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I. Bernstein inequality and the number of zeroes. We first give two definitions

(cf. N. Roytvarf, Y. Yomdin [R-Y]). ∆R denotes, as usual, the closed disk of radius R,

centred at 0.

Definition I.1. Let R > 0, 0 < α < 1 and K > 0 be given and let f be holomorphic

in a neighborhood of ∆R. We say that f belongs to the Bernstein class B1
R,α,K if

max{|f(z)|, z ∈ ∆R}
max{|f(z)|, z ∈ ∆αR}

≤ K.

R e m a r k. The name “Bernstein class” is justified by the fact that, according to one

of the classical Bernstein inequalities, any polynomial of degree d belongs to B1
R,α,K ,

K = (1/α)d for any R and α.

Definition I.2. Let a natural N , R > 0 and C > 0 be given, and let f(z) =∑∞
k=0 fkz

k be an analytic function in a neighborhood of 0 ∈ C. We say that f belongs

to the Bernstein class B2
N,R,C , if

|fj |Rj ≤ C max{|fi|Ri, i = 0, . . . , N}, j ≥ N + 1.

The two classes B1 and B2 essentially coincide. More precisely, we have the following
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Lemma I.3. Let f be an element of B2
N,R,C . Then f is analytic in an open disk ∆̊R

and for any R′ < R, 0 < α < 1 and K =
(
1
α

)N[
1 + (1 − αN ) α

1−α + C β
1−β

]
, β = R′/R,

f belongs to B1
R′,α,K .

P r o o f. The convergence of f(z) =
∑∞
k=0 fkz

k on ∆R is immediate. Let m =

max{|f(z)|, z ∈ ∆αR′}. Then by the Cauchy formula, |fi| ≤ m/(αR′)i for any i. In

particular, |fi|Ri ≤ m/(αR′/R)i ≤ m/(αR′/R)N for i = 0, . . . , N . Hence |fj |Rj ≤
Cm/(αR′/R)N for any j ≥ N + 1. Now we can estimate |f | on ∆R′ as follows:

max{|f(z)|, z ∈ ∆R′} ≤
N∑
k=0

|fk|R′
k

+

∞∑
k=N+1

|fk|R′k

≤ m
N∑
k=0

( 1

αR′

)k
R′k +

Cm

(αR′/R)N

∞∑
k=N+1

(R′/R)k

= m
( 1

α

)N[
1 + (1− αN )

α

1− α
+ C

β

1− β

]
.

R e m a r k. The constant K in Lemma I.3 can be chosen as
(
1
α

)N(
1+C αβ

1−αβ +C β
1−β

)
which in some cases gives a better estimate.

Conversely, if f belongs to B1
R,α,K , then it belongs to B2

N,R,C with N = logαK and

C given explicitly through R,α,K (cf. N. Roytvarf, Y. Yomdin [R-Y], Hayman [Ha]).

A relevance of Bernstein classes to our purpose is explained by the following lemma

(which is well known in different forms in various fields of complex analysis; we give a

version, obtained by M. Waldschmidt [W] in relation to transcendent number theory).

Lemma I.4. Let R > 0, and 0 < α < 1 be given and let f be holomorphic in a

neighborhood of ∆R. Then the number of zeroes of f in ∆̊αR does not exceed

Log
(
max{|f(z)|, z ∈ ∆R}/max{|f(z)|, z ∈ ∆αR}

)
Log

[
(1 + α2)/2α

] .

In other words, for an element f of B1
R,α,K ,

#{f−1(0) ∩∆αR} ≤
LogK

Log
[
(1 + α2)/2α

] .
Frequently, in the theory of differential equations, we deal with analytic developments

f(z) =
∑∞
k=0 fkz

k where fk is defined inductively by an expression which involves the

preceding coefficients. So it can often be shown that f belongs to a certain Bernstein

class B2. Combining the above results, we can estimate the number of zeroes of the

functions in B2 as follows:

Proposition I.5. Let f be an element of B2
N,R,C . Then for any R′′ < R, the number

of zeroes of f in ∆̊R′′ does not exceed

N · min
{α,(R′′/R)<α<1}

1 + Log
(
1 + (1− αN ) α

1−α + C γ
1−γ

)
/Log(1/α)

1 + Log
(
(1 + α2)/2

)
/Log(1/α)

,

where γ = R′′/αR < 1.
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P r o o f. For any α, R′′/R < α < 1, let R′ = R′′/α. Then by Lemma I.3, f belongs to

B1
R′,α,K , with K =

(
1
α

)N [
1 + (1− αN ) α

1−α +C γ
1−γ

]
, where γ = R′′/αR = R′/R. Hence,

by Lemma I.4 the number of zeroes of f on ∆̊R′′ = ∆̊αR′ is bounded by

Log(1/α)N
(
1 + (1− αN ) α

1−α + C γ
1−γ

)
Log

(
(1 + α2)/2α

)
= N ·

1 + Log
(
1 + (1− αN ) α

1−α + C γ
1−γ

)
/Log(1/α)

1 + Log((1 + α2)/2)/Log(1/α)
.

