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Abstract. For a symmetric (= invariant under the action of a compact Lie group G) semial-
gebraic basic set C, described by s polynomial inequalities, we show, that C can also be written
by s+1 G-invariant polynomials. We also describe orbit spaces for the action of G by a number
of inequalities only depending on the structure of G.

Introduction. Let Y be a real algebraic affine G-variety where Y is defined over R
and G is a compact Lie group acting on Y (or R[Y ] respectively). In all this work we
only consider real points of real varieties. So we just write Y for which should be called
Y (R). There are some natural questions:

• What is the structure of the orbit space X of Y under the action of G?

• If C ⊂ Y is semialgebraic and G-invariant, can C be described by G-invariant
elements?

• If C ⊂ Y is semialgebraic, G-invariant and basic open (or closed), can C be de-
scribed by G-invariant elements as a basic open (or closed) set, and how many inequalities
are needed?

The first question was answered by Procesi and Schwarz [Pro-Schw]: Let Y//G :=
Spec(R[Y ]G) and Z = (Y//G)(R). Then X = p(Y ) ⊂ Z where p : Y → Z is induced
by the inclusion R[Y ]G → R[Y ] and X is a basic closed subset of Z which is defined
by saying that a certain symmetric matrix over R[Y ]G is positive semidefinite (see also
Section 5). However, this description of X leads to a lot of inequalities, depending on
the number of generators for R[Y ]G. We will show, that the number of inequalities for
a description of X, at least generically, that means, up to a set of smaller dimension,
depends only on the structure of G.

As to the second question, the answer can easily seen to be positive.
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Concerning the third question, the basic open sets are easier to treat. If C ⊂ Y is
G-invariant and basic open, described by s inequalities, then C can also be described by
at most s + 1 G-invariant inequalities or even by s G-invariant inequalities in case that
G is finite. It is an open problem, whether this better estimate holds in general.

For basic closed sets, again we only can show that S can be described as a basic closed
set by invariant inequalities and generically one needs s+ 1 of them (or s if G is finite).

For finite groups G the above questions and answers can be generalized essentially. So
let G act on A where A is a arbitrary commutative ring with unit and let B := AG. Let
us denote by Sper(A) the real spectrum of A and correspondingly for B. Here I hope that
the reader is a little bit familiar with real spectra (I refer to [B-C-R, Chap. 7], [Kn-Schei],
[Be2] and [B]). Now, concerning the above problems we just replace Y by Sper(A), Z by
Sper(B) and X by X̃ := p(Sper(A)) where p : Sper(A) → Sper(B) is induced by the
inclusion B ↪→ A. In case that Sper(A) is noetherian we get corresponding results.

The most elementary situation appears, when A/B is a Galois extension of fields with
Galois group G. Here X̃ can be described by k inequalities where k is the maximal number
of mutually commuting independent involutions in G. This result is due to Scheiderer
[Schei2]. We present the proof in Section 3, since the methods which are used for this
have to be introduced anyway. In fact the key ingredient is the theory of fans which, for
convenience of the reader, is briefly explained in Section 2 (for more details see [A-B-R,
Chap. 2-6], [B] and [MarI]). After studying extensions A/B,B = AG for finite groups G
in Section 4, in Section 5 we turn to R-varieties Y and the action of compact Lie groups
G on Y . If G is finite, the “tilde” correspondence, which relates semialgebraic sets to
constructible sets in real spectra, immediately leads to the desired results. For infinite G,
we use étale slices in the sense of Luna [Lu] in order to get a reduction to finite G. But
this works only locally, so that for our estimates we need one more inequality than for
finite G.

1. The action of a finite group on real spectra. Let A be a commutative ring
with unit. By Sper(A) we denote the real spectrum of A. For information about Sper(A)
see [B-C-R], [Kn-Sche], [Ma], [B], [Be2], [A-B-R]. For a ∈ A we write {a > 0} instead
of {α ∈ Sper(A) | α(a) > 0}. Similarly, we use {a = 0}, {a ≥ 0} and conjunctions, for
instance, we write {a > 0, b > 0} instead of {a > 0} ∩ {b > 0}.

We shall always assume that Sper(A) is noetherian with respect to the Zariski topol-
ogy. From this we get the following obvious

Proposition 1.1. Let C ⊂ Sper(A) such that C ∩ Sper(k℘) is constructible in
Sper(k℘) for all (real) prime-ideals ℘ of A. Then C is constructible in Sper(A).

Here, of course, Sper(k℘) is identified with {α ∈ Sper(A) | supp(α) = ℘}.
Now let G be a finite group of automorphisms of A. We denote by B = AG the ring

of invariant elements. Then G also acts on Sper(A) via

g(α)(a) = α(g−1(a))

for α ∈ Sper(A) and a ∈ A and g ∈ G. In general, A ⊃ B will not be a Galois extension
in the sense of [DM-I, Chap. III]. For a ∈ A we denote by tr(a) the trace

∑
g∈G g(a). Let

p : Sper(A)→ Sper(B) be the projection, induced by the inclusion i : B → A.

