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REDUCTION OF THE CODIMENSION
OF A GENERIC MINIMAL SUBMANIFOLD IMMERSED

IN A COMPLEX PROJECTIVE SPACE

BY

MASAHIRO YAMAGATA AND MASAHIRO KON (HIROSAKI)

1. Introduction. Let M be a Kaehlerian manifold with almost complex
structure J and M be a Riemannian manifold isometrically immersed in M .
We denote by Tx(M) and Tx(M)⊥ the tangent space and the normal space
of M respectively at a point x of M . If JTx(M)⊥ ⊂ Tx(M) for any point x
of M , then we call M a generic submanifold of M . If JTx(M)⊥ = Tx(M),
then M is an anti-invariant (or totally real) submanifold of M . If a generic
submanifold is not anti-invariant, then we call it a proper generic subman-
ifold . In [1] the second author proved that if the Ricci tensor S of a com-
pact n-dimensional generic minimal submanifold M of a complex projec-
tive space CPm satisfies S(X, X) ≥ (n − 1)g(X, X) + 2g(PX, PX), then
M is a real projective space RPn, or M is the pseudo-Einstein real hy-
persurface π(S(n+1)/2(

√
1/2)× S(n+1)/2(

√
1/2)), where PX is the tangen-

tial part of JX and π denotes the projection with respect to the fibration
S1 → S2m+1 → CPm, Sk(r) being the k-dimensional Euclidean sphere
with radius r. On the other hand, Maeda [2] studied an n-dimensional
complete minimal real hypersurface M with (n − 1)g(X, X) ≤ S(X, X) ≤
(n + 1)g(X, X), and proved that M is congruent to π(S(n+1)/2(

√
1/2) ×

S(n+1)/2(
√

1/2)). The purpose of the present paper is to prove the follow-
ing

Theorem 1. Let M be a compact n-dimensional proper generic minimal
submanifold of a complex m-dimensional projective space CPm. If the Ricci
tensor S of M satisfies S(X, X) ≥ (n − 1)g(X, X) for any vector field X
tangent to M , then M is a real hypersurface of CPm, that is, 2m− n = 1.

2. Preliminaries. Let CPm denote the complex projective space of
complex dimension m (real dimension 2m) equipped with the standard sym-
metric space metric g normalized so that the maximum sectional curvature

1991 Mathematics Subject Classification: 53C55, 53C40.

[185]



186 M. YAMAGATA AND M. KON

is four. We denote by J the almost complex structure of CPm. Let M be
a real n-dimensional Riemannian manifold isometrically immersed in CPm.
We denote by the same g the Riemannian metric tensor field induced on M
from that of CPm. Covariant differentiation with respect to the Levi-Civita
connection in CPm (resp. M) will be denoted by ∇ (resp. ∇). Then the
Gauss and Weingarten formulas are respectively given by

∇XY = ∇XY + B(X, Y ) and ∇XV = −AV X + DXV

for all vector fields X, Y tangent to M and every vector field V normal
to M , where D denotes covariant differentiation with respect to the linear
connection induced in the normal bundle T (M)⊥. A and B are both called
the second fundamental forms of M , and are related by g(B(X, Y ), V ) =
g(AV X, Y ). For the second fundamental form A we define its covariant
derivative ∇XA by

(∇XA)V Y = ∇X(AV Y )−ADXV Y −AV∇XY.