Since the value of α between (R′′/R) and 1 or, equivalently, the value of R′, R > R′ >

R′′ can be chosen arbitrarily, the proposition follows.

Corollary I.6. Let f be an element of B2
N,R,C . Then

1) For R′′ = R/4, the number of zeroes of f on ∆̊R′′ does not exceed N log5/4(4+2C).

2) For R′′ = R/2 max(C, 2), the number of zeroes of f on ∆̊R′′ is at most 20N .

3) For R′′ = Re−(10N+2)/max(C, 2), this number is at most N .

P r o o f. To prove 1), take α = 1
2 . Then γ = 1

2 and

#{f−1(0) ∩∆R′′} ≤ N ·
1 + Log(1 + (1−

(
1
2

)N
) + C)/Log 2

1 + Log 5
8/Log 2

≤ N log5/4(4 + 2C).

In 2) we also choose α = 1
2 . Then γ = 1/max(C, 2), and we get

#{f−1(0) ∩∆R′′} ≤ N ·
1 + Log

(
1 + (1−

(
1
2

)N
) + 2

)
/Log 2

1 + Log 5
8/Log 2

≤ 20N.

Finally, forR′′ = Re−(10N+2)/max(C, 2), we put α = e−10N ; then γ = 1/e2 max(C, 2),

and #{f−1(0)∩∆R′′} ≤ N · (1 + (2/3N)). Since the number of zeroes is an integer, this

yields #{f−1(0) ∩∆R′′} ≤ N .

R e m a r k. By taking into account the Bernstein inequality, the last conclusion is

strong enough to prove that the number of zeroes of a polynomial of degree d does not

exceed d.

II. Projection of analytic sets. We introduce now the algebra C(R) as follows:

f(x, z) = fx(z) = f(x1, . . . , xn; z) =

∞∑
k=0

zkfk(x1, . . . , xn)

belongs to C(R) if there are (α, β) so that the coefficients fk(x1, . . . , xn) (k = 0, 1, . . .)

are polynomials in x = (x1, . . . , xn) of degree less than αk + b and if
∑∞
k=0R

k|fk| <∞.

The norm |fk| of the polynomial fk is (for instance) the sum of the absolute value of its

coefficients.

Definition II.1. We define the Bautin ideal I of f(x, z) as the ideal generated

by the coefficients fk(x1, . . . , xn). The Bautin index is the minimal integer N so that

f0(x1, . . . , xn), . . . , fN (x1, . . . , xn) generate this ideal I.
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We fix a total ordering < on Nn so that:

α ∈ Nn, β ∈ Nn, β 6= 0, then α < α+ β;

α ∈ Nn, β ∈ Nn, γ ∈ Nn, α < γ then α+ β < γ + β.

There are several possible choices of such an ordering. For instance, we can choose

< as follows: Let C(α) =
∑n
i=1 αi, α < β if C(α) < C(β) or if C(α) = C(β) and there

exists k, 1 ≤ k ≤ n, such that αj = bj for j < k and αk < βk.

Given a polynomial f =
∑
A∈Nn fAx

A, and the total ordering on Nn, we denote by

exp f the largest exponent A such that fA 6= 0. Let exp I = {A ∈ Nn, A = exp f, f ∈ I}.
There is a unique minimal set E = {E1, E2, . . . , Ed} such that for every element β of

exp I, there is an element ε in E and an element α in Nn such that β = ε+ α.

If the ordering of the multi-indices is given, we call a set of elements {h1, . . . , hd} of

I such that exphk = Ek a standard basis (or Gröbner basis) of the ideal I.

Let ρ = max{|hi − xEi |, i = 1, . . . , d}.

Theorem II.2. There exists C > 0, depending on f , such that the function
∞∑
k=0

|fk|zk

belongs to B2
N,R/(1+ρ)nα,C .