Proposition 1.2. X̃ := p(Sper(A)) =
⋂
a∈A{tr(a2) ≥ 0}.
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P r o o f. Clearly X̃ is contained in the right-hand side. Conversely, let β ∈ Sper(B)
such that β cannot be extended to A. Consider β ⊂ B as positive cone and let

T :=
{∑

a2i bi | ai ∈ A, bi ∈ β
}
.

Then T ⊂ A is a precone, if −1 6∈ T . By a basic result of Prestel [Pr, §1] such a
precone can be extended to some α ∈ Sper(A) which extends β. So we must have

−1 =

m∑
i=1

a2i bi

for suitable m ∈ N, ai ∈ A and bi ∈ β. This leads to

m∑
i=1

Tr a2i bi = −g

where g = # (G). Therefore β(Tr(a2i )) < 0 for at least one i.

Remark 1.3. By Proposition 1.2 the space X̃ is a saturated subset of Sper(B) in the
sense of Marshall [Mar] or just a subspace in the frame of spaces of signs in the sense of
[A-B-R, Chap. III]. That means, that X̃ shares the essential properties with real spectra
of rings. Note that X̃ is noetherian. Hence a result like Proposition 1.1 holds also for
subsets C ⊂ X̃. Moreover, if X̃ ∩ Sper(k(p)) is constructible for all real prime ideals of
B, the X̃ is constructible. In Section 4 we will show that X̃ is in fact basic closed and we
will gain an estimate for the minimal number of inequalities for X̃.

Proposition 1.4. Let C ⊂ Sper(A) be basic closed and G-invariant. Then

C =
⋂

C⊂{a≥0}

{tr(a) ≥ 0}.

P r o o f. Clearly, C is contained in the right-hand side. Conversely, assume that α is
contained in the right-hand side but α 6∈ C. Let β = p(α). There exists some a ∈ A with
C ⊂ {a ≥ 0} and α(a) < 0, hence β(tr(a)) < 0. Let

T :=
{∑

biai | bi ∈ β, ai ∈ A with C ⊂ {ai ≥ 0}
}
.

If −1 6∈ T , then T is a precone which can be extended to τ ∈ Sper(A) and τ extends β.
One has τ(a) ≥ 0 and also τ(g(a)) ≥ 0 for g ∈ G since C is G-invariant, hence τ(tr a) =
β(tr(a)) ≥ 0. Contradiction.

So −1 =
∑
biai for suitable bi ∈ β and ai ∈ A with C ⊂ {ai ≥ 0}, hence

−g =
∑
bi tr(ai). Thus β(tr(ai)) < 0 for at least one ai. This is a contradiction to

the assumption.

Proposition 1.5. For all subvarieties V ⊂ X̃ the group G acts transitively on the
components of p−1(V ).

P r o o f. Suppose p−1(V ) decomposes into G-invariant Zariski-closed subsets W1,W2.
We find ai ∈ A with ai 6= 0 on Wi and ai = 0 on Wj , j 6= i for i = 1, 2. Then tr(a2i ) does
not vanish on V but tr(a21) · tr(a22) does so. Contradiction.
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2. Fans. We keep the situation and notations of the previous section. We saw that
the space X̃ = p(Sper(A)) is saturated and also, if C ⊂ Sper(A) is G-invariant and basic
closed, then it can be described as an intersection by G-invariant functions. In fact, it will
turn out that p(Sper(A)) is basic closed and C can be described as a finite intersection
by G-invariant functions. So we want to know how many functions are needed. For this
we need the notion of a fan.

Let F ⊂ Sper(A) be a subspace. That means, F is of the form

F =
⋂
d∈D

{d > 0} ∩
⋂
e∈E
{e ≥ 0} for D,E ⊂ A.

Then obviously any a ∈ A defines a map

â : F → F3

by â(σ) = 1 if σ(a) > 0, â(σ) = −1 if σ(a) < 0 and â(σ) = 0 if σ(a) = 0.
Let H be the set of all these functions and let H∗ = H \ 0. Now F is called a fan, if

H∗ is a group, that is, all â ∈ H∗ have values in {1,−1}, and if

F = {σ ∈ Ĥ∗ | σ(−1) = −1}.
Here Ĥ∗ is the dual group of H∗ and σ ∈ F can be considered as character on H∗ via
σ(â) := â(σ). If F is finite, then clearly # (F ) is a power of 2.

Proposition 2.1 (Knebusch). Let F ⊂ Sper(A) be a fan with # (F ) ≥ 4. Then all
σ ∈ F have the same support.

P r o o f. [A-B-R, III, Remark 3.13]

By this result, the investigation of fans reduces to the case where A = K is a field.
Let us fix some notations. Let K be a field. For a valuation v of K we denote by Rv,
Kv and Γv the valuation ring, the residue field and the group of values respectively. We
write Γv additively and put v(0) =∞. Recall that σ ∈ Sper(K) is called compatible with
v if Rv is convex with respect to σ. Then σ induces an ordering σ ∈ Sper(Kv).

Proposition 2.2 (trivialization of fans). Let F ⊂ Sper(K) be a fan and let v be the
finest valuation which is compatible with all σ ∈ F . Then # (F ) ≤ 2 where

F = {σ | σ ∈ F} ⊂ Sper(Kv).

