THE SPECTRAL MAPPING THEOREM FOR THE ESSENTIAL APPROXIMATE POINT SPECTRUM

BY

CHRISTOPH SCHMOEGER (KARLSRUHE)

1. Introduction and preliminaries. Let X be an infinite-dimensional complex Banach space and denote the set of bounded linear operators on X by $\mathcal{B}(X)$. $\mathcal{K}(X)$ denotes the ideal of compact operators on X. Let $\sigma(T)$ and $\varrho(T)$ denote, respectively, the spectrum and the resolvent set of an element T of $\mathcal{B}(X)$. The set of those operators T of $\mathcal{B}(X)$ for which the range T(X) is closed and $\alpha(T)$, the dimension of the null space N(T) of T, is finite is denoted by $\Phi_+(X)$. Set

$$\Phi_{-}(X) = \{ T \in \mathcal{B}(X) : \beta(T) \text{ is finite} \},$$

where $\beta(T)$ is the codimension of T(X). Observe that T(X) is closed if $T \in \Phi_{-}(X)$ ([3], Satz 55.4). Operators in $\Phi_{+}(X) \cup \Phi_{-}(X)$ are called semi-fredholm operators. For such an operator T we define the index of T by $\operatorname{ind}(T) = \alpha(T) - \beta(T)$. An operator T is called a Fredholm operator if $T \in \Phi(X) = \Phi_{+}(X) \cap \Phi_{-}(X)$. Let $\Phi_{+}^{-}(X)$ denote the set of those operators T in $\Phi_{+}(X)$ for which $\operatorname{ind}(T) \leq 0$.

For an operator T in $\mathcal{B}(X)$ we will use the following notations:

$$\begin{split} &\varPhi(T) = \{\lambda \in \mathbb{C} : \lambda I - T \in \varPhi(X)\}, \\ &\varSigma(T) = \{\lambda \in \mathbb{C} : \lambda I - T \text{ is semi-Fredholm}\}, \\ &\varSigma_{+}(T) = \{\lambda \in \mathbb{C} : \lambda I - T \in \varPhi_{+}(X)\} \end{split}$$

and

$$\mathcal{H}(T) = \{ f : \Delta(f) \to \mathbb{C} : \Delta(f) \text{ is open, } \sigma(T) \subseteq \Delta(f), f \text{ is holomorphic} \}.$$

It is well known that $\Phi(T)$, $\Sigma(T)$ and $\Sigma_{+}(T)$ are open [3], §82. For $f \in \mathcal{H}(T)$, the operator f(T) is defined by the well-known analytic calculus (see [3]).

Let $T \in \mathcal{B}(X)$. We write $\sigma_{e}(T)$ for Schechter's essential spectrum of T

¹⁹⁹¹ Mathematics Subject Classification: 47A10, 47A53.

Key words and phrases: semi-Fredholm operators, essential spectrum.

(see [11]), i.e.,

$$\sigma_{\mathrm{e}}(T) = \bigcap_{K \in \mathcal{K}(X)} \sigma(T + K).$$

This essential spectrum has the following properties:

- 1. $\mathbb{C} \setminus \sigma_{\mathbf{e}}(T) = \{ \lambda \in \Phi(T) : \operatorname{ind}(\lambda I T) = 0 \}$ ([3], Satz 107.3).
- 2. $\sigma_{\rm e}(f(T)) \subseteq f(\sigma_{\rm e}(T))$ for each $f \in \mathcal{H}(T)$, and this inclusion may be proper (see [2] and [6]; see also [12], where the above inclusion is shown in the context of Fredholm elements in Banach algebras).
- 3. If $f \in \mathcal{H}(T)$ is univalent, then $\sigma_{\rm e}(f(T)) = f(\sigma_{\rm e}(T))$ (see [6], Remark 1 in Section 3).

In [12] we have introduced (in a more general context) the following class of operators:

$$\mathcal{S}(X) = \{ T \in \mathcal{B}(X) : \operatorname{ind}(\lambda I - T) \le 0 \text{ for all } \lambda \in \Phi(T)$$
 or $\operatorname{ind}(\lambda I - T) \ge 0 \text{ for all } \lambda \in \Phi(T) \}.$

We have shown in [12] that

(*)
$$T \in \mathcal{S}(X) \Leftrightarrow \sigma_{e}(f(T)) = f(\sigma_{e}(T)) \text{ for all } f \in \mathcal{H}(T).$$

Thus (*) is a generalization of Theorem 1 in [5].