If TrAV = 0 for any vector field V normal to M , then M is said to be
minimal , where Tr denotes the trace of an operator. In the following, we
assume that M is a generic submanifold of CPm. Then the tangent space
Tx(M) is decomposed as follows:

Tx(M) = Hx(M)⊕ JTx(M)⊥

at each point x of M , where Hx(M) denotes the orthogonal complement of
JTx(M)⊥ in Tx(M). Then we see that Hx(M) is a holomorphic subspace of
Tx(M). If M is a real hypersurface of CPm, then M is obviously a generic
submanifold of CPm. In the following, we put 2m − n = p, which is the
codimension of M . For a vector field X tangent to M , we put

JX = PX + FX,

where PX is the tangential part of JX and FX the normal part of JX.
Then P is an endomorphism on the tangent bundle T (M), and F is a
normal bundle valued 1-form on the tangent bundle T (M). Then we see
that FPX = 0 and P 2X = −X − JFX. Moreover, we have

(∇XP )Y = JB(X, Y ) + AFY X, (∇XF )Y = −B(X, PY ),

where we have put (∇XP )Y = ∇X(PY )−P∇XY and (∇XF )Y = DX(FY )
− F∇XY . For any vector field U normal to M , we also have

∇XJU = −PAUX + JDXU, B(X, JU) = −FAUX.

For all vector fields U and V normal to M , we obtain

AUJV = AV JU.
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Let R denote the Riemannian curvature tensor of M . Then we have the
Gauss equation

R(X, Y )Z = g(Y, Z)X − g(X, Z)Y + g(PY,Z)PX − g(PX, Z)PY

+ 2g(X, PY )PZ + AB(Y,Z)X −AB(X,Z)Y.

The Codazzi equation of M is given by

(∇XA)V Y − (∇Y A)V X = g(FX, V )PY − g(FY, V )PX − 2g(X, PY )JV.

We now define the curvature tensor R⊥ of the normal bundle of M by
R⊥(X, Y ) = [DX , DY ]−D[X,Y ]. Then we have the Ricci equation

g(R⊥(X, Y )U, V )
= g([AU , AV ]X, Y ) + g(FY, U)g(FX, V )− g(FX, U)g(FY, V ).

If R⊥ vanishes identically, the normal connection of M is said to be flat .

3. Proof of the theorem. From the Gauss equation the Ricci tensor
S of M is given by

S(X, Y ) = (n− 1)g(X, Y ) + 3g(PX, PY )−
∑

a

g(AaX, AaY )

for all vector fields X and Y tangent to M , where we have put Aa = Ava
,

{va} being an orthonormal basis of the normal space of M . By assumption
we have

S(X, X)− (n− 1)g(X, X) = 3g(PX, PX)−
∑

a

g(AaX, AaX) ≥ 0.

Hence we obtain, for any vector field V normal to M ,

AaJV = 0

for all a. This means that AUJV = 0 for all vector fields U and V normal
to M . Using the equation above, we find

(∇XA)UJV + AU∇XJV = (∇XA)UJV −AUPAV X = 0,

from which

g((∇XA)UJV, Y ) = g((∇XA)UY, JV ) = g(AUPAV X, Y ).

Thus we have, by the Codazzi equation,

2g(PX, Y )g(V,U) = g(AUPAV X, Y ) + g(AV PAUX, Y ).

In particular, we obtain

AV PAV X = PX
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for any vector field X tangent to M and any vector field V normal to M .
On the other hand, we have

S(PX, PX) = (n + 2)g(PX, PX)−
∑

a

g(AaPX, AaPX),

from which∑
a

g(AaPX, AaPX) = (n + 2)g(PX, PX)− S(PX, PX)

=
∑

a

g(AaPAaX, PX) + (n + 2− p)g(PX, PX)− S(PX, PX),

where we have put p = 2m− n, which is the codimension of M . Therefore
we obtain

1
2

∑
a

|[P,Aa]|2 = (n + 2− p)(n− p)−
∑

i

S(Pei, P ei)

= (n + 2− p)(n− p)− (n + 2)(n− p) +
∑

a

TrA2
a

= −(n− p)p +
∑

a

TrA2
a,

where {ei} denotes an orthonormal basis of the tangent space of M . By
assumption we see

0 ≤
∑

i

S(Pei, P ei)− (n− 1)(n− p) = 3(n− p)−
∑

a

TrA2
a.

Hence we have ∑
a

TrA2
a ≤ 3(n− p).

