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1. Introduction and preliminaries. Let X be an infinite-dimensional
complex Banach space and denote the set of bounded linear operators on X
by B(X). K(X) denotes the ideal of compact operators on X. Let o(7T") and
o(T) denote, respectively, the spectrum and the resolvent set of an element
T of B(X). The set of those operators T' of B(X) for which the range T'(X)
is closed and «(T'), the dimension of the null space N(T') of T', is finite is
denoted by ¢ (X). Set

&_(X)={T € B(X) : 5(T) is finite},

where [(T) is the codimension of T'(X). Observe that T(X) is closed if
T e d_(X) ([3], Satz 55.4). Operators in @4 (X) U P_(X) are called semi-
Fredholm operators. For such an operator T' we define the index of T by
ind(T) = a(T)—pB(T). An operator T is called a Fredholm operator if T €
D(X) =2, (X)NP_(X). Let &, (X) denote the set of those operators T" in
& (X) for which ind(T") < 0.
For an operator 7" in B(X) we will use the following notations:
O(T)={Ne€C: AN -TedX)},
X(T)={A € C: A —T is semi-Fredholm},
S (T)={AeC: A\ -T € ®,(X)}
and
H(T)={f:A(f) = C: A(f) is open, o(T) C A(f), f is holomorphic}.

It is well known that @¢(T'), X(T') and X (T') are open [3], §82. For feH(T),
the operator f(T) is defined by the well-known analytic calculus (see [3]).
Let T' € B(X). We write o¢(T") for Schechter’s essential spectrum of T
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(see [11)), i.e.,
oo(T)= (] o(T+K).
KeK(X)
This essential spectrum has the following properties:

1. C\ 0o(T) = {\ € (T) : ind(A\I — T) = 0} ([3], Satz 107.3).

2. 0.(f(T)) C f(oe(T)) for each f € H(T), and this inclusion may be
proper (see [2] and [6]; see also [12], where the above inclusion is shown in
the context of Fredholm elements in Banach algebras).

3. If f € H(T) is univalent, then o.(f(T)) = f(0e(T)) (see [6], Remark
1 in Section 3).

In [12] we have introduced (in a more general context) the following class
of operators:

S(X) = {T € B(X) : ind(\ — T) < 0 for all \ € &(T)
or ind(AI —T) >0 for all A € &(T)}.
We have shown in [12] that
(%) TeSX)< o.(f(T)) = f(oo(T)) for all f e H(T).
Thus (%) is a generalization of Theorem 1 in [5].
Let 0,p(T") denote the approzimate point spectrum of T € B(X), i.e.,
oap(T)={AeC: ||:icIH1£1 (AT —T)z|| = 0}.

The essential approzimate point spectrum Oeap(T) of T was introduced by
V. Rakocevi¢ in [8] as follows:

GenT) = [ oup(T+K)
KeK(X)
(see also [9] and [10]).
Set further
S+ (X)={T € B(X) :ind(M —T) <0 for all A € X (T
or ind(AMl —T) >0 forall A e X (T)}.

Clearly we have S, (X) C §(X).
The aim of the paper is to show the following result:

(xx) T e€S8:i(X)© Oeap(f(T)) = f(0eap(T)) for all f e H(T).

The first part of the following proposition is probably known. According
to C. Pearcy [7], this result has already appeared in a preprint Fredholm
operators by P. R. Halmos in 1967. For the convenience of the reader we
shall include a proof.
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ProposITION 1. (1) If T,S€ P (X) [resp. €P_(X)] then TS e P (X)
[resp. € P_X)], and

ind(TS) = ind(T) + ind(S).

(2) If T,S € B(X), TS € &4(X) [resp. € @_(X)] then S € &, (X)
[resp. T € &_(X)].

Proof. (1) It suffices to consider the case where T, S € ¢, (X) (because
of [3], Satz 82.1).

Case 1: T,S € ¢(X). Then, by [3], §71, T'S € &(X) and ind(TS) =
ind(T) + ind(S).