P r o o f. [A-B-R, VI, Theorem 1.6]

We say that the above valuation v is associated to F . The significance of fans is due
to the following most important result (see [A-B-R, V, Theorem 1.4]).

Theorem 2.3 (global generation formula). Let C ⊂ Sper(A) be constructible such
that C ∩ ClZ(Bd(C)) = ∅. If for all finite fans F ⊂ Sper(A) one has

# (C ∩ F ) divides # (F )

and

# (F ) divides 2k # (C ∩ F ),

then there are g1, . . . , gk ∈ A such that C = {g1 > 0, . . . , gk > 0}.

Here ClZ(Bd(C)) is the Zariski-closure of the boundary of C.
If one knows already that C is basic open, but one wants information about the

number of generators, only the second condition is needed.
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3. Extensions of fields. We return to the situation of Section 1. So G is a finite
group which acts on the ring A and B = AG is the ring of invariants. Now we assume
that B = K is a field and A = L is a semisimple K-algebra. Then the situation is as
follows: L is a direct sum of mutually isomorphic fields, L = L1 ⊕ . . . ⊕ Lr and G acts
transitively on {Li, i = 1, . . . , r}. Let Gi be the stabilizer of Li. Then LGi

i ' K, thus
Li ⊃ K is a Galois extension with Galois group Gi/Ci where

Ci = {g ∈ Gi | g(a) = a ∀a ∈ Li}.
In general, Ci is not the trivial group. Let m := [Li : K]. Then dim (L) = m · r and
# (G) = m · r ·# (Ci).

Now let α ∈ Sper(K) and assume that α admits at least one extension α̃ ∈ Sper(L).
Then the total number of extensions is m·r and G acts transitively on these. Similarly, for
a valuation v of K by an extension ṽ of v to L we mean an extension ṽ in some Li. Again,
the total number of them is d ·r and G acts transitively on them. So let ṽij be a valuation
of Li which extends v. We denote by Dij ⊂ Gi the corresponding decomposition group,
by Iij the inertia group and by Rij the ramification group. We will only consider the case
where char (Kv) = 0, so Rij is trivial. Then

Iij ' (Γṽij/Γv)
dual.

Also Dij/Iij is isomorphic to the Galois group of K ṽij/Kv. As usual, set e = # (Iij)
and f = # (Dij/Iij). Note that d = (Gi : Dij). For the proposition below see also [Schei2,
Section 1], [Be1, §4 Theorem 2.1].

Proposition 3.1. Let α ∈ Sper(K) be compatible with the valuation v of K. Assume
that α admits at least one extension α̃ ∈ Sper(L) and let ṽ be an extension of v in some Li.
Moreover , let β ∈ Sper(K ṽ) be any extension of α ∈ Sper(Kv). Then

a) I = Iij is an elementary abelian 2-group.
b) There are exactly e extensions β ∈ Sper(Li) of α which are compatible with ṽ and

induce β on K ṽ.

P r o o f. Assume, we have already a β ∈ Sper(Li) with the properties in b). Let β1 be
another one. Then β1 defines a character χ(β1) on Γṽ/2Γṽ :

χ(β1)(ṽ(b) + 2Γṽ) := sign(β1(b)) sign(β(b)),

and, by the Bear-Krull theorem [A-B-R, Prop. II, 3.3], χ defines a bijection between the
set B of all β1 which are compatible with ṽ and induce β on K ṽ and the dual group of
Γṽ/2Γṽ. Here we are only interested in those β1 which extend β, so

χ(β1) | Γv/2Γv = id .

Clearly, these χ(β1) with β1 ∈ B′ := {β1 ∈ B | β1 extends α} form a 2-elementary
subgroup H of (Γṽ/Γv)

dual = I.
Now we have m · r extensions α̃ of α in Sper(L). Each one is compatible with an

extension ṽ of v. The number of the extensions ṽ is r·d. The number of possible extensions
of α to K ṽ is f . So by what we have seen we get

mr ≤ drf ·# (H) ≤ drf ·# (I) = mr,

hence H = I from which a) and b) follow.

The proposition below is due to Scheiderer [Schei2, Theorem 5.2]. For sake of com-
pleteness we give the proof here.



42 L. BRÖCKER

Proposition 3.2. Let X̃ := {α ∈ Sper(K) | α extends to L}. Then X̃ is basic of the
form X = {b1 ≥ 0, . . . , bk ≥ 0}, where 2k is the order of an elementary abelian subgroup
of Gi/Ci.

P r o o f. As a subset of Sper(K), X̃ is constructible. So by Proposition 1.2 and an
easy compactness argument X̃ is basic. If # (G) is odd, then X̃ = Sper(K). So let # (G)
be even and consider a finite fan F ⊂ Sper(K). According to Theorem 2.3 we have to
compute the number

2k = # (F ) : # (X̃ ∩ F ).

So let α ∈ X ∩F and let v be the valuation associated to F according to Proposition 2.2.
Then there are α, β ∈ Sper(Kv) such that all β ∈ F induce one of α or β on Kv.

