Ae ⊗M2

Â =

{(
A1 A2

αA2W αA1

)
;A1, A2 ∈ Ae

}
.(1)

On Â exists an automorphism γ with γ2 = 1,

γ

(
A1 A2

αA2W αA1

)
=

(
A1 −A2

−αA2W αA1

)
(2)

so that Ae = {Â; Â ∈ Â, γÂ = Â}. Automorphisms that are inner conjugated to α, i.e.

αxA = xαAx∗, x ∈ Ae lead with Wx = xα(x)W to another algebra Âx that is unitarily
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related to Â via

Âx =

(
1 0

0 x

)
Â
(

1 0

0 x∗

)
.

Proposition 1. Assume τ is an automorphism on Âe. τ can be extended to an au-

tomorphism τ̂ on Â iff τατ−1α−1 is an inner automorphism on Ae, i.e. τατ
−1α−1A =

V AV ∗, for some V ∈ Ae. Then

τ̂

(
0 1

1 0

)
=

(
0 V

αV 0

)
.

In addition we can conclude V V ∗ = V ∗V = 1, αV = V ∗.

Rema r k 1. IfAe has trivial center, then according to the last constraint V is unique

up to a sign, which corresponds that with τ̂ , only τ̂ ◦ γ is another possible extension of

τ . Notice that τ̂ ◦ γ = γ ◦ τ̂ , i.e. γ is a symmetry of Â with respect to τ̂ .

We want to learn about the asymptotic behaviour of τ̂ if we know the asymptotic

behaviour of τ . Therefore we will assume in the following that τ is weakly asymptotically

abelian and for simplicity that W ≡ 1.

Proposition 2. Assume ω is an extremal τ invariant state on Ae.

i) There exists a unique extension ω̂ to Â satisfying ω̂ = ω̂ ◦ τ̂ = ω̂ ◦ γ. With ω(A) =

〈Ω|π(A)|Ω〉 in the GNS representation this state can be realized as
〈

Ω

0

∣∣∣∣
π(A1) π(A2)

π(αA2W ) π(αA1)

∣∣∣∣
Ω

0

〉
.

ii) If ω1 is another extension then

ω1 ≤ 2ω̂ = ω1 + ω1 ◦ γ.
iii) If πω and πω ◦ α are disjoint then

π
ω̂
(Â)′ =

{(
A′ 0

0 A′

)
, A′ ∈ πω(Ae)

′

}
.

iv) If πω and πω ◦ α are unitarily equivalent , i.e.

πω(αA) = Xπω(A)X
∗, X ∈ B(Hω), X unitary, X2 = 1,

then

π
ω̂
(Â)′ =

{(
A′

1 A′
2X

A′
2X A′

1

)
, A′

1, A
′
2 ∈ πω(Ae)

′

}
.

P r o o f. See [11].

Theorem 3. Let ω be a τ invariant state over Ae, faithful on πω(Ae)
′′. Let U imple-

ment τ with

ω(A) = 〈Ω|πω(A)|Ω〉, πω(τA) = Uπω(A)U
∗, U |Ω〉 = |Ω〉.

There exists a τ̂ invariant extension ω1, ω1 6= ω̂, if one of the four equivalent conditions

is satisfied

i) ∃ T̂ ≥ 0 ∈ π
ω̂
(Â)′, τ̂ T̂ =: Û T̂ Û∗ = T̂ .
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ii) ∃W with πω(αA) =Wπω(A)W and W =W ∗, V = τ(W ) ·W .

iii) ∃ B ∈ πω(Ae)
′ and W0 ∈ B(H) such that

[W0, U ] = 0, V = τ(B)B∗, πω(αA) = BW0πω(A)W
∗
0B

∗.

iv) ∃ |ψ〉 with U |ψ〉 = V |ψ〉.
P r o o f. Evidently one passes from (i) to (iii) by specifying the solution. For W sat-

isfying (ii) we get (iv) by taking |ψ〉 = W |Ω〉. On the other hand, |ψ〉 implements ω ◦ α
which gives the desired W .

The same argument gives

Theorem 4. Assume ω is irreducible. Assume U |ψ〉 = V |ψ〉 has a non-trivial solu-

tion. Then α is inner in πω(A)′′ = B(H).