Consequently, we conclude that
1
2

∑
a

|[P,Aa]|2 ≤ −(n− p)p + 3(n− p) = (n− p)(3− p).

Since M is proper, we must have n > p. Hence we have p ≤ 3. Suppose
p = 3. Then PAa = AaP for all a, and hence

AaPAaX = A2
aPX = PX

for all a. This implies that
∑

aTrA2
a = n− p. Moreover, we have

S(PX, PX) = (n + 2)g(PX, PX)−
∑

a

g(AaPX, AaPX)

= (n + 2− p)g(PX, PX) = (n− 1)g(PX, PX),
S(JV, JV ) = (n− 1)g(V, V ).
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Therefore, M is Einstein. Since we have

g(AaPAbX, Y ) + g(AbPAaX, Y ) = 2g(PX, Y )g(va, vb),

it follows that

g(AaPX, AbPX) = 0

for a 6= b. Suppose AaX = kX for X ∈ PTx(M). Then A2
aX = k2X = X.

Hence we have k = ±1 6= 0. Moreover, we obtain

0 = g(AaX, AbX) = kg(X, AbX),

from which g(AbX, X) = 0 for b 6= a. This is a contradiction to the fact
A2

aX = X for all a and for X ∈ PTx(M). Thus we must have p 6= 3. We
next suppose that p = 2. Then∑

a,i,j

g(∇jJva, ei)g(ej ,∇iJva)

=
∑
a,i,j

[g(PAaej , ei)g(ej , PAaei)− g(PAaej , ei)g(ej , JDiva)

− g(JDjva, ei)g(ej , PAaei) + g(JDjva, ei)g(ej , JDiva)]

= −
∑
a,j

g(PAaej , AaPej) +
∑
a,i,j

g(Djva, Jei)g(Jej , Diva)

=
∑

a

Tr(PAa)2 +
∑
a,b,c

g(DJbva, vc)g(vb, DJcva)

=
∑

a

Tr(PAa)2 +
∑
a,b

g(DJbva, vb)2,

where we have put ∇j , Dj , DJb as ∇ej , Dej , DJvb
to simplify notation, and

a, b, c = 1, 2. We also have∑
a

(div Jva)2 =
∑
a,i,j

g(∇iJva, ei)g(∇jJva, ej)

=
∑
a,i,j

g(JDiva, ei)g(JDjva, ej)

=
∑
a,i,j

g(Diva, Jei)g(Djva, Jej) =
∑
a,b

g(DJbva, vb)2.

Generally, we have (cf. Yano [3])

div(∇XX)− div((div X)X)

= S(X, X) +
∑
i,j

g(∇jX, ei)g(ej ,∇iX)− (div X)2.
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Using the equations above, we obtain∑
a

div(∇JaJva)−
∑

a

div((div Jva)Jva)

=
∑

a

S(Jva, Jva) +
∑

a

Tr(PAa)2

=
∑

a

(n− 1) +
∑

a

Tr(PAa)2

= 2(n− 1) +
1
2

∑
a

|[P,Aa]|2 +
∑

a

Tr(P 2A2
a)

= 2(n− 1)− 2(n− 2) +
∑

a

TrA2
a +

∑
a

Tr(P 2A2
a) ≥ 2.

If M is compact, the equation above gives a contradiction. Thus we have
p 6= 2. Therefore, we must have p = 1, and hence M is a real hypersurface
of CPm. This proves Theorem 1.

From Theorem 1 and a theorem of Maeda [2] we have

Theorem 2. Let M be a compact n-dimensional proper generic minimal
submanifold of a complex m-dimensional projective space CPm. If the Ricci
tensor S of M satisfies (n−1)g(X, X) ≤ S(X, X) ≤ (n+1)g(X, X) for any
vector field X tangent to M , then M is a pseudo-Einstein real hypersurface
π(S(n+1)/2(

√
1/2)× S(n+1)/2(

√
1/2)).
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