Let $\sigma_{ap}(T)$ denote the approximate point spectrum of $T \in \mathcal{B}(X)$, i.e.,

$$\sigma_{\mathrm{ap}}(T) = \{ \lambda \in \mathbb{C} : \inf_{\|x\|=1} \|(\lambda I - T)x\| = 0 \}.$$

The essential approximate point spectrum $\sigma_{\text{eap}}(T)$ of T was introduced by V. Rakočević in [8] as follows:

$$\sigma_{\text{eap}}(T) = \bigcap_{K \in \mathcal{K}(X)} \sigma_{\text{ap}}(T + K)$$

(see also [9] and [10]).

Set further

$$\mathcal{S}_{+}(X) = \{ T \in \mathcal{B}(X) : \operatorname{ind}(\lambda I - T) \leq 0 \text{ for all } \lambda \in \mathcal{L}_{+}(T)$$
 or $\operatorname{ind}(\lambda I - T) \geq 0 \text{ for all } \lambda \in \mathcal{L}_{+}(T) \}.$

Clearly we have $S_+(X) \subseteq S(X)$.

The aim of the paper is to show the following result:

(**)
$$T \in \mathcal{S}_{+}(X) \Leftrightarrow \sigma_{\text{eap}}(f(T)) = f(\sigma_{\text{eap}}(T)) \text{ for all } f \in \mathcal{H}(T).$$

The first part of the following proposition is probably known. According to C. Pearcy [7], this result has already appeared in a preprint *Fredholm operators* by P. R. Halmos in 1967. For the convenience of the reader we shall include a proof.

PROPOSITION 1. (1) If $T, S \in \Phi_+(X)$ [resp. $\in \Phi_-(X)$] then $TS \in \Phi_+(X)$ [resp. $\in \Phi_-(X)$], and

$$ind(TS) = ind(T) + ind(S).$$

(2) If $T, S \in \mathcal{B}(X)$, $TS \in \Phi_+(X)$ [resp. $\in \Phi_-(X)$] then $S \in \Phi_+(X)$ [resp. $T \in \Phi_-(X)$].

Proof. (1) It suffices to consider the case where $T, S \in \Phi_+(X)$ (because of [3], Satz 82.1).

Case 1: $T, S \in \Phi(X)$. Then, by [3], §71, $TS \in \Phi(X)$ and $\operatorname{ind}(TS) = \operatorname{ind}(T) + \operatorname{ind}(S)$.

Case 2: $T \notin \Phi(X)$ or $S \notin \Phi(X)$. Then $\beta(T) = \infty$ or $\beta(S) = \infty$. Use [3], Aufgabe 82.2,4, to get $TS \in \Phi_+(X)$ and $\beta(TS) = \infty$. Hence

$$\operatorname{ind}(TS) = -\infty = \operatorname{ind}(T) + \operatorname{ind}(S).$$

- (2) See [3], Aufgabe 82.3,4.
- **2. Properties of** $\sigma_{\text{eap}}(T)$ **.** We begin with some properties of $\sigma_{\text{eap}}(T)$ due to V. Rakočević:

Proposition 2. Let $T \in \mathcal{B}(X)$.

- (1) $\partial \sigma_{\rm e}(T) \subseteq \sigma_{\rm eap}(T)$ (where $\partial \sigma_{\rm e}(T)$ denotes the boundary of $\sigma_{\rm e}(T)$).
- (2) $\sigma_{\rm eap}(T) \neq \emptyset$.
- (3) $\lambda \notin \sigma_{\text{eap}}(T) \Leftrightarrow \lambda I T \in \Phi_+(X) \text{ and } \operatorname{ind}(\lambda I T) \leq 0.$
- (4) $\sigma_{\text{eap}}(T)$ is compact, $\sigma_{\text{eap}}(T) \subseteq \sigma(T)$.

Proof. For (1), (2), see [8], Theorem 1. For (3), see [8], Lemmata 1 and 2. (4) is clear. \blacksquare

PROPOSITION 3. Let $T \in \mathcal{B}(X)$ and let λ_0 be a boundary point of $\sigma(T)$. If $\lambda_0 \in \Sigma(T)$ then λ_0 is an isolated point of $\sigma(T)$.