Case 1. F is a principal fan, that means, all β ∈ F induce one and the same α on Kv.
Let α̃ ∈ Sper(L) be any extension of α. Then, say, α̃ ∈ Sper(L1), α̃ is compatible with

a valuation ṽ of L1, which extends v and α̃ induces γ on K ṽ. By Proposition 3.1 any
other β ∈ X̃ ∩ F can be extended to some β̃ ∈ Sper(L1), compatible with ṽ such that β̃
induces γ on K ṽ. But these β̃ are obtained by the Baer-Krull theorem: Firstly, β defines
a character χ(β) on Γv/2Γv via

χ(β)(v(b) + 2Γv) = sign(α(b)) sign(β(b)),

and β extends to β̃ as above, if and only if χ(β) can be extended to a character χ(β̃) of
Γṽ/2Γṽ. For this it is necessary and sufficient that

T := Ker(Γv/2Γv → Γṽ/2Γṽ) ⊂ Ker(χ(β)).

Thus # (T ) = 2k. Now consider the diagram

0 → 2Γv → Γv → Γv/2Γv → 0

↓ α ↓ β ↓ γ
0 → 2Γṽ → Γṽ → Γṽ/2Γṽ → 0

Since Ker(β) = 0 by the snake lemma we get the exact sequence

0→ T → Coker(α)→ Coker(β)→ . . . ,

but by Proposition 3.1 b), Coker(β) = Γṽ/Γv ' Idual is an elementary abelian 2-group.
Thus Coker(α) is mapped to zero. Since Γṽ is torsion free, Coker(α) ' Coker(β). Con-
cluding, we get T ' Idual which is an elementary abelian 2-subgroup of Gi/Ci for some
i ∈ 1, . . . , r.

Case 2. The fan F is not principal.
So there exists β ∈ F which induces β 6= α on Kv. Then F = F1∪F2 is a disjoint union

of two fans according to which element onKv is induced by βi ∈ Fi. Also # (F1) = # (F2).
If F1 ∩ X 6= ∅ and F2 ∩ X 6= ∅ we have 2k = # (Fi) : # (Fi ∩ X) for i = 1, 2, hence
2k = # (F ) : # (F ∩X) where 2k = # (I).

Now assume, say F2 ∩X = ∅.
Then # (F ) : # (F ∩X) = 2k+1 where 2k = # (I). So we want to find an elementary

abelian extension H of I where (H : I) = 2. For this note that β cannot be extended to
any K ṽ where ṽ is an extension of v to some Li. That means p : Sper(K ṽ)→ Sper(Kv)
is not onto (the extension is not totally real). Now the claim follows from the lemma
below (compare Scheiderer [loc. cit.] or [Di-Dr]). In fact, by b) we find a field E with
Kv ⊃ E ⊃ K and K ṽ/E is a non-totally real quadratic extension. Then Ẽ is the residue
field of a field E with KI ⊃ E ⊃ KD and (KI : E) = 2.
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Let H = G(L/E). Assume that σ ∈ H has order 4. Then Lσ 6⊃ KI and thus the

residue extensions of Lσ
2

/Lσ and KI/E coincide. But by a) the former is totally real.
Contradiction. So H is elementary abelian.

Lemma 3.3. Let E/F be a Galois extension with group G.

a) If G is cyclic of order 4 and E′ is the quadratic subextension of E/F , then E′/F
is totally real.

b) If E/Eσ is totally real for each involution σ ∈ G, then E/F is totally real.

Consider the map p : Sper(L) → X̃ ⊂ Sper(K). The group G acts on Sper(L) and
the orbits are just the fibers under p. Let C ⊂ Sper(L) be constructible and G-invariant.
Then p(C) is constructible in X̃ and any description of p(C) by elements of K defines
automatically a description of C. In other words, C can be described by invariant ele-
ments. We ask, whether a basic invariant set C can be described by invariant functions
as a basic set. One has even more:

Proposition 3.4. Let C ⊂ Sper(L) be G-invariant and basic, say C = {a1 > 0, . . . ,
. . . , am > 0}, ai ∈ L. Then there are b1, . . . , bm ∈ K such that C = {b1 > 0, . . . , bm > 0}.

P r o o f. By Proposition 1.4 and the constructibility of C we get by an easy compact-
ness argument that C is basic. We have to describe p(C) ⊂ X̃ by k inequalities. For this
let F ⊂ X̃ be a finite fan, and let X̃ ∩ p(C) 6= ∅ and 2l = # (F ) : # (X̃ ∩ p(C)). We
want l ≤ k. Let v be the valuation associated to F , ṽ any extension of v to some Li.
The elements α ∈ F induce α or possibly α and β on Kv. By Proposition 3.1 these can
be extended to elements α′ and β′ ∈ Sper(K ṽ) respectively. Now let F ′ be set of all
α̃ ∈ Sper(Li) for which one has

α̃ extends some α ∈ F ,
α̃ is compatible with ṽ,
α̃ induces α′ (or possibly α′ or β′) on K ṽ.
Then F ′ is a fan and all fibers of the map p : F ′ → F consist of e = # (I) elements.