P r o o f. Let h1(x1, . . . , xn), . . . , hd(x1, . . . , xn) be a Gröbner basis of the ideal I.

Moreover, since f0, . . . , fN generate I, we have hj =
∑N
i=0 φ

j
ifi. Let C1 = maxi,j |φji |.

From classical estimates on division of polynomials by an ideal, we obtain that there

is C2 > 0 such that for any element h of the ideal I,

h =

d∑
j=1

gjhj , with |gj | ≤ C2|h|(1 + ρ)n deg h.

Several generalizations of these crucial estimates have been produced in the setting of

analytic coefficients (cf. [Br], [H], [Ga]). Hence,

h =

N∑
i=0

g′ifi, with |g′i| ≤ dC1C2|h|(1 + ρ)n deg h.

In particular, for any j ≥ N + 1 we have

fj =

N∑
i=0

g′ji fi, with |g′ji | ≤ dC1C2|fj |(1 + ρ)n(αj+β) ≤ dC1C2C3((1 + ρ)nα/R)j ,

since for an element f(x, z) =
∑∞
k=0 z

kfk(x1, . . . , xn) of C(R), there is a constant C3

such that |fj | ≤ C3. Denote dC1C2C3(1 + ρ)nβ by C4. This yields

|fj | ≤
N∑
i=0

|g′ji | |fi| ≤ C4((1 + ρ)nα/R)j
N∑
i=0

|fi|.

We obtain:

|fj |R′j ≤ C4(N + 1) max{|fi|, i = 0, . . . , N} ≤ C5 max{|fi|R′i, i = 0, . . . , N},

where C5 = C4 max(1/R′N , 1), R′ = R/(1 + ρ)nα.

This proves Theorem II.2 with C = C5.
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Theorem II.3. Let f be an element of C(R). Assume that there exist α, β so that the

coefficients fk(x1, . . . , xn) are homogeneous of degree αk + β. Then for all x, the series

f(x; z) =
∑∞
k=0 z

kfk(x) belongs to B2
N,R′/|x|α,C|x|β .

Write

fj(x) =

N∑
i=0

g′ji (x)fi(x).

Denote by homi(p(x)) the homogeneous component of degree i of a polynomial p(x). We

obtain

fj(x) =

N∑
i=0

homα(j−i)+β(g′ji (x))fi(x).

Then we get

|homα(j−i)+β(g′ji (x))| ≤ |g′ji | |x|
α(j−i)+b ≤ dC1C2C3(1/R′)j |x|α(j−i)+β ,

and this yields

|fj(x)| ≤
N∑
i=0

dC1C2C3(1/R′)j |x|α(j−i)+β |fi(x)| ≤ C4|x|β(|x|α/R′)j
N∑
i=0

|fi(x)|/|x|αi.

Hence,

|fj(x)|(R′/|x|α)j ≤ C|x|β max{|fi(x)|(R′/|x|α)i, i = 0, . . . , N}.

Theorem II.4. Let f be an element of C(R), N,C be as above. Let R′(x) = 1
4R
′/|x|α,

R′′(x) = (R/|x|α)/2 max(C|x|β , 2), R∗(x) = (R/|x|α)e−(10N+2)/max(C|x|β , 2). Then

for any x, the function fx(z) can have on the disks ∆̊R′(x), ∆̊R′′(x), ∆̊R∗(x), at most

N log5/4(4 + 2C|x|β), 20N and N zeroes, respectively.

In the article [F-Y], we followed a different presentation based on the use of the norm

“maximum on a polydisc”. This allows to handle more general data (f may have analytic

coefficients) but it is necessary to use priviliged neighborhoods.

The  Lojasiewicz inequality appears closely related to the subject. We take the oppor-

tunity of this Symposium to mention briefly the connection and postpone its develop-

ments to further studies.

The  Lojasiewicz inequality entails a constant K and an exponent δ so that

K
( ∞∑
k=0

f2k (x)
)δ
≤

N∑
i=0

f2i (x).

It yields the inequality

|fj(x)| ≤ C max{|fi(x)|1/δ, i = 0, . . . , N}, j ≥ N + 1.

Going back to the Jensen inequality, we obtain the same type of bound for the number

of zeroes (cf. Lemma I.4). The only change is that this bound gets multiplied by 1/δ.

The authors thank warmly E. Bierstone and P. Milman for several discussions which

improved the presentation of their results. We like to add the reference [ L-T-Z], which

recently appeared, where the most general case (codimension ≥ 1) has been considered

with different techniques.
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