Theorem 5. Assume U has apart from the eigenvector Ω continuous spectrum. Then

V ∗U can at most have an eigenvector to the eigenvalue 1. Otherwise the spectrum is

continuous.

This result suffices to guarantee weak asymptotic abelianness. Either V ∗U has no

eigenvector, then ω̂ cannot be decomposed further into τ̂ invariant states and in ω̂ all

expectation values ω̂(AτnB) tend for n → ∞ to ω̂(A)ω̂(B). If, on the other hand, V ∗U

has an eigenvalue and thus (3,ii) has a solution W , then ω̂ can be decomposed by the

projection operators

1

2

(
1 ±W

±W 1

)

into extremal τ̂ invariant states and this decomposition is unique. Then

w- lim
n→∞

(τ̂ )n
(

1 ±W
±W 1

)
=

∣∣∣∣
Ω

±ψ

〉〈
Ω

±ψ

∣∣∣∣

which guarantees clustering in extremally τ̂ invariant states and thus weak asymptotic

abelianness in τ̂ invariant states.

R ema r k 2. For simplicity we assumed α2 = 1. Generalizations to αn = 1, γn = 1,

are evident, if we assume τ̂γ = γτ̂ . Especially with ταkτ−1α−k = ad Vk we have to find

solutions of

U |ψk〉 = Vk|ψk〉
in order to construct invariant states that break the symmetry γ.

3. Extensions of the even Fermi algebra. We consider the even Fermi algebra on

a one-dimensional lattice, i.e. even polynomials of creation- and annihilation operators.

We are interested in the quasilocal structure of the algebra, i.e. we have an imbedding

Ae,Λ ⊂ Ae,Λ̄

if Λ ⊂ Λ̄ are subregions on the lattice. We notice that for Ae,Λ there exists exactly one

crossed product extension, all automorphisms of Ae,Λ satisfying α2 = 1 are inner conju-

gated and there are no other non-inner automorphisms. We demand from our extension
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that

Âe,Λ ⊂ Âe,Λ̄

i.e. if αΛ̄ is an automorphism of Ae,Λ̄, reduced to AΛ it has to coincide with αΛ. On

Ae,0 there exists exactly one automorphism, implemented by σx
0 ≈ a0 + a

†
0. On Ae,[0,1]

considered as subalgebra of the full matrix algebraM2
0 ×M2

1 we can extend it to the one

implemented by σx
0 (σ

z
1) or σ

x
0 . Continuing in this way αΛ̄ has to be implemented by

σx
o

∏

j∈Λ

j 6=0

(σz
j )

k(j) with k(j) ∈ {0, 1}.(3)

Space translations have to be extendable to the crossed product algebra, i.e. τℓατ−ℓα
−1

correspond to

σx
0

∏

j 6=0

(σz
j )

k(j) · σx
0

∏

j 6=0

(σz
j )

k(j+ℓ)(4)

and this operator has to be quasilocal, i.e.

lim
j→+∞

(k(j)− k(j + ℓ)) = 0, lim
j→−∞

(k(j)− k(j + ℓ)) = 0.(5)

Therefore

lim
j→+∞

k(j) = 1 or 0, lim
j→−∞

k(j) = 1 or 0.(6)

This gives exactly two possible extensions, namely (1, 0) ≈ (0, 1) corresponding to the

Fermi algebra, whereas (0, 0) ≈ (1, 1) corresponds to the matrix algebra on the lattice.

The asymptotic behaviour with respect to space translations is reflected for Fermions,

(1,0): (
0 1

1 0

)
τ̂ℓ

(
0 1

1 0

)
= −τ̂ℓ

(
0 1

1 0

)
·
(

0 1

1 0

)
, ℓ 6= 0,(7)

and for the lattice, (0,0):
(

0 1

1 0

)
τ̂ℓ

(
0 1

1 0

)
= τ̂ℓ

(
0 1

1 0

)
·
(

0 1

1 0

)
, ℓ 6= 0,(8)

which results from

σx
0

∞∏

j=1

σz
j · σx

ℓ

∞∏

j=ℓ+1

σz
j = −σx

ℓ

∞∏

j=ℓ+1

σz
j · σx

0

∞∏

j=1

σz
j

or

σx
0σ

x
ℓ = σx

ℓ σ
x
0 .