Proof. Theorem 3 of [4] shows the existence of $\delta > 0$ such that $\lambda \in \Sigma(T)$ for $|\lambda - \lambda_0| < \delta$, $\alpha(\lambda I - T)$ is a constant for $0 < |\lambda - \lambda_0| < \delta$ and $\beta(\lambda I - T)$ is a constant for $0 < |\lambda - \lambda_0| < \delta$. Take $\mu_0 \in \varrho(T)$ with $0 < |\mu_0 - \lambda_0| < \delta$. Then $\alpha(\mu_0 I - T) = \beta(\mu_0 I - T) = 0$, thus $\alpha(\lambda I - T) = \beta(\lambda I - T) = 0$ for $0 < |\lambda - \lambda_0| < \delta$. This shows that $\lambda \in \varrho(T)$ for $0 < |\lambda - \lambda_0| < \delta$.

PROPOSITION 4. Let $T \in \mathcal{B}(X)$ and $h \in \mathcal{H}(T)$. If h has no zeroes in $\sigma_{\text{eap}}(T)$ then h has at most a finite number of zeroes in $\sigma(T)$.

Proof. Assume that the number of zeroes of h in $\sigma(T)$ is infinite. Then there is $z_0 \in \sigma(T)$ such that z_0 is an accumulation point of the zeroes of h in $\sigma(T)$. Denote by C the connected component of $\sigma(T)$ which contains z_0 and by K the connected component of $\Delta(h)$ which contains z_0 (where $\Delta(h)$ is the open set of the definition of h). It follows that $C \subseteq K$ and $h \equiv 0$ on K. Let $\lambda_0 \in \partial C$. Then $h(\lambda_0) = 0$. Since h does not vanish on $\sigma_{\text{eap}}(T)$,

we have $\lambda_0 \notin \sigma_{\text{eap}}(T)$ and therefore $\lambda_0 \in \Sigma(T)$. Since C is a connected component of $\sigma(T)$, we also have $\lambda_0 \in \partial \sigma(T)$. By Proposition 3 we see that λ_0 is an isolated point of $\sigma(T)$. Thus $C = \{\lambda_0\}$. Hence we get $z_0 = \lambda_0$, a contradiction, since z_0 is an accumulation point of $\sigma(T)$.

PROPOSITION 5. Let (T_n) be a sequence in $\mathcal{B}(X)$ converging to $T \in \mathcal{B}(X)$ in the operator norm. If $V \subseteq \mathbb{C}$ is open and $0 \in V$, then there exists $n_0 \in \mathbb{N}$ such that

$$\sigma_{\rm eap}(T_n) \subseteq \sigma_{\rm eap}(T) + V \quad \text{for all } n \ge n_0.$$

Proof. Assume not. Then by passing to a subsequence (if necessary) it may be assumed that for each n there exists $\lambda_n \in \sigma_{\rm eap}(T_n)$ such that $\lambda_n \not\in \sigma_{\rm eap}(T) + V$. Since (λ_n) is bounded, we may assume (if necessary pass to a subsequence) that $\lim_{n\to\infty}\lambda_n = \lambda_0$. This gives $\lambda_0 \not\in \sigma_{\rm eap}(T) + V$, hence $\lambda_0 \not\in \sigma_{\rm eap}(T)$. Thus $\lambda_0 I - T \in \Phi_+^-(X)$ (Proposition 2(3)). Since $\Phi_+^-(X)$ is an open multiplicative semigroup (see [3], § 82) and $\lambda_n I - T_n \to \lambda_0 I - T$ $(n\to\infty)$, we get some $N\in\mathbb{N}$ such that $\lambda_n I - T_n \in \Phi_+^-(X)$ for all $n\geq N$. Use again Proposition 2(3) to derive $\lambda_n \not\in \sigma_{\rm eap}(T_n)$ for each $n\geq N$, a contradiction.

3. Spectral mapping theorem for $\sigma_{\text{eap}}(T)$. The following result is due to V. Rakočević ([10], Theorem 3.3). For the convenience of the reader we give a (slightly simpler) proof.

THEOREM 1. Let $T \in \mathcal{B}(X)$ and $f \in \mathcal{H}(T)$. Then

$$\sigma_{\rm eap}(f(T)) \subseteq f(\sigma_{\rm eap}(T)).$$

Proof. Let $\mu \notin f(\sigma_{\text{eap}}(T))$ and put $h(\lambda) = \mu - f(\lambda)$. Then h has no zeroes in $\sigma_{\text{eap}}(T)$. Applying Proposition 4 we conclude that h has at most a finite number of zeroes in $\sigma(T)$.

Case 1: h has no zeroes in $\sigma(T)$. Then $h(T) = \mu I - f(T)$ is invertible, thus $\mu \notin \sigma_{\text{eap}}(f(T))$.