Since C consists of full fibers and

# (F ′) : # (F ′ ∩ C) = 2l with l ≤ k,
we also get

# (F ) : # (F ∩ p(C)) = 2l.

4. Invariant constructible sets. We come back to the situation of Section 1. So
A is a commutative ring with unit, G a finite group of automorphisms of A and B is the
subring of G-invariant elements in A. For a finite 2-group H let d(H) be the minimal
number of generators. Also, let k = sup {d(H)} where H runs over all 2-subgroups of G.
This invariant k = k(G) will be important. We assume also that Sper(A), and thus
X̃ ⊂ Sper(B), is noetherian. Let ℘ be a real prime ideal in B and let P1, . . . ,Pr be the
real extensions of ℘ to A, that means, the Pi are real prime ideals of A and Pi ∩B = ℘
for i = 1, . . . , r. Also, let r > 0. Then G permutes the Pi. The residue fields k(Pi) can
be considered as extensions of the residue field k(℘). Thus L := k(P1)⊕ . . .⊕ k(Pr) is a
separable k(℘)-algebra on which the group G acts in a natural way. In this situation one
has

Proposition 4.1. The subalgebra LG of fixed elements under G coincides with k(℘).
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P r o o f. Consider the semilocalization

A1 :=

{
f

g

∣∣ f, g ∈ A, g 6∈ P1 ∪ . . . ∪ Pr
}
.

Also G acts on A1 and AG1 = B℘. In fact, for f
g ∈ A

G
1 we have

nf

g
=

∑
σ∈G σ(f)

∏
τ 6=σ τ(g)∏

σ∈G σ(g)
.

Thus the numerator and denominator are in AG = B. Moreover, the denominator is not
in ℘ since otherwise it would be in P1, hence σ(g) ∈ P1 for some σ ∈ G and g ∈ σ−1(P1).
Contradiction. Since ℘ is real, n 6∈ ℘, thus f/g ∈ B℘.

So we may replace A by A1, B by B℘ and Pi by A1Pi, i = 1, . . . , r. We find elements
li, i = 1, . . . , r, with li ≡ 1 modPi and li ≡ 0 modPj for j 6= i. Let u = (a1 + P1, . . . ,
. . . , ar + Pr) ∈

⊕r
i=1 k(Pi) be G-invariant. Consider z = l1a1 + . . .+ lrar ∈ A. We have

nui = (nu)i =
(∑
σ∈G

σ(u)
)
i

=
∑
σ∈G

σ(z) + Pi.

Hence nai + Pi = a′i + Pi for a′i ∈ B.

Now we can apply the results of the preceding section.

Proposition 4.2. The group G acts transitively on the fibers of the map
p : Sper(A)→ Sper(B).

P r o o f. Use Proposition 4.1 and the beginning of Section 3.

Corollary 4.3. Let C ⊂ Sper(A) be constructible and G-invariant. Then C can be
described by G-invariant functions.

P r o o f. Use Remark 1.3 and take a description of p(C) over B.

Next we turn to quantitative questions. Consider the set X̃ := p(Sper(A)) ⊂ Sper(B).
By Remark 1.3, X̃ is constructible and by Proposition 1.2, X̃ is a subspace defined by
non-strict inequalities. Hence X̃ is basic closed. By Proposition 4.1 and 3.2, for any real
prime ideal ℘ of B we get that X̃ ∩ Sper(k(℘)) is generated by k = k(G) elements. If
moreover Sper(B) has finite dimension d, we obtain from [A-B-R, V, Theorem 2.9]:

Proposition 4.4. There are b1, . . . , bm ∈ B such that X̃ = p(Sper(A)) =
{b1 ≥ 0, . . . , bm ≥ 0} and m ≤ (d+ 1)k.

Similarly we get

Proposition 4.5. Let C ⊂ Sper(A) be basic closed and G-invariant. Assume further
that for every real prime ideal P of A with dim(Sper(A/P)) = i the set Sper(k(P)) ∩ C
can be written by si inequalities. Then C = {b1 ≥ 0, . . . , bm ≥ 0} with m =

∑d
i=0 si and

bi ∈ B for i = 1, . . . ,m.

P r o o f. Again, since C is G-invariant, a description of p(C) in X̃ leads to a description
of C by G-invariant functions. We work in the space of signs X̃ (see [A-B-R, V]). By
Propositions 1.1 and 1.3, p(C) is basic closed in X̃. The estimate for the number of
generators comes from Proposition 3.4 and [A-B-R, V, Theorem 2.9].
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Remark 4.6. Generically, that means, restricted to real spectra of residue fields at
real prime ideals, the estimates in Propositions 4.4 and 4.5 are good. However, the global
estimate is unsatisfactory. This is due to the fact that in the case of basic closed sets
it is not possible to fit the information on the generic description together in a better
way, as one knows from Scheiderer’s examples [Schei1], [A-B-R, VI, Examples 7.2]. In
the geometric situation, which will be considered in the next section, we will discuss this
a little further. Now, for basic open sets, the situation is better:

Theorem 4.7. Let C ⊂ Sper(A) be basic open, defined by s strict inequalities, and
G-invariant. Assume further that p : Sper(A) → Sper(B) is closed. Then C can also be
described by s strict inequalities with G-invariant elements.