3.1. Symmetry breaking for Fermions. Let τ̂t be a quasifree evolution τ̂ta(f) =

a(eihtf) where h has absolutely continuous spectrum. Therefore τt is norm (and thus

also weakly) asymptotically abelian on Ae. Therefore we can apply Theorem 3.iv and

look for a solution to

Ut|ψ〉 = Vt|ψ〉 ∀ t
with Vt = (a(eihtf) + a†(eihtf))(a(f) + a†(f)). For appropriate choice of f with respect

to h

αf Vt = −Vt |t| > t0.
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Therefore

lim
t→∞

〈ψ|Ut|ψt〉 = lim
t→∞

〈ψ|Vt|ψ〉 = lim
t→∞

〈V ∗
t ψ|ψ〉 = lim

t→∞
〈αVtψ|ψ〉

= lim
t→∞

−〈Vtψ|ψ〉 = lim
t→∞

−〈ψ|U∗
t |ψ〉

and thus 〈ψ|Ω〉 = 0. This implies [11] that ψ = 0.

3.2. XY model. We apply our method to the XY model with the following result:

The algebra of the XY model is
⊗

ℓ∈Z M
2
ℓ and the time evolution is determined by the

Hamiltonian

H = −J
∑

[(1 + c)σx
j σ

x
j+1 + (1− c)σy

j σ
y
j+1 + 2λσz

j ], c ∈ (0, 1), λ ∈ R.

With γσx,y
ℓ = −σx,y

ℓ the fixed point algebra of γ is equivalent to the even Fermi algebra

and stable under time evolution. The corresponding Hamiltonian for the Fermi algebra

is quasifree with continuous spectrum, corresponding to U . The evolution corresponding

to V ∗U is also quasifree, related to U by a scattering transformation connected with an

odd Bogoliubov transformation for |λ| < 1 and an infinite Bogoliubov transformation

otherwise [2]. For the lattice system an additional Bogoliubov transformation is needed.

Together with the previous one it is inner for |λ| < 1. The symmetry γ can be broken

iff the remaining scattering automorphism satisfies the cocycle property (Theorem 3.ii).

This holds in the ground state (vacuum state) but not in KMS states or other faithful

quasifree states. In all cases the system is weakly asymptotically abelian.

4. Algebraic Fermion Bosonization. We follow the model as presented in [1] and

refer to [8, 4, 9, 5] for its connection to interacting Fermions.

The algebra we start with is the Weyl algebra W(C∞
0 × C∞

0 ) with commutation

relation

W (f1, g1)W (f2, g2) = exp
[
i
\
(f ′

1g2 − f ′
2g1)

]
W (f1 + f2, g1 + g2).

We can extend the algebra either by extending the test function space or by applying a

crossed product construction with the automorphism group

α
f̂ ,̂g
W (f1, g1) = exp

[
i
\
(f̂ ′g1 − f ′

1ĝ)
]
W (f1, g1).

On W(C∞
0 × C∞

0 ) space translations are defined. They can be extended to

Â
f̂ ,̂g

= W
α

f̂ ,̂g

⊲⊳ Z

iff f̂(x+ y)− f̂(x) ∈ C∞
0 , ĝ(x + y)− ĝ(x) ∈ C∞

0 . Therefore we can allow that

lim
x→∞

f̂(x)− lim
x→−∞

f̂(x) =: f̂(∞)− f̂(−∞) = f̂0 6= 0

and similarly ĝ(∞) − ĝ(−∞) = ĝ0 6= 0. The additional unitary operators in Â
f̂ ,̂g

(i.e.

W (f̂ , ĝ)) are anticommuting for large distances iff

lim
x→∞

exp
[
i
\
(f̂ ′(y + x)ĝ(y)− f̂ ′(y)ĝ(x+ y))dy

]
=

= exp
[
i(f̂(∞)− f̂(−∞))(ĝ(−∞)− ĝ(∞))

]
= −1.
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If we consider

Â
f̂ ;̂g,λ

=W
α

f̂,0

⊲⊳ Z
α

0,̂g

⊲⊳ Z

with f̂(∞)− f̂(−∞) = λ
√
π, ĝ(∞)− ĝ(−∞) = 1

λ

√
π we can find a one-parameter family

of extensions with Fermionic (i.e. anticommuting) character.