Case 2: h has finitely many zeroes in $\sigma(T)$. Let $\lambda_1, \ldots, \lambda_k$ be those zeroes. Then there exist $n_1, \ldots, n_k \in \mathbb{N}$ and $g \in \mathcal{H}(T)$ such that

$$h(\lambda) = g(\lambda) \prod_{j=1}^{k} (\lambda_j - \lambda)^{n_j}, \quad g(T) \text{ is invertible,}$$

and

$$h(T) = g(T) \prod_{j=1}^{k} (\lambda_j I - T)^{n_j}.$$

Since $\lambda_1, \ldots, \lambda_k \not\in \sigma_{\text{eap}}(T)$ we get

$$\lambda_j I - T \in \Phi_+(X)$$
 and $\operatorname{ind}(\lambda_j I - T) \le 0$ $(j = 1, \dots, k)$.

Use Proposition 1(1) to derive $h(T) \in \Phi_+(X)$ and

$$\operatorname{ind}(h(T)) = \underbrace{\operatorname{ind}(g(T))}_{=0} + \sum_{j=1}^{k} n_j \underbrace{\operatorname{ind}(\lambda_j I - T)}_{\leq 0} \leq 0.$$

Thus $\mu I - f(T) = h(T) \in \Phi_+^-(X)$ and therefore $\mu \notin \sigma_{\text{eap}}(f(T))$.

Example 4.2 in [9] shows that the inclusion in Theorem 1 may be proper. In the first section of this paper we introduced the following class of operators:

$$S_{+}(X) = \{ T \in \mathcal{B}(X) : \operatorname{ind}(\lambda I - T) \leq 0 \text{ for all } \lambda \in \Sigma_{+}(T)$$
 or $\operatorname{ind}(\lambda I - T) \geq 0 \text{ for all } \lambda \in \Sigma_{+}(T) \}.$

PROPOSITION 6. Let $T \in \mathcal{S}_+(X)$ and let r be a rational function in $\mathcal{H}(T)$. Then

$$\sigma_{\rm eap}(r(T)) = r(\sigma_{\rm eap}(T)).$$

Proof. By Theorem 1 we only have to show $r(\sigma_{\text{eap}}(T)) \subseteq \sigma_{\text{eap}}(r(T))$. Let r = p/q, where p and q are polynomials and q has no zeroes in $\sigma(T)$. Hence q(T) is invertible. Let $\mu \notin \sigma_{\text{eap}}(r(T))$, thus, by Proposition 2(3),

$$\mu I - r(T) \in \Phi_+(X)$$
 and $\operatorname{ind}(\mu I - r(T)) \le 0$.

Put $h(\lambda) = \mu - r(\lambda)$, thus $h(\lambda) = (\mu q(\lambda) - p(\lambda))/q(\lambda)$. There exist μ_1, \dots, μ_k , $\alpha \in \mathbb{C}$ such that

$$h(\lambda) = \alpha \frac{(\mu_1 - \lambda) \dots (\mu_k - \lambda)}{q(\lambda)}.$$

This gives $q(T)h(T) = \alpha(\mu_1 I - T) \dots (\mu_k I - T)$. Since $q(T)h(T) \in \Phi_+(X)$, Proposition 1(2) shows that

$$\mu_j I - T \in \Phi_+(X)$$
 for $j = 1, \dots, k$.

Furthermore, by Proposition 1(1), we have

$$\sum_{j=1}^{k} \operatorname{ind}(\mu_{j}I - T) = \operatorname{ind}(q(T)h(T)) = \underbrace{\operatorname{ind}(q(T))}_{=0} + \operatorname{ind}(h(T))$$
$$= \operatorname{ind}(h(T)) = \operatorname{ind}(\mu I - r(T)) \le 0.$$

Case 1: $\operatorname{ind}(\lambda I - T) \leq 0$ for all $\lambda \in \Sigma_+(T)$. Since $\mu_j \in \Sigma_+(T)$ for $j = 1, \ldots, k$, we derive $\operatorname{ind}(\mu_j I - T) \leq 0$ for $j = 1, \ldots, k$, hence $\mu_j I - T \in \Phi_+^-(X)$ $(j = 1, \ldots, k)$ and therefore, by Proposition 2(3),

$$\mu_i \notin \sigma_{\text{eap}}(T)$$
 for $j = 1, \dots, k$.

This gives $\mu \notin r(\sigma_{\text{eap}}(T))$.

