REDUCTION OF THE CODIMENSION
OF A GENERIC MINIMAL SUBMANIFOLD IMMERSED In a COMPLEX PROJECTIVE SPACE
BY
MASAHIRO YAMAGATA and MASAHIRO KON (HIROSAKI)

1. Introduction. Let \bar{M} be a Kaehlerian manifold with almost complex structure J and M be a Riemannian manifold isometrically immersed in \bar{M}. We denote by $T_{x}(M)$ and $T_{x}(M)^{\perp}$ the tangent space and the normal space of M respectively at a point x of M. If $J T_{x}(M)^{\perp} \subset T_{x}(M)$ for any point x of M, then we call M a generic submanifold of \bar{M}. If $J T_{x}(M)^{\perp}=T_{x}(M)$, then M is an anti-invariant (or totally real) submanifold of \bar{M}. If a generic submanifold is not anti-invariant, then we call it a proper generic submanifold. In [1] the second author proved that if the Ricci tensor S of a compact n-dimensional generic minimal submanifold M of a complex projective space $C P^{m}$ satisfies $S(X, X) \geq(n-1) g(X, X)+2 g(P X, P X)$, then M is a real projective space $R P^{n}$, or M is the pseudo-Einstein real hypersurface $\pi\left(S^{(n+1) / 2}(\sqrt{1 / 2}) \times S^{(n+1) / 2}(\sqrt{1 / 2})\right)$, where $P X$ is the tangential part of $J X$ and π denotes the projection with respect to the fibration $S^{1} \rightarrow S^{2 m+1} \rightarrow C P^{m}, S^{k}(r)$ being the k-dimensional Euclidean sphere with radius r. On the other hand, Maeda [2] studied an n-dimensional complete minimal real hypersurface M with $(n-1) g(X, X) \leq S(X, X) \leq$ $(n+1) g(X, X)$, and proved that M is congruent to $\pi\left(S^{(n+1) / 2}(\sqrt{1 / 2}) \times\right.$ $S^{(n+1) / 2}(\sqrt{1 / 2})$. The purpose of the present paper is to prove the following

TheOrem 1. Let M be a compact n-dimensional proper generic minimal submanifold of a complex m-dimensional projective space $C P^{m}$. If the Ricci tensor S of M satisfies $S(X, X) \geq(n-1) g(X, X)$ for any vector field X tangent to M, then M is a real hypersurface of $C P^{m}$, that is, $2 m-n=1$.
2. Preliminaries. Let $C P^{m}$ denote the complex projective space of complex dimension m (real dimension $2 m$) equipped with the standard symmetric space metric g normalized so that the maximum sectional curvature
is four. We denote by J the almost complex structure of $C P^{m}$. Let M be a real n-dimensional Riemannian manifold isometrically immersed in $C P^{m}$. We denote by the same g the Riemannian metric tensor field induced on M from that of $C P^{m}$. Covariant differentiation with respect to the Levi-Civita connection in $C P^{m}$ (resp. M) will be denoted by $\bar{\nabla}$ (resp. ∇). Then the Gauss and Weingarten formulas are respectively given by

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) \quad \text { and } \quad \bar{\nabla}_{X} V=-A_{V} X+D_{X} V
$$

for all vector fields X, Y tangent to M and every vector field V normal to M, where D denotes covariant differentiation with respect to the linear connection induced in the normal bundle $T(M)^{\perp} . A$ and B are both called the second fundamental forms of M, and are related by $g(B(X, Y), V)=$ $g\left(A_{V} X, Y\right)$. For the second fundamental form A we define its covariant derivative $\nabla_{X} A$ by

$$
\left(\nabla_{X} A\right)_{V} Y=\nabla_{X}\left(A_{V} Y\right)-A_{D_{X} V} Y-A_{V} \nabla_{X} Y
$$