P r o o f. Again, we just need a description for p(C) ⊂ X̃ = p(Sper(A)). By Propo-
sition 4.1, p(C) is constructible. Let V ⊂ Sper(B) be a subvariety (i.e. V = Var(℘) :=
{β ∈ Sper(B) | supp(B) ⊃ ℘} for a real prime ideal ℘ of B with V ⊂ ClZ Bd(p(C))). Note
that here we consider the boundary of p(C) in X̃. We want to show that V ∩ p(C) = ∅
in X̃. For this, consider β ∈ V with supp(β) = ℘ such that β ∈ Bd(p(C)). There are two
cases:

Case 1. β 6∈ p(C). Then there exists β′ ∈ p(C) which specializes to β : β′ → β. Choose
α′ ∈ C with p(α′) = β′. By going-up (see [A-B-R II, Section 4]) we find a specialization
α of α′ so that p(α) = β. Thus α 6∈ C, hence α ∈ Bd(C). Let P := supp(α) and
W := Var(P). Then W ⊂ ClZ(Bd(C)) and p(W ) is Zariski-dense in V . Assume that
σ ∈ V ∩ p(C). Then we find τ ∈ W ∩ C with p(τ) = σ. But C is basic open, thus
W ∩ C = ∅. Contradiction.

Case 2. β ∈ p(C). Now there exists β′ ∈ X̃ \ p(C) which specializes to β. Choose
α′ ∈ Sper(A) \ C with p(α′) = β′. Again by going-up we find a specialization α of α′

so that p(α) = β. Since C is G-invariant, α ∈ C, therefore α ∈ Bd(C). But C is open.
Contradiction.

So we settled the first assumption of Theorem 2.3. Next, let F ⊂ Y be a finite
fan. We may assume that # (F ) ≥ 4 for if there are only 2-element fans, then any
constructible set Z ⊂ Y with Z∩ClZ(Bd(Z)) = ∅ can be described by a single inequality.
By Proposition 2.1 all σ ∈ F have the same support, say ℘. Now, by Propositions 4.1
and 3.4, p(C) ∩ Sper(k(℘)) can be described by s inequalities. Thus

# (p(C) ∩ F ) divides # (F )

and

# (F ) divides 2s # (p(C) ∩ F ).

Hence all conditions of Theorem 2.3 are fulfilled and it follows that p(C) can be
described by s strict inequalities.

5. Invariant semialgebraic sets over the reals. Let Y be a real algebraic affine
R-variety and let G be a compact Lie group which acts on Y . We want to study
G-invariant semialgebraic subsets C ⊂ Y . There is an equivariant algebraic embedding
Y → W where W is a representation space of G [Kr, II, 2.4]. In other words, we may
assume G ⊂ 0(n,R) and Y ⊂ Rn is G-invariant. By a theorem of Hilbert and Hurwitz
[Weyl, VIII, §14] the graded algebra R[W ]G of G-invariant polynomials is finitely gener-
ated, say by homogeneous polynomials p1, . . . , pm. Let J be the ideal of relations of the pi
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in R[Y ]G. We set A := R[Y ], B := R[Y ]G ∼= R[X1, . . . , Xm]/J and Z := Spec(B)(R). So
we get a map p = (p1, . . . , pm) : Y → Z. If C ⊂ Y is semialgebraic, then so is p(C) ⊂ Z
by the Tarski-Seidenberg theorem [B-C-R, §5.2]. Recall that for any semialgebraic set
C ⊂ Y or C ⊂ Z there corresponds a constructible set C̃ ⊂ Sper(A) or C̃ ⊂ Sper(B)
respectively from which one can read off the properties of S better than from S itself (see
[A-B-R, Chap. V, 5]). The canonical map Sper(A)→ Sper(B) will again be denoted by p.
We set X := p(Y ). Then X is basic closed. More generally, one has (compare [Pro-Schw,
Proposition 5.1]):

Proposition 5.1. Let C ⊂ Y be basic closed and G-invariant. Then p(C) is basic
closed.

P r o o f. The argument is the same as for Proposition 1.3. For a polynomial f ∈ R[W ]
we set

Tr(f)(x) :=

∫
G

f(g(x))dg.

Clearly Tr(f) is G-invariant. As before, we get

p(C)∼ =
⋂

C⊂{b≥0}

{Tr(b) ≥ 0}.

An easy compactness argument shows that p(C)∼ and thus p(C) is already a finite
intersection of sets of the form {Tr(b) ≥ 0} with C ⊂ {b ≥ 0}.

In [Pro-Schw] Procesi and Schwarz give an explicit description of X = p(Y ) as follows:
The m × m-matrix P with Pij := 〈grad(pi), grad(pj)〉 has entities in B = R[Z] (recall
that the scalar product 〈· , ·〉 is G-invariant by assumption).

Theorem 5.2 (Procesi-Schwarz). X = {x ∈ Z | P (x) is positive semidefinite}.