Case 2: $\operatorname{ind}(\lambda I - T) \geq 0$ for all $\lambda \in \Sigma_+(T)$. Then $\operatorname{ind}(\mu_j I - T) \geq 0$ $(j = 1, \ldots, k)$ and therefore

$$0 \le \sum_{j=1}^{k} \operatorname{ind}(\mu_j I - T) = \operatorname{ind}(\mu I - r(T)) \le 0.$$

This shows that $\operatorname{ind}(\mu_j I - T) = 0$ for $j = 1, \ldots, k$. Thus $\mu_j \notin \sigma_{\operatorname{eap}}(T)$ $(j = 1, \ldots, k)$ and hence $\mu \notin r(\sigma_{\operatorname{eap}}(T))$.

Now we are in a position to state the main result of this paper:

THEOREM 2. If $T \in \mathcal{B}(X)$ then

$$T \in \mathcal{S}_{+}(X) \Leftrightarrow \sigma_{\text{eap}}(f(T)) = f(\sigma_{\text{eap}}(T)) \text{ for all } f \in \mathcal{H}(T).$$

Proof. " \Rightarrow ". The inclusion " \subseteq " follows from Theorem 1. Let $\Delta(f)$ denote the (open) set of the definition of f. Corollary 6.6 of [1] shows the existence of a sequence (r_n) of rational functions such that (r_n) converges to f uniformly on compact subsets of $\Delta(f)$. Thus $||r_n(T) - f(T)|| \to 0$ $(n \to \infty)$ ([3], Aufgabe 99.1). Let V be an open set in $\mathbb C$ containing the origin. By Proposition 5 and the uniform convergence on $\sigma_{\rm eap}(T)$, there exists $n_0 \in \mathbb N$ such that

$$f(\sigma_{\rm eap}(T)) \subseteq r_n(\sigma_{\rm eap}(T)) + V$$

and

$$\sigma_{\rm eap}(r_n(T)) \subseteq \sigma_{\rm eap}(f(T)) + V$$

for all $n \ge n_0$. Proposition 6 gives

$$r_n(\sigma_{\text{eap}}(T)) = \sigma_{\text{eap}}(r_n(T))$$
 for all $n \in \mathbb{N}$,

thus

$$f(\sigma_{\text{eap}}(T)) \subseteq \sigma_{\text{eap}}(r_{n_0}(T)) + V \subseteq \sigma_{\text{eap}}(f(T)) + V + V.$$

Since V was an arbitrary neighbourhood of 0, we get

$$f(\sigma_{\text{eap}}(T)) \subseteq \sigma_{\text{eap}}(f(T)).$$

"\(\infty\)". Assume to the contrary that $T \notin \mathcal{S}_+(X)$. Then there are $\lambda_1, \lambda_2 \in \mathcal{\Sigma}_+(T)$ with

$$\operatorname{ind}(\lambda_1 I - T) > 0$$
 and $\operatorname{ind}(\lambda_2 I - T) < 0$.

It follows that $\beta(\lambda_1 I - T) < \infty$, hence $\lambda_1 I - T \in \Phi(X)$ and thus $k := \operatorname{ind}(\lambda_1 I - T) \in \mathbb{N}$.

Case 1: $\lambda_2 I - T \in \Phi(X)$. Put $m := -\operatorname{ind}(\lambda_2 I - T)$, thus $m \in \mathbb{N}$. Define the function $f \in \mathcal{H}(T)$ by $f(\lambda) = (\lambda_1 - \lambda)^m (\lambda_2 - \lambda)^k$. Then $f(T) \in \Phi(X)$ and $\operatorname{ind}(f(T)) = mk + k(-m) = 0$, thus $0 \notin \sigma_{\operatorname{eap}}(f(T))$. Since $\lambda_1 I - T \notin \Phi_+^-(X)$ we see by Proposition 2(3) that $\lambda_1 \in \sigma_{\operatorname{eap}}(T)$ and therefore $0 = f(\lambda_1) \in f(\sigma_{\operatorname{eap}}(T))$, a contradiction.

Case 2: $\lambda_2 I - T \notin \Phi(X)$. Then $\beta(\lambda_2 I - T) = \infty$ and $\operatorname{ind}(\lambda_2 I - T) = -\infty$. Put $f(\lambda) = (\lambda_1 - \lambda)(\lambda_2 - \lambda)$. It follows from Proposition 1(1) that $f(T) \in \Phi_+(X)$ and that

$$\operatorname{ind}(f(T)) = k - \infty = -\infty,$$

thus $0 \notin \sigma_{\text{eap}}(f(T))$. As in Case 1 we have $0 = f(\lambda_1) \in f(\sigma_{\text{eap}}(T))$, a contradiction.

