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REDUCTION OF THE CODIMENSION
OF A GENERIC MINIMAL SUBMANIFOLD IMMERSED
IN A COMPLEX PROJECTIVE SPACE

BY

MASAHIRO YAMAGATA anp MASAHIRO KON (HIROSAKI)

1. Introduction. Let M be a Kaehlerian manifold with almost complex
structure J and M be a Riemannian manifold isometrically immersed in M.
We denote by T,(M) and T,(M)* the tangent space and the normal space
of M respectively at a point  of M. If JT,,(M)* C T,(M) for any point x
of M, then we call M a generic submanifold of M. If JT,(M)+ = T,(M),
then M is an anti-invariant (or totally real) submanifold of M. If a generic
submanifold is not anti-invariant, then we call it a proper generic subman-
ifold. In [1] the second author proved that if the Ricci tensor S of a com-
pact n-dimensional generic minimal submanifold M of a complex projec-
tive space CP™ satisfies S(X,X) > (n — 1)g(X, X) + 2¢(PX, PX), then
M is a real projective space RP™, or M is the pseudo-Einstein real hy-
persurface (S +1/2(,/1/2) x S"*+1/2(,/1/2)), where PX is the tangen-
tial part of JX and 7 denotes the projection with respect to the fibration
St — §2m+l . OP™ S*(r) being the k-dimensional Euclidean sphere
with radius r. On the other hand, Maeda [2] studied an n-dimensional
complete minimal real hypersurface M with (n — 1)g(X, X) < S(X,X) <
(n 4+ 1)g(X, X), and proved that M is congruent to m(S"+1/2(,/1/2) x
S(”+1)/2( 1/2)). The purpose of the present paper is to prove the follow-

ing

THEOREM 1. Let M be a compact n-dimensional proper generic minimal
submanifold of a complex m-dimensional projective space CP™. If the Ricci
tensor S of M satisfies S(X,X) > (n — 1)g(X, X) for any vector field X
tangent to M, then M is a real hypersurface of CP™, that is, 2m —n = 1.

2. Preliminaries. Let C'P™ denote the complex projective space of
complex dimension m (real dimension 2m) equipped with the standard sym-
metric space metric g normalized so that the maximum sectional curvature
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is four. We denote by J the almost complex structure of CP™. Let M be
a real n-dimensional Riemannian manifold isometrically immersed in C'P™.
We denote by the same g the Riemannian metric tensor field induced on M
from that of CP™. Covariant differentiation with respect to the Levi-Civita
connection in CP™ (resp. M) will be denoted by V (resp. V). Then the
Gauss and Weingarten formulas are respectively given by

VxY =VxY +B(X,Y) and VxV =—-AyX +DxV

for all vector fields X,Y tangent to M and every vector field V' normal
to M, where D denotes covariant differentiation with respect to the linear
connection induced in the normal bundle T(M)+. A and B are both called
the second fundamental forms of M, and are related by g(B(X,Y),V) =
g(Av X,Y). For the second fundamental form A we define its covariant
derivative Vx A by

(VXA)VY = Vx(Avy) — ADXVY — Avvxy

If TrAy = 0 for any vector field V normal to M, then M is said to be
minimal, where Tr denotes the trace of an operator. In the following, we
assume that M is a generic submanifold of C'P™. Then the tangent space
T, (M) is decomposed as follows:

Tm(M) = Ha:(M) S2] JTa:(M)J_

at each point x of M, where H, (M) denotes the orthogonal complement of
JT,(M)* in T,,(M). Then we see that H, (M) is a holomorphic subspace of
T, (M). If M is a real hypersurface of CP™, then M is obviously a generic
submanifold of CP™. In the following, we put 2m — n = p, which is the
codimension of M. For a vector field X tangent to M, we put

JX = PX + FX,

where PX is the tangential part of JX and FX the normal part of JX.
Then P is an endomorphism on the tangent bundle T'(M), and F is a
normal bundle valued 1-form on the tangent bundle T'(M). Then we see
that FPX =0 and P?X = —X — JFX. Moreover, we have

(VxP)Y = JB(X,Y)+ Apy X, (VxF)Y =—B(X,PY),

where we have put (VxP)Y = Vx(PY)—PVxY and (VxF)Y = Dx(FY)
— FVxY. For any vector field U normal to M, we also have