If in addition to space translation we consider a time evolution (that results from the

Luttinger model or from the Schwinger model)

τt W (f, g) =W (ft, gt)

with

f̃t(p) = exp [iω(|p|)t] f̃(p), g̃t(p) = exp [−iω(|p|)t] g̃(p)
where ω(|p|) = |p|(1− Ṽ (p))1/2 or in the case of the Schwinger model

ωS(|p|) = |p|
(
1 +

m2

p2

)1/2

we see that the automorphism τt is only extendable to Â if

lim
ω(|p|)
|p| <∞.

In this case the time evolution τ̂t on the extended algebra inherits the asymptotic com-

mutation relations of the space translations.

The symmetry γ that acts on the Â and leaves W pointwise invariant commutes by

construction with space translation and time translation. Due to the anticommutativity

the method of (9) can be applied and again symmetry breaking cannot occur, i.e. all

invariant states have to be even. (We cannot find a non-trivial solution of Theorem 3.iv

in the odd sectors.)

On our algebra W(C∞
0 × C∞

0 ) we can also define other automorphisms, namely e.g.

αa,b W (f, g) = eiaf(0)+ibg(0)W (f, g).

The advantage of this automorphism is that it is strictly local (compare Section 3), the

disadvantage that σxαa,bσ−xα
−1
a,b is not an inner automorphism and therefore cannot

be extended to W
αa,b

⊲⊳ Z if we choose W (C∞
0 × C∞

0 ). But αa,b can be obtained as

αa,b = limαfn,gn where fn, gn are smooth functions with lim fn(x) = aΘ(x), lim gn(x) =

−bΘ(x). If we have a covariant representation of W(C∞
0 × C∞

0 ) according to the Riesz

extension theorem [13] this limiting procedure can be used to construct in an appropriate

extended Hilbert space

Â =
⋃

x

Ux(W
αa,b

⊲⊳ Z)U∗
x =W

α
⊲⊳ G.

If we consider a representation where Ux belongs to πω(W)′′ no extension of the Hilbert

space is necessary. The same is true if the weak closure of πω(W)′′ allows step function.

In all these cases a · b = π guarantees weak asymptotic abelianness on the odd elements

and strong asymptotic abelianness for the even elements.
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5. The CAT map. We consider the irrational rotation algebra built by unitary

operators WΘ(n1, n2), n1, n2 ∈ Z that satisfy the Weyl relation

WΘ(n1, n2)WΘ(n̄1, n̄2) = eiπΘ(n1n̄2−n2n̄1)WΘ(n1 + n̄1, n2 + n̄2).

If Θ is irrational then the algebra has trivial center. On AΘ a matrix T =

(
a b

c d

)
,

a, b, c, d ∈ Z, ad −bc = 1, defines an automorphism αT

αT WΘ(~n) =WΘ(T~n).

AΘk2 = {WΘ(n1k, n2k)} is a subalgebra of AΘ, stable under αT . It is the fixpoint algebra

under the automorphism group

γk1,k2
WΘ(n1, n2) = e2πi(n1k1+n2k2)/kWΘ(n1, n2).

For given k there always exists some ℓ [3] such that

γk1,k2
αℓ
T = αℓ

T γk1,k2
∀ k1, k2.

AΘ can be obtained from AΘk2 as generalized crossed product with the automorphisms

implemented by WΘ(1, 0) and WΘ(0, 1) [12]. The construction (9) finds its analogue

U ℓ
T |~k〉 =W (fℓ(~k)|~k〉

with

α~k W (fℓ(~k)) = eic(ℓ,
~k)ΘW (fℓ(~k)).

c(ℓ,~k) is a rapidly varying integer. If we apply the theorem of Van der Corput of the

theory of uniform distributions to

eic(ℓ,
~k)Θ 〈ψ~k|U

ℓ|ψ~k〉
we see [12] that with probability 1 on Θ this term has 0 as invariant mean over ℓ. As in

(9) we conclude

〈ψ~k|Ω〉 = 0, |ψ~k〉 = 0, ωΘ(W (k1, k2)) = 0 for 0 < k1, k2 < k.

Since k can be chosen arbitrarily, with probability 1 on Θ

ωΘ(W (k1, k2)) = 0, k1 6= 0, k2 6= 0.

This shows that for these Θ the only state invariant under αT is the tracial state.
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