If $\operatorname{Tr} A_{V}=0$ for any vector field V normal to M, then M is said to be minimal, where Tr denotes the trace of an operator. In the following, we assume that M is a generic submanifold of $C P^{m}$. Then the tangent space $T_{x}(M)$ is decomposed as follows:

$$
T_{x}(M)=H_{x}(M) \oplus J T_{x}(M)^{\perp}
$$

at each point x of M, where $H_{x}(M)$ denotes the orthogonal complement of $J T_{x}(M)^{\perp}$ in $T_{x}(M)$. Then we see that $H_{x}(M)$ is a holomorphic subspace of $T_{x}(M)$. If M is a real hypersurface of $C P^{m}$, then M is obviously a generic submanifold of $C P^{m}$. In the following, we put $2 m-n=p$, which is the codimension of M. For a vector field X tangent to M, we put

$$
J X=P X+F X
$$

where $P X$ is the tangential part of $J X$ and $F X$ the normal part of $J X$. Then P is an endomorphism on the tangent bundle $T(M)$, and F is a normal bundle valued 1 -form on the tangent bundle $T(M)$. Then we see that $F P X=0$ and $P^{2} X=-X-J F X$. Moreover, we have

$$
\left(\nabla_{X} P\right) Y=J B(X, Y)+A_{F Y} X, \quad\left(\nabla_{X} F\right) Y=-B(X, P Y)
$$

where we have put $\left(\nabla_{X} P\right) Y=\nabla_{X}(P Y)-P \nabla_{X} Y$ and $\left(\nabla_{X} F\right) Y=D_{X}(F Y)$ $-F \nabla_{X} Y$. For any vector field U normal to M, we also have

$$
\nabla_{X} J U=-P A_{U} X+J D_{X} U, \quad B(X, J U)=-F A_{U} X
$$

For all vector fields U and V normal to M, we obtain

$$
A_{U} J V=A_{V} J U
$$

Let R denote the Riemannian curvature tensor of M. Then we have the Gauss equation

$$
\begin{aligned}
R(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+g(P Y, Z) P X-g(P X, Z) P Y \\
& +2 g(X, P Y) P Z+A_{B(Y, Z)} X-A_{B(X, Z)} Y .
\end{aligned}
$$

The Codazzi equation of M is given by

$$
\left(\nabla_{X} A\right)_{V} Y-\left(\nabla_{Y} A\right)_{V} X=g(F X, V) P Y-g(F Y, V) P X-2 g(X, P Y) J V
$$

We now define the curvature tensor R^{\perp} of the normal bundle of M by $R^{\perp}(X, Y)=\left[D_{X}, D_{Y}\right]-D_{[X, Y]}$. Then we have the Ricci equation

$$
\begin{aligned}
& g\left(R^{\perp}(X, Y) U, V\right) \\
& \quad=g\left(\left[A_{U}, A_{V}\right] X, Y\right)+g(F Y, U) g(F X, V)-g(F X, U) g(F Y, V)
\end{aligned}
$$

If R^{\perp} vanishes identically, the normal connection of M is said to be flat.
3. Proof of the theorem. From the Gauss equation the Ricci tensor S of M is given by

$$
S(X, Y)=(n-1) g(X, Y)+3 g(P X, P Y)-\sum_{a} g\left(A_{a} X, A_{a} Y\right)
$$

for all vector fields X and Y tangent to M, where we have put $A_{a}=A_{v_{a}}$, $\left\{v_{a}\right\}$ being an orthonormal basis of the normal space of M. By assumption we have

$$
S(X, X)-(n-1) g(X, X)=3 g(P X, P X)-\sum_{a} g\left(A_{a} X, A_{a} X\right) \geq 0
$$

Hence we obtain, for any vector field V normal to M,

$$
A_{a} J V=0
$$

for all a. This means that $A_{U} J V=0$ for all vector fields U and V normal to M. Using the equation above, we find

$$
\left(\nabla_{X} A\right)_{U} J V+A_{U} \nabla_{X} J V=\left(\nabla_{X} A\right)_{U} J V-A_{U} P A_{V} X=0,
$$

from which

$$
g\left(\left(\nabla_{X} A\right)_{U} J V, Y\right)=g\left(\left(\nabla_{X} A\right)_{U} Y, J V\right)=g\left(A_{U} P A_{V} X, Y\right)
$$

Thus we have, by the Codazzi equation,

$$
2 g(P X, Y) g(V, U)=g\left(A_{U} P A_{V} X, Y\right)+g\left(A_{V} P A_{U} X, Y\right)
$$