Case 22 T ¢ d(X)or S ¢ P(X). Then B(T) = oo or B(S) = co. Use
[3], Aufgabe 82.2,4, to get T'S € ¢, (X) and S(T'S) = co. Hence

ind(7'S) = —oo = ind(7T’) + ind(S5).
(2) See [3], Aufgabe 82.3,4. =

2. Properties of 0c,p(T"). We begin with some properties of geap (')
due to V. Rakocevi¢:

PROPOSITION 2. Let T € B(X).

(1) 00e(T) C Geap(T) (where doe(T) denotes the boundary of oe(T')).
(2) eap(T') # 0.

B) A 0cap(T) & XN —T € & (X) and ind(AM —T) < 0.

(4) Oeap(T') is compact, oeap(T) C o(T).

Proof. For (1), (2), see [8], Theorem 1. For (3), see [8], Lemmata 1
and 2. (4) is clear. m

PROPOSITION 3. Let T € B(X) and let Ay be a boundary point of o(T).
If Xo € X(T') then Ao is an isolated point of o(T).

Proof. Theorem 3 of [4] shows the existence of § > 0 such that A € X(T")
for |\ — Xo| < 0, a(AI —T) is a constant for 0 < |A — Ag| < é and BN\ —T)
is a constant for 0 < |\ — A\g| < 0. Take pg € o(T) with 0 < |uo — Ao| < 9.
Then a(puol —T) = B(pol —T) = 0, thus (M —T) = B(AM —T) = 0 for
0 < |XA — Xo| < 0. This shows that A € o(T) for 0 < [A — Xo| < 0. m

PROPOSITION 4. Let T € B(X) and h € H(T). If h has no zeroes in
Oeap(T) then h has at most a finite number of zeroes in o(T).

Proof. Assume that the number of zeroes of h in ¢(7T) is infinite. Then
there is zp € o(T) such that 2 is an accumulation point of the zeroes of h
in o(T). Denote by C the connected component of o(7") which contains zg
and by K the connected component of A(h) which contains zo (where A(h)
is the open set of the definition of h). It follows that C' C K and h =0 on
K. Let A\g € 0C. Then h(\g) = 0. Since h does not vanish on geap,(7),
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we have \g & 0eap(T') and therefore \g € X (7). Since C is a connected
component of o(T"), we also have \g € do(T'). By Proposition 3 we see that
Ao is an isolated point of o(T). Thus C = {\g}. Hence we get zop = Ao, a
contradiction, since zq is an accumulation point of (7). m

PROPOSITION 5. Let (T3,) be a sequence in B(X) converging toT € B(X)
in the operator norm. If V C C is open and 0 € V', then there exists ng € N
such that

Teap(Tn) C Oeap(T) + V' for all n > nyg.

Proof. Assume not. Then by passing to a subsequence (if necessary)
it may be assumed that for each n there exists A, € eap(T,) such that
An & Oeap(T)+ V. Since (A,,) is bounded, we may assume (if necessary pass
to a subsequence) that lim,, ..o A, = Ag. This gives A\g & deap(T)+ V', hence
Ao & Oeap(T). Thus Mgl — T € @ (X) (Proposition 2(3)). Since & (X) is
an open multiplicative semigroup (see [3], § 82) and A\, I — T}, — Nl — T
(n — 00), we get some N € N such that \,J — T}, € ¢ (X) for all n > N.
Use again Proposition 2(3) to derive X\, &€ 0eap(7Ty) for each n > N, a
contradiction. m

3. Spectral mapping theorem for o.,,(7"). The following result is
due to V. Rakocevié¢ ([10], Theorem 3.3). For the convenience of the reader
we give a (slightly simpler) proof.

THEOREM 1. Let T € B(X) and f € H(T). Then

Teap(f(T)) S f(0eap(T))-

Proof. Let u € f(0eap(T')) and put A(A) = pr — f(X). Then h has no
zeroes in oeap(T"). Applying Proposition 4 we conclude that h has at most
a finite number of zeroes in o(T).