We need another important result of Schwarz [Schw]:

Proposition 5.3. The map p : Y → Z is proper , it separates orbits of G and induces
a homeomorphism P : Y/G→ X.

Together with Proposition 5.1 we get

Corollary 5.4.
a) Let C ⊂ Y be semialgebraic and G-invariant. Then C can be described by

G-invariant polynomials.

b) Let C ⊂ Y be a G-invariant basic (open) closed subset. Then C can be described
as an intersection by (strict) non-strict inequalities with G-invariant polynomials.

The case of basic open sets requires some explanation. We postpone the proof since
we will get a quantitative statement like Theorem 4.7. On the way, we will also find
quantitive results for the description of invariant basic closed sets, but these might be
not optimal (see Remark 4.6). The result below is a slight generalization of [Pro-Schw,
Proposition 7.4] (equivariant Hilbert’s 17th problem).



SYMMETRIC SEMIALGEBRAIC SETS AND ORBIT SPACES 47

Corollary 5.5 (equivariant Positivstellensatz). Let C ⊂ Y be basic closed and
G-invariant. Then there are finitely many G-invariant functions f1, . . . , fq ∈ R[Y ] such
that for any G-invariant f ∈ R[Y ] with f ≥ 0 on C one has

f2k+1 + f
( q∑
i=1

tifi

)
−

q∑
i=1

sifi = 0,

for some k ∈ N where ti and si are suitable sums of squares of G-invariant elements
of R[Y ].

P r o o f. Apply the usual Positivstellensatz [B-C-R, 4.4] to p(C).

For a description of X by few inequalities one can use Theorem 5.2. If G is finite,
then d = dim (Y ) = dim (Z). As before, let m be the number of generators for R[W ]G.
Saying that a symmetric m × m matrix is positive semidefinite requires m non-strict
inequalities, since equivalently all coefficients of the characteristic polynomial have to be
non-negative.

On the other hand, by Proposition 4.4, generically X̃ and thus X can be described
by k inequalities where k = k(G) is defined at the beginning of Section 4. Also, if Y is
irreducible and G acts effectively, k can be replaced by the maximal F2-dimension of an
elementary abelian 2-group of G. So this number k depends only on the structure of G
and not on the number m of generators for R[W ]G. So we got

Proposition 5.6. Let G be finite, acting effectively on the irreducible variety Y and
let k be the maximal number for which G contains an elementary abelian subgroup of
order 2k. Then the orbit space X = p(Y ) ⊂ Z is of the form X = {b1 ≥ 0, . . . , bk ≥ 0}∪T ,
where dim(T ) < dim(Y ).

Note that T can be chosen to be the orbit spaces of a subfactor of G.
For instance, if # (G) is odd, then X = Z (compare [Pro-Schw, Proposition 3.7]).
Now let us return to the general situation where G is a compact Lie group. We define,

however, the invariant k = k(G) again as at the beginning of Section 4. We may assume
that Y ⊂ Rn is compact, for, since G is compact, the action of G on Y can be extended
to the one point compactification Y of Y (having the point at infinity as a fixed point),
and Y has the structure of a real affine algebraic variety. We want to describe X by few
inequalities. For this we take the corresponding set X̃ = p(SperR[Y ]) ⊂ SperR[Z] and
proceed as in Sections 3 and 4: We consider a finite fan F ∈ Sper(R[Y ]G) and compute
the index of (X̃ ∩ F ) in F . In fact, as before we get

Lemma 5.7. # (F ) : # (X̃ ∩ F ) ≤ 2k+1 where k = k(G).

P r o o f. If k = 0, then G is a finite group of odd order, so that p is surjective.
Thus the claim is true, if all finite fans are of order ≤ 2. So let # (F ) ≥ 4. Then by
Proposition 2.1 all α ∈ F have the same support. Clearly we may assume that R[Y ]
and thus R[Y ]G are domains and the support of all α ∈ F is the zero ideal. (But note
that G in general does not act effectively on Y . That is the reason why k(G) is not
defined just by the order of a maximal elementary abelian 2-group of G.) So let us
consider p : Sper(R(Y )) → Sper(R(Z)). The action of G extends to R(Y ). It can be
shown that R(Z) is the fixed field and the induced action of G/C on Sper(R(Y )) is
free, where C is the centralizer of R(Y ). Correspondingly, we may replace Y and thus
Z by monoidal extensions. So by resolution of singularities we may assume that Y is
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smooth. Now assume that F ∩ X̃ 6= ∅ and F is principal. Then there is a closed point
x ∈ Z such that all α ∈ F are specialized by x (compare [A-B-R, Chap. VI, 6-7]). Since
X is closed, we get x ∈ X. After blowing up we may assume that the orbit p−1(x)
has maximal dimension, in other words, for y ∈ p−1(x) the stabilizer Gy of y acts as a
discrete group on Ny(Y ) = Ty(Gy)⊥ ⊂ Ty(Y ) where Ty is the tangent space in y, and
orthogonality is with respect to an invariant scalar product in Ty(Y ). By Luna’s slice
theorem ([Lu], see also [Slo-Kno]) there is a subvariety S ⊂ Y having tangent space
Ty(S) = Ny(Y ) such that Gy acts on S and p defines an étale map S//Gy → Z = Y//G.
Clearly, p(S) covers a neighborhood of x in X. More precisely, let y′ = q(y) be the image
of y under q : S → S//Gy. Then there is a neighborhood U of y′ in S//Gy such that
p : U → p(U) ⊂ Z is a Nash-isomorphism. Since all α ∈ F are specialized by x we have
F ∩ X̃ = F ∩ p(S)∼.