In particular, we obtain

$$
A_{V} P A_{V} X=P X
$$

for any vector field X tangent to M and any vector field V normal to M. On the other hand, we have

$$
S(P X, P X)=(n+2) g(P X, P X)-\sum_{a} g\left(A_{a} P X, A_{a} P X\right)
$$

from which

$$
\begin{aligned}
& \sum_{a} g\left(A_{a} P X, A_{a} P X\right)=(n+2) g(P X, P X)-S(P X, P X) \\
& \quad=\sum_{a} g\left(A_{a} P A_{a} X, P X\right)+(n+2-p) g(P X, P X)-S(P X, P X)
\end{aligned}
$$

where we have put $p=2 m-n$, which is the codimension of M. Therefore we obtain

$$
\begin{aligned}
\frac{1}{2} \sum_{a}\left|\left[P, A_{a}\right]\right|^{2} & =(n+2-p)(n-p)-\sum_{i} S\left(P e_{i}, P e_{i}\right) \\
& =(n+2-p)(n-p)-(n+2)(n-p)+\sum_{a} \operatorname{Tr} A_{a}^{2} \\
& =-(n-p) p+\sum_{a} \operatorname{Tr} A_{a}^{2}
\end{aligned}
$$

where $\left\{e_{i}\right\}$ denotes an orthonormal basis of the tangent space of M. By assumption we see

$$
0 \leq \sum_{i} S\left(P e_{i}, P e_{i}\right)-(n-1)(n-p)=3(n-p)-\sum_{a} \operatorname{Tr} A_{a}^{2}
$$

Hence we have

$$
\sum_{a} \operatorname{Tr} A_{a}^{2} \leq 3(n-p)
$$

Consequently, we conclude that

$$
\frac{1}{2} \sum_{a}\left|\left[P, A_{a}\right]\right|^{2} \leq-(n-p) p+3(n-p)=(n-p)(3-p)
$$

Since M is proper, we must have $n>p$. Hence we have $p \leq 3$. Suppose $p=3$. Then $P A_{a}=A_{a} P$ for all a, and hence

$$
A_{a} P A_{a} X=A_{a}^{2} P X=P X
$$

for all a. This implies that $\sum_{a} \operatorname{Tr} A_{a}^{2}=n-p$. Moreover, we have

$$
\begin{aligned}
S(P X, P X) & =(n+2) g(P X, P X)-\sum_{a} g\left(A_{a} P X, A_{a} P X\right) \\
& =(n+2-p) g(P X, P X)=(n-1) g(P X, P X), \\
S(J V, J V) & =(n-1) g(V, V) .
\end{aligned}
$$

Therefore, M is Einstein. Since we have

$$
g\left(A_{a} P A_{b} X, Y\right)+g\left(A_{b} P A_{a} X, Y\right)=2 g(P X, Y) g\left(v_{a}, v_{b}\right)
$$

it follows that

$$
g\left(A_{a} P X, A_{b} P X\right)=0
$$

for $a \neq b$. Suppose $A_{a} X=k X$ for $X \in P T_{x}(M)$. Then $A_{a}^{2} X=k^{2} X=X$. Hence we have $k= \pm 1 \neq 0$. Moreover, we obtain

$$
0=g\left(A_{a} X, A_{b} X\right)=k g\left(X, A_{b} X\right)
$$

from which $g\left(A_{b} X, X\right)=0$ for $b \neq a$. This is a contradiction to the fact $A_{a}^{2} X=X$ for all a and for $X \in P T_{x}(M)$. Thus we must have $p \neq 3$. We next suppose that $p=2$. Then

$$
\begin{aligned}
& \sum_{a, i, j} g\left(\nabla_{j} J v_{a}, e_{i}\right) g\left(e_{j}, \nabla_{i} J v_{a}\right) \\
&= \sum_{a, i, j}\left[g\left(P A_{a} e_{j}, e_{i}\right) g\left(e_{j}, P A_{a} e_{i}\right)-g\left(P A_{a} e_{j}, e_{i}\right) g\left(e_{j}, J D_{i} v_{a}\right)\right. \\
&\left.-g\left(J D_{j} v_{a}, e_{i}\right) g\left(e_{j}, P A_{a} e_{i}\right)+g\left(J D_{j} v_{a}, e_{i}\right) g\left(e_{j}, J D_{i} v_{a}\right)\right] \\
&=-\sum_{a, j} g\left(P A_{a} e_{j}, A_{a} P e_{j}\right)+\sum_{a, i, j} g\left(D_{j} v_{a}, J e_{i}\right) g\left(J e_{j}, D_{i} v_{a}\right) \\
&= \sum_{a} \operatorname{Tr}\left(P A_{a}\right)^{2}+\sum_{a, b, c} g\left(D_{J b} v_{a}, v_{c}\right) g\left(v_{b}, D_{J c} v_{a}\right) \\
&= \sum_{a} \operatorname{Tr}\left(P A_{a}\right)^{2}+\sum_{a, b} g\left(D_{J b} v_{a}, v_{b}\right)^{2}
\end{aligned}
$$