Case 1: h has no zeroes in o(T). Then h(T) = pul — f(T) is invertible,

thus p & oeap(f(T)).
Case 2: h has finitely many zeroes in o(7). Let A1,..., A\x be those

zeroes. Then there exist ny,...,n, € N and g € H(T) such that

NG =Nm,  g(T) is invertible,
j=1

and

k
H AT —T)"
Since A1, ..., Ay & Teap(T') we get
NI—Ted, (X) and indMI-T)<0 (j=1,...,k).
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Use Proposition 1(1) to derive h(T) € &, (X) and

k
ind(h(T)) = ind(g(T)) + Y _n;ind(A\;I - T) < 0.

—
=0 J <0

Thus pl — f(T) = h(T') € ¢, (X) and therefore p & eap(f(1)). m

Example 4.2 in [9] shows that the inclusion in Theorem 1 may be proper.
In the first section of this paper we introduced the following class of
operators:
S+(X)=A{T e B(X):ind(AM] —=T) <0 forall A\ € ¥ (T)
or ind(AI =T)>0forall A e ¥, (T)}.

PROPOSITION 6. Let T € S1(X) and let v be a rational function in
H(T'). Then

Ueap (T (T)) = T(Ueap (T) ) .

Proof. By Theorem 1 we only have to show 7(0cap(T")) C Teap(r(T)).
Let » = p/q, where p and ¢ are polynomials and ¢ has no zeroes in o(T).
Hence ¢(T') is invertible. Let p ¢ 0eap((T")), thus, by Proposition 2(3),

pl —r(T) € @4(X) and ind(pl —r(T)) <0.

Put A(\) = p—r(N), thus h(A\) = (ug(A\)—p(N))/q(X). There exist pq, ..., pr,
o € C such that
(1= A) - (e = A)

ey '
This gives ¢(T)h(T) = a(prl —T)...(uxl —T). Since q(T)h(T) € P4 (X),
Proposition 1(2) shows that

il —Ted (X) forj=1,...,k.

h(\) =

Furthermore, by Proposition 1(1), we have

k
> ind(u,; I — T) = ind(q(T)R(T)) = ind(¢(T)) + ind(h(T))
i=1 —

= ind(h(T)) = ind(pul — r(T)) < 0.

Case 1: ind(Al —7T) < 0 for all A € X (T). Since p; € X (T) for
Jj=1,...,k, we derive ind(p; I —T) <0 for j =1,...,k, hence ;I —T €
@ (X) (j =1,...,k) and therefore, by Proposition 2(3),

Wi & Oeap(T) forj=1,... k.
This gives p & 17(0eap(T))-
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Case 2: ind(AM —T) > 0 for all A € X, (T). Then ind(;;1 —T) > 0
(j =1,...,k) and therefore

0< i ind(u;I — T) = ind(ul — r(T)) <O0.
j=1
This shows that ind(u;I —T) = 0 for j = 1,...,k. Thus p; & 0eap(T)
(j=1,...,k) and hence p & r(0eap(T)). m
Now we are in a position to state the main result of this paper:
THEOREM 2. If T € B(X) then
T € 84(X) © 0eap(f(T)) = f(0eap(T)) for all f € H(T).

Proof. “=”. The inclusion “C” follows from Theorem 1. Let A(f)
denote the (open) set of the definition of f. Corollary 6.6 of [1] shows the
existence of a sequence (r,) of rational functions such that (r,) converges
to f uniformly on compact subsets of A(f). Thus |r,(T) — f(T)|| — 0
(n — 00) ([3], Aufgabe 99.1). Let V be an open set in C containing the
origin. By Proposition 5 and the uniform convergence on ce,p(T), there
exists ng € N such that

f(Oeap(T)) C Tn(0eap(T)) +V
and
for all n > ng. Proposition 6 gives
Tn(Ceap(T')) = Oeap(rn(T))  for all m € N,
thus
f(UCap(T)) - Ucap(rno (T)) +VC Ucap(f(T)) +V+V
Since V' was an arbitrary neighbourhood of 0, we get

f(aeap<T)) - Ueap(f(T))'

“«<”. Assume to the contrary that T' ¢ Sy (X). Then there are A\, Ay €

ind\MI—T)>0 and ind(Al —T) < 0.