Claim. The fan F lifts uniquely to a fan F ′ in Sper(R(S//Gy)) such that all β′ ∈ F ′
are centered at y′.

In order to see this take an element α ∈ F ∩ X and an extension α′ of α, α′ ∈
Sper(R(S//Gy)) such that α′ is centered at y′. Let v be the valuation associated to F
and v′ the extension of v to R(S//Gy) which is compatible with α′. By assumption v′ is
unramified over v. Therefore the kernel of Γv/2Γv → Γv′/2Γv′ is automatically contained
in the kernel of any character of Γv/2Γv. By the Baer-Krull theorem (see Section 3) it
follows that all β ∈ F can be extended to β′ in such a way that β′ is compatible with v′

and induces the same ordering than α′ on Kv′ . This settles the claim.

Now by Proposition 4.4 we have

# (F ) : # (F ∩ p(S)∼) = # (F ′) : # (F ′ ∩ q(S)∼) ≤ 2k(Gy).

But k(Gy) ≤ k(G). This settles the claim for principal fans. Since a non-principal fan F
splits into two principal fans of the same size, the worst thing that can happen is that
# (F ) : # (F ∩ p(S)∼) = 2k(G)+1.

Unfortunately, I was not able to handle the non-principal fans as in the proof of
Proposition 4.4. In the same way as Proposition 5.5 we get

Proposition 5.8. Let G be a compact Lie group, acting effectively on the irreducible
variety Y and let k be the maximal number for which G contains an elementary abelian
subgroup of order 2k. Then the orbit space X = p(Y ) ⊂ Z has the form X = {b1 ≥ 0, . . . ,
. . . , bk+1 ≥ 0} ∪ T with bi ∈ R[Z] and dim(T ) < dim(Z).

In fact, in all examples I know one needs only k inequalities and no T. Of course, if
Y is smooth, or if the regular points are dense in Y one can write X as the closure of
a basic open set of the form {b1 > 0, . . . , bk+1 > 0}. Let us continue with the situation
in the proof of Lemma 5.7. A fan F ⊂ X̃ ∩ Sper(R(Z)) lifts uniquely to a fan F ′ in
Sper(R(S//Gy)) such that all β′ ∈ F ′ are centered at y′. This is as in the claim but F

is not the same fan. Here we consider only fans which are completely contained in X̃.
Now F ′ lifts to a fan F̃ ⊂ Sper(R(S)) such that all β̃ ∈ F̃ are centered at y. Moreover,
the fibers of the map p : F̃ → F consist of e elements where e is the ramification index
of v′ for the Galois extension R(S)/R(S//Gy) and v′ is the valuation associated to F ′

(compare the proof of Proposition 3.4).
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Now let C ⊂ Y be basic (open or closed), described by s elements and let C be
G-invariant. Then

C̃ ∩ F̃ = ∅ or # (F̃ ) : (C̃ ∩ F̃ ) = 2t with t ≤ s.
Hence p(C)∼ ∩ F = ∅ or # (F ) : # (F ∩ p(C)∼) = 2t. Next consider a fan F ⊂ X̃ ∩
Sper(R(Z)) which is not centered at one point. So F is not principal. As before we get

F ∩ p(C)∼ = ∅ or # (F ) : # (F ∩ p(S))∼ = 2t with t ≤ s+ 1.

Using again [A-B-R, V, Theorem 2.9] we obtain

Proposition 5.9. Let C ⊂ Y be basic closed , say C = {a1 ≥ 0, . . . , as ≥ 0} with
ai ∈ R[Y ] and assume that C is G-invariant. Then C can be written in the form C =
{b1 ≥ 0, . . . , bl ≥ 0} with bi ∈ R[Y ]G and l ≤ (s+ 1)(d− 1

2s) for s < d, l ≤ 1
2d(d+ 1) for

s ≥ d, where d = dim(Z).

Again I do not know any example where one cannot choose l = s. Also, up to a set
of smaller dimension, C can be described by s+ 1 invariant inequalities.

Now let C ⊂ Y be basic open. Since p is proper, as in the proof of Theorem 4.7 we see
that p(C) ∩ClZ(Bd(p(C)) = ∅ where again the boundary has to be taken in the interior
of X. Hence we get from Lemma 5.7 and Theorem 2.3:

Theorem 5.10. Let C ⊂ Y be G-invariant and basic open, say C = {a1 > 0, . . . ,
. . . , as > 0} with ai ∈ R[Y ]. Then C can also be written in the form C = {b1 > 0, . . . ,
. . . , bs+1 > 0} with bi ∈ R[Z] = R[Y ]G.
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