where we have put $\nabla_{j}, D_{j}, D_{J b}$ as $\nabla_{e_{j}}, D_{e_{j}}, D_{J v_{b}}$ to simplify notation, and $a, b, c=1,2$. We also have

$$
\begin{aligned}
\sum_{a}\left(\operatorname{div} J v_{a}\right)^{2} & =\sum_{a, i, j} g\left(\nabla_{i} J v_{a}, e_{i}\right) g\left(\nabla_{j} J v_{a}, e_{j}\right) \\
& =\sum_{a, i, j} g\left(J D_{i} v_{a}, e_{i}\right) g\left(J D_{j} v_{a}, e_{j}\right) \\
& =\sum_{a, i, j} g\left(D_{i} v_{a}, J e_{i}\right) g\left(D_{j} v_{a}, J e_{j}\right)=\sum_{a, b} g\left(D_{J b} v_{a}, v_{b}\right)^{2}
\end{aligned}
$$

Generally, we have (cf. Yano [3])

$$
\begin{aligned}
& \operatorname{div}\left(\nabla_{X} X\right)-\operatorname{div}((\operatorname{div} X) X) \\
& \quad=S(X, X)+\sum_{i, j} g\left(\nabla_{j} X, e_{i}\right) g\left(e_{j}, \nabla_{i} X\right)-(\operatorname{div} X)^{2} .
\end{aligned}
$$

Using the equations above, we obtain

$$
\begin{aligned}
\sum_{a} \operatorname{div}\left(\nabla_{J a}\right. & \left.J v_{a}\right)-\sum_{a} \operatorname{div}\left(\left(\operatorname{div} J v_{a}\right) J v_{a}\right) \\
& =\sum_{a} S\left(J v_{a}, J v_{a}\right)+\sum_{a} \operatorname{Tr}\left(P A_{a}\right)^{2} \\
& =\sum_{a}(n-1)+\sum_{a} \operatorname{Tr}\left(P A_{a}\right)^{2} \\
& =2(n-1)+\frac{1}{2} \sum_{a}\left|\left[P, A_{a}\right]\right|^{2}+\sum_{a} \operatorname{Tr}\left(P^{2} A_{a}^{2}\right) \\
& =2(n-1)-2(n-2)+\sum_{a} \operatorname{Tr} A_{a}^{2}+\sum_{a} \operatorname{Tr}\left(P^{2} A_{a}^{2}\right) \geq 2 .
\end{aligned}
$$

If M is compact, the equation above gives a contradiction. Thus we have $p \neq 2$. Therefore, we must have $p=1$, and hence M is a real hypersurface of $C P^{m}$. This proves Theorem 1 .

From Theorem 1 and a theorem of Maeda [2] we have
Theorem 2. Let M be a compact n-dimensional proper generic minimal submanifold of a complex m-dimensional projective space $C P^{m}$. If the Ricci tensor S of M satisfies $(n-1) g(X, X) \leq S(X, X) \leq(n+1) g(X, X)$ for any vector field X tangent to M, then M is a pseudo-Einstein real hypersurface $\pi\left(S^{(n+1) / 2}(\sqrt{1 / 2}) \times S^{(n+1) / 2}(\sqrt{1 / 2})\right)$.

REFERENCES

[1] M. Kon, Generic minimal submanifolds of a complex projective space, Bull. London Math. Soc. 12 (1980), 355-360.
[2] S. Maeda, Real hypersurfaces of a complex projective space II, Bull. Austral. Math. Soc. 29 (1984), 123-127.
[3] K. Yano, On harmonic and Killing vector fields, Ann. of Math. 55 (1952), 38-45.

Department of Mathematics
Faculty of Education
Hirosaki University
Hirosaki, 036 Japan
E-mail: yamagata@fed.hirosaki-u.ac.jp