It follows that B(AMI —T) < oo, hence \iI — T € ¢(X) and thus k :=
ind(\I —T) € N.

Case 1: oI —T € &(X). Put m := —ind(AoI—T), thus m € N. Define
the function f € H(T) by f(A) = (A1 —=A)"(A2—A)*. Then f(T) € &(X) and
ind(f(T)) = mk+k(—m) =0, thus 0 € oeap(f(T)). Since \I =T ¢ ¢ (X)
we see by Proposition 2(3) that A\; € 0eap(T") and therefore 0 = f(A;) €
f(0eap(T)), a contradiction.
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Case 2: Aol —T ¢ ¢(X). Then S(Aol —T) =00 and ind(Aof —T) =
—o00. Put f(A) = (A1 — A\)(A2 — A). It follows from Proposition 1(1) that
f(T) € &4 (X) and that

ind(f(T)) =k — 0o = —o0,

thus 0 & Oeap(f(T)). As in Case 1 we have 0 = f(A\1) € f(Ceap(T)), a
contradiction. m

4. The essential defect spectrum. For T' € B(X) the defect spectrum
os(T) is defined by

os5(T) ={X € C: AI — T is not surjective}.
We define the essential defect spectrum oes(T) of T' by
os(T) = [ os(T+K).
Kek(X)

We let X* designate the conjugate space of X and T the adjoint of T €
B(X).

PROPOSITION 7. Let T € B(X).

(D) Aoes(T) =N -Te?_(X) andind(AN —T) > 0.

(2) 0es(T) = Oeap(T™).

(3) oes(T) # 0.

Proof. (1) “=7. If X\ € 0e5(T) then there is K € IC(X) such that
A os(T+ K), thus A\ — T — K is surjective, hence \[ - T — K € &_(X)
and ind(A\I =T — K) = a(AM —T — K) > 0. Satz 82.5 of [3] shows then that
A —T € &_(X) and ind(\ — T) = ind(AM — T — K) > 0.
“=" AN T € &_(X) and ind(N — T') > 0 then, by [13], Theorem
3.13, there are Uy, Uy € B(X) such that
M —-T=U; +Us, UQGIC(X), Ul(X):X

Thus A — (T + U,) is surjective and therefore A\ & o5(1 + Us). This gives
)\ §_i Je(g(T).
(2) Use (1), Proposition 2(3) and [3], Satz 82.1, to get

AN oes(T) & M* —T* € &, (X*) and ind \[* —T*) <0
S N E Teap(TT).

(3) This follows from (2) and Proposition 2(2). m
THEOREM 3. For T € B(X) and f € H(T) we have

oes(f(T)) C f(oes(T)).
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Proof. We have
0es(f(T)) = 0eap((f(T))*)  (by Proposition 7(2))

= Ueap(f(T*))
C f(Oeap(T™)) (by Theorem 1)
= f(oes(T)) (by Proposition 7(2)). m

For our final result in this section, which is dual to Theorem 2, we need
the following definitions. For T in B(X) set ¥_(T) ={A € C: A\ -T €
@_(X)}. The class S_(X) of operators is defined by

S_(X)={T € B(X) :ind(AMl =T) >0 forall A € ¥_(T)
or ind(AI —T) <0 foral e ¥ _(T)}.