4. The essential defect spectrum. For $T \in \mathcal{B}(X)$ the defect spectrum $\sigma_{\delta}(T)$ is defined by

$$\sigma_{\delta}(T) = \{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not surjective} \}.$$

We define the essential defect spectrum $\sigma_{e\delta}(T)$ of T by

$$\sigma_{e\delta}(T) = \bigcap_{K \in \mathcal{K}(X)} \sigma_{\delta}(T+K).$$

We let X^* designate the conjugate space of X and T^* the adjoint of $T \in \mathcal{B}(X)$.

Proposition 7. Let $T \in \mathcal{B}(X)$.

- (1) $\lambda \notin \sigma_{e\delta}(T) \Leftrightarrow \lambda I T \in \Phi_{-}(X) \text{ and } \operatorname{ind}(\lambda I T) \geq 0.$
- (2) $\sigma_{e\delta}(T) = \sigma_{eap}(T^*)$.
- (3) $\sigma_{e\delta}(T) \neq \emptyset$.

Proof. (1) "\(\Rightarrow\)". If $\lambda \notin \sigma_{e\delta}(T)$ then there is $K \in \mathcal{K}(X)$ such that $\lambda \notin \sigma_{\delta}(T+K)$, thus $\lambda I - T - K$ is surjective, hence $\lambda I - T - K \in \Phi_{-}(X)$ and $\operatorname{ind}(\lambda I - T - K) = \alpha(\lambda I - T - K) \geq 0$. Satz 82.5 of [3] shows then that $\lambda I - T \in \Phi_{-}(X)$ and $\operatorname{ind}(\lambda I - T) = \operatorname{ind}(\lambda I - T - K) \geq 0$.

" \Leftarrow ". If $\lambda I - T \in \Phi_{-}(X)$ and $\operatorname{ind}(\lambda I - T) \geq 0$ then, by [13], Theorem 3.13, there are $U_1, U_2 \in \mathcal{B}(X)$ such that

$$\lambda I - T = U_1 + U_2, \quad U_2 \in \mathcal{K}(X), \quad U_1(X) = X.$$

Thus $\lambda I - (T + U_2)$ is surjective and therefore $\lambda \notin \sigma_{\delta}(T + U_2)$. This gives $\lambda \notin \sigma_{e\delta}(T)$.

(2) Use (1), Proposition 2(3) and [3], Satz 82.1, to get

$$\lambda \not\in \sigma_{\mathrm{e}\delta}(T) \Leftrightarrow \lambda I^* - T^* \in \Phi_+(X^*) \text{ and } \mathrm{ind}(\lambda I^* - T^*) \le 0$$

 $\Leftrightarrow \lambda \not\in \sigma_{\mathrm{eap}}(T^*).$

(3) This follows from (2) and Proposition 2(2). \blacksquare

THEOREM 3. For $T \in \mathcal{B}(X)$ and $f \in \mathcal{H}(T)$ we have

$$\sigma_{e\delta}(f(T)) \subseteq f(\sigma_{e\delta}(T)).$$

Proof. We have

$$\sigma_{\mathrm{e}\delta}(f(T)) = \sigma_{\mathrm{eap}}((f(T))^*) \quad \text{(by Proposition 7(2))}$$

$$= \sigma_{\mathrm{eap}}(f(T^*))$$

$$\subseteq f(\sigma_{\mathrm{eap}}(T^*)) \quad \text{(by Theorem 1)}$$

$$= f(\sigma_{\mathrm{e}\delta}(T)) \quad \text{(by Proposition 7(2)).} \quad \blacksquare$$

For our final result in this section, which is dual to Theorem 2, we need the following definitions. For T in $\mathcal{B}(X)$ set $\Sigma_{-}(T) = \{\lambda \in \mathbb{C} : \lambda I - T \in \Phi_{-}(X)\}$. The class $\mathcal{S}_{-}(X)$ of operators is defined by

$$\mathcal{S}_{-}(X) = \{ T \in \mathcal{B}(X) : \operatorname{ind}(\lambda I - T) \ge 0 \text{ for all } \lambda \in \mathcal{L}_{-}(T)$$
 or $\operatorname{ind}(\lambda I - T) \le 0 \text{ for all } \lambda \in \mathcal{L}_{-}(T) \}.$

It follows from [3], Satz 82.1, that $\Sigma(T) = \Sigma(T^*)$, $\Sigma_+(T) = \Sigma_-(T^*)$, $\Sigma_-(T) = \Sigma_+(T^*)$ and that

$$\operatorname{ind}(\lambda I - T) = -\operatorname{ind}(\lambda I^* - T^*)$$
 for all $\lambda \in \Sigma(T)$.