It follows from [3], Satz 82.1, that X(T') = X(T%), X4 (T) = X_(T7),
Y _(T)= X, (T") and that

ind(AI —T)=—ind(\[* —=T") forall A € X(T).
This gives
TeS (X)eT eSS (X"), TeS(X)eT eSS (XN).
As an immediate consequence of Theorem 2 and Proposition 7 we get
THEOREM 4. Let T € B(X). Then
T €S (X) & f(oes(T)) = oes(f(T)) for all f € H(T).

5. Schechter’s essential spectrum. In this final section we return to
0e(T) = Niex(x) oI+ K). Recall that A & () if and only if A € &(T')
and ind(Al —T') = 0. We have mentioned in Section 1 that the following
result holds.

THEOREM 5. Let T' € B(X).

(1) 0e(f(T)) C f(0e(T)) for each | € H(T).
(2) T € S(X) & 0c(f(T)) = foe(T)) for all f € H(T).

The aim of this section is to prove Theorem 5 with the aid of the results
of the previous sections of this paper.

PROPOSITION 8. For T € B(X) we have:
(1) 0e(T) = eap(T) Uoes(T).
(2) S(X) =8+ (X)US_(X).

Proof. (1) Use Propositions 2(3) and 7(1).
(2) The inclusion S (X)US_(X) C S(X) is clear. Let T' € S(X) and
assume T ¢ S (X)US_(X). Then there are A;, Ao € X (T) and A3, \s €
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Y _(T') such that ind(AM I —T) > 0, ind(A2f —T) <0, ind(As] —T") > 0 and
ind(A4I —T) < 0. This gives S(MI —T) < oo and a(A\y] —T') < 00, hence
A, Mg € D(T). Since T € S(X) and ind(M I —T) > 0, ind(\ —T) < 0, we
have a contradiction. m

Proof of Theorem 5. (1) Use Proposition 8(1), Theorem 1 and
Theorem 3 to derive

0e(f(T)) = Ocap(f(T
= f(aeap(T

(2) “=7. Let T € S(X) and f € H(T). We only have to show that
F(0u(T)) € 0ol f(T). Let pi & 0u(f(T)) = Oeap(f(T)) U aes (f(T)). Put
h :=p — f. Assume that there are \; € geap(T ) and Ay € 005(T") such that
h(A1) = h(X2) = 0. It follows that p € f(0cap(T)) and p € f(oes(T)). If
T € S4(X) then we see by Theorem 2 that p € deap(f(T)) C oe(f(T)),
a contradiction. Similarly we get a contradiction if 7' € S_(X). Hence
we have shown that h does not vanish on oeap(T") or h does not vanish on
0es(T'). It suffices to consider the case h(\) # 0 for each X\ € 0eap(T') (since
0es(T') = Oeap(T™) the other case can be treated in the same manner). By
Proposition 4, h has at most a finite number of zeroes in o(T).

Case 1: h has no zeroes in o(T"). Then p & o(f(T')) = f(o(T)). This
gives 1 & f(oe(T)).

Case 2: There are pq,...,ux € o(T) and g € H(T) such that h(\) =
g TT5 (1 — A) and g(A) # 0 for A € o(T). Then we get

j=1

k
H pil —T), g(T) is invertible.

Since p & oo(f(T')) we see that h(T) € &(X) and ind(h(T")) = 0. Now use
Proposition 1 to derive

il —Ted(X) forj=1,....k

and
k

> ind(p;I = T) = ind(h(T)) = 0.

j=1
Since T' € S(X) it follows that ind(p; I —T) =0 (j = 1,...,k). Thus we
have p; € 0o(T) (j =1,...,n), hence u & f(oe(T)).

“<”. Assume to the contrary that 7" ¢ S(X). Then there are A\;, A\g €
&(T) with k :=ind(\MI—T) > 0 and m := —ind(Aof —T) > 0. Put f(\) =
(At = N (A — A)E. We get £(T) € S(X), ind(£(T)) = 0, 0 & oo (£(T)) but
0= f(M)=f(A2) € f(0e(T)). This contradiction completes the proof. m
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