This gives

$$T \in \mathcal{S}_{-}(X) \Leftrightarrow T^* \in \mathcal{S}_{+}(X^*), \quad T \in \mathcal{S}_{+}(X) \Leftrightarrow T^* \in \mathcal{S}_{-}(X^*).$$

As an immediate consequence of Theorem 2 and Proposition 7 we get

THEOREM 4. Let $T \in \mathcal{B}(X)$. Then

$$T \in \mathcal{S}_{-}(X) \Leftrightarrow f(\sigma_{e\delta}(T)) = \sigma_{e\delta}(f(T)) \text{ for all } f \in \mathcal{H}(T).$$

5. Schechter's essential spectrum. In this final section we return to $\sigma_{\rm e}(T) = \bigcap_{K \in \mathcal{K}(X)} \sigma(T+K)$. Recall that $\lambda \not\in \sigma_{\rm e}(T)$ if and only if $\lambda \in \Phi(T)$ and $\operatorname{ind}(\lambda I - T) = 0$. We have mentioned in Section 1 that the following result holds.

THEOREM 5. Let $T \in \mathcal{B}(X)$.

- (1) $\sigma_{\mathbf{e}}(f(T)) \subseteq f(\sigma_{\mathbf{e}}(T))$ for each $f \in \mathcal{H}(T)$.
- (2) $T \in \mathcal{S}(X) \Leftrightarrow \sigma_{e}(f(T)) = f(\sigma_{e}(T)) \text{ for all } f \in \mathcal{H}(T).$

The aim of this section is to prove Theorem 5 with the aid of the results of the previous sections of this paper.

PROPOSITION 8. For $T \in \mathcal{B}(X)$ we have:

- (1) $\sigma_{\rm e}(T) = \sigma_{\rm eap}(T) \cup \sigma_{\rm e\delta}(T)$.
- (2) $S(X) = S_+(X) \cup S_-(X)$.

Proof. (1) Use Propositions 2(3) and 7(1).

(2) The inclusion $S_+(X) \cup S_-(X) \subseteq S(X)$ is clear. Let $T \in S(X)$ and assume $T \notin S_+(X) \cup S_-(X)$. Then there are $\lambda_1, \lambda_2 \in \Sigma_+(T)$ and $\lambda_3, \lambda_4 \in S_+(T)$

 $\Sigma_{-}(T)$ such that $\operatorname{ind}(\lambda_{1}I-T)>0$, $\operatorname{ind}(\lambda_{2}I-T)<0$, $\operatorname{ind}(\lambda_{3}I-T)>0$ and $\operatorname{ind}(\lambda_{4}I-T)<0$. This gives $\beta(\lambda_{1}I-T)<\infty$ and $\alpha(\lambda_{4}I-T)<\infty$, hence $\lambda_{1},\lambda_{4}\in\Phi(T)$. Since $T\in\mathcal{S}(X)$ and $\operatorname{ind}(\lambda_{1}I-T)>0$, $\operatorname{ind}(\lambda_{4}I-T)<0$, we have a contradiction.

Proof of Theorem 5. (1) Use Proposition 8(1), Theorem 1 and Theorem 3 to derive

$$\sigma_{\mathbf{e}}(f(T)) = \sigma_{\mathbf{eap}}(f(T)) \cup \sigma_{\mathbf{e}\delta}(f(T)) \subseteq f(\sigma_{\mathbf{eap}}(T)) \cup f(\sigma_{\mathbf{e}\delta}(T))$$
$$= f(\sigma_{\mathbf{eap}}(T) \cup \sigma_{\mathbf{e}\delta}(T)) = f(\sigma_{\mathbf{e}}(T)).$$

(2) " \Rightarrow ". Let $T \in \mathcal{S}(X)$ and $f \in \mathcal{H}(T)$. We only have to show that $f(\sigma_{\mathrm{e}}(T)) \subseteq \sigma_{\mathrm{e}}(f(T))$. Let $\mu \notin \sigma_{\mathrm{e}}(f(T)) = \sigma_{\mathrm{eap}}(f(T)) \cup \sigma_{\mathrm{e}\delta}(f(T))$. Put $h := \mu - f$. Assume that there are $\lambda_1 \in \sigma_{\mathrm{eap}}(T)$ and $\lambda_2 \in \sigma_{\mathrm{e}\delta}(T)$ such that $h(\lambda_1) = h(\lambda_2) = 0$. It follows that $\mu \in f(\sigma_{\mathrm{eap}}(T))$ and $\mu \in f(\sigma_{\mathrm{e}\delta}(T))$. If $T \in \mathcal{S}_+(X)$ then we see by Theorem 2 that $\mu \in \sigma_{\mathrm{eap}}(f(T)) \subseteq \sigma_{\mathrm{e}}(f(T))$, a contradiction. Similarly we get a contradiction if $T \in \mathcal{S}_-(X)$. Hence we have shown that h does not vanish on $\sigma_{\mathrm{eap}}(T)$ or h does not vanish on $\sigma_{\mathrm{e}\delta}(T)$. It suffices to consider the case $h(\lambda) \neq 0$ for each $\lambda \in \sigma_{\mathrm{eap}}(T)$ (since $\sigma_{\mathrm{e}\delta}(T) = \sigma_{\mathrm{eap}}(T^*)$ the other case can be treated in the same manner). By Proposition 4, h has at most a finite number of zeroes in $\sigma(T)$.

Case 1: h has no zeroes in $\sigma(T)$. Then $\mu \notin \sigma(f(T)) = f(\sigma(T))$. This gives $\mu \notin f(\sigma_e(T))$.

Case 2: There are $\mu_1, \ldots, \mu_k \in \sigma(T)$ and $g \in \mathcal{H}(T)$ such that $h(\lambda) = g(\lambda) \prod_{j=1}^k (\mu_j - \lambda)$ and $g(\lambda) \neq 0$ for $\lambda \in \sigma(T)$. Then we get

$$h(T) = g(T) \prod_{j=1}^{k} (\mu_j I - T), \quad g(T) \text{ is invertible.}$$

Since $\mu \notin \sigma_{\mathbf{e}}(f(T))$ we see that $h(T) \in \Phi(X)$ and $\operatorname{ind}(h(T)) = 0$. Now use Proposition 1 to derive

$$\mu_i I - T \in \Phi(X)$$
 for $j = 1, \dots, k$

and

$$\sum_{j=1}^{k} \operatorname{ind}(\mu_{j}I - T) = \operatorname{ind}(h(T)) = 0.$$

Since $T \in \mathcal{S}(X)$ it follows that $\operatorname{ind}(\mu_j I - T) = 0$ (j = 1, ..., k). Thus we have $\mu_j \notin \sigma_{e}(T)$ (j = 1, ..., n), hence $\mu \notin f(\sigma_{e}(T))$.

" \Leftarrow ". Assume to the contrary that $T \not\in \mathcal{S}(X)$. Then there are $\lambda_1, \lambda_2 \in \Phi(T)$ with $k := \operatorname{ind}(\lambda_1 I - T) > 0$ and $m := -\operatorname{ind}(\lambda_2 I - T) > 0$. Put $f(\lambda) = (\lambda_1 - \lambda)^m (\lambda_2 - \lambda)^k$. We get $f(T) \in \Phi(X)$, $\operatorname{ind}(f(T)) = 0$, $0 \not\in \sigma_{\operatorname{e}}(f(T))$ but $0 = f(\lambda_1) = f(\lambda_2) \in f(\sigma_{\operatorname{e}}(T))$. This contradiction completes the proof. \blacksquare

REFERENCES

- [1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973.
- [2] B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971), 17–32.
- [3] H. Heuser, Funktionalanalysis, 3rd ed., Teubner, 1992.
- [4] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261–322.
- [5] W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1996), 61–64.
- [6] K. K. Oberai, Spectral mapping theorems for essential spectra, Rev. Roumaine Math. Pures Appl. 25 (1980), 365–373.
- [7] C. Pearcy, Some Recent Developments in Operator Theory, CBMS Regional Conf. Ser. in Math. 36, Amer. Math. Soc., Providence, 1978.
- [8] V. Rakočević, On one subset of M. Schechter's essential spectrum, Mat. Vesnik 5 (1981), 389–391.
- [9] —, On the essential approximate point spectrum, II, ibid. 36 (1984), 89–97.
- [10] —, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), 193–198.
- [11] M. Schechter, On the essential spectrum of an arbitrary operator, I, J. Math. Anal. Appl. 13 (1966), 205–215.
- [12] C. Schmoeger, Ascent, descent and the Atkinson region in Banach algebras, II, Ricerche Mat. 42 (1993), 249–264.
- [13] B. Yood, Properties of linear transformations preserved under addition of a completely continuous transformation, Duke Math. J. 18 (1951), 599–612.

Mathematisches Institut I Universität Karlsruhe D-76128 Karlsruhe, Germany

 $Received\ 30\ May\ 1996$