VxJU =—-PAyX +JDxU, B(X,JU)=-FAyX.
For all vector fields U and V normal to M, we obtain

Ay JV = Ay JU.
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Let R denote the Riemannian curvature tensor of M. Then we have the
Gauss equation

RX,Y)Z =9V, 2)X —g(X,2)Y +g(PY,Z)PX — g(PX,Z)PY
+29(X, PY)PZ 4 Ag(y,2)X — Ap(x,2)Y.
The Codazzi equation of M is given by
(VxA)WY — (VyAyv X =g(FX,V)PY — g(FY,V)PX —2g(X, PY)JV.

We now define the curvature tensor Rt of the normal bundle of M by
R+ (X,Y) =[Dx,Dy] — Dix,y)- Then we have the Ricci equation

g(RH (X, YU, V)
= g([AU,AV]X7Y) +9(FK U)Q(FX’ V) —g(FX, U)g(FY, V)

If R vanishes identically, the normal connection of M is said to be flat.

3. Proof of the theorem. From the Gauss equation the Ricci tensor
S of M is given by

S(X,Y) = (n—1)g(X,Y) +3g(PX,PY) = > g(AX, A.Y)
for all vector fields X and Y tangent to M, where we have put 4, = 4,,,

Va being an orthonormal basis of the normal space of M. By assumption
g
we have

S(X,X) = (n—1)g(X,X) = 3g(PX,PX) = Y _g(A.X, A, X) > 0.

Hence we obtain, for any vector field V normal to M,
A JV =0

for all a. This means that AyJV = 0 for all vector fields U and V normal
to M. Using the equation above, we find

(VxA)yJV + AyVxJV = (VxA)yJV — AyPAy X =0,
from which
g(VxA)uyJV,Y)=9g(VxA)uY,JV) =g(AuPAy X,Y).
Thus we have, by the Codazzi equation,
29(PX,Y)g(V.U) = g(AuPAvX,Y) + g(Av PAy X.Y).
In particular, we obtain
Ay PAy X = PX



188 M. YAMAGATA AND M. KON

for any vector field X tangent to M and any vector field V normal to M.
On the other hand, we have

S(PX,PX) = (n+2)g(PX,PX) = g(A,PX, A, PX),

from which

> 9(AuPX, A, PX) = (n+2)g(PX, PX) — S(PX, PX)
= 9(AuPAX, PX) + (n+2 — p)g(PX, PX) — S(PX, PX),

where we have put p = 2m — n, which is the codimension of M. Therefore
we obtain

S P AR = (2= p)n = p) — 3 S(Per, Pes)
=(m+2-p)(n—p)— (n+2)(n—p)+Y TrA
= —(n—p)p+ZTrA§,

where {e;} denotes an orthonormal basis of the tangent space of M. By
assumption we see

0< ZS(Pei,Pei) —(n—=1)(n—p)=3(n—p) — ZTrAZ.

Hence we have
ZTrAi < 3(n —p).

Consequently, we conclude that

1

5 2P AP < —(n = p)p+3(n—p) = (n = p)(3 - p).

a
Since M is proper, we must have n > p. Hence we have p < 3. Suppose
p=3. Then PA, = A,P for all a, and hence
A,PAX = A2PX = PX
for all a. This implies that ) aTrA?L = n — p. Moreover, we have
S(PX,PX) = (n+2)g(PX,PX) — Y g(APX,A,PX)

=(n+2-p)g(PX,PX)=(n—-1)g(PX,PX),
S(IV, V) = (n — 1)g(V, V).
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Therefore, M is Einstein. Since we have
9(APAXY) + g(AyPAX,Y) = 29(PX,Y)g(va, vs),
it follows that
g(APX, AyPX) =0
for a # b. Suppose A, X = kX for X € PT,(M). Then A2X = k*X = X.
Hence we have k = +1 # 0. Moreover, we obtain
0= g(A.X, A4 X) = kg(X, ApX),

from which g(A,X,X) = 0 for b # a. This is a contradiction to the fact
A2X = X for all @ and for X € PT,(M). Thus we must have p # 3. We
next suppose that p = 2. Then

Z g(v]'JUa, ei)g(eja viJva)
a,i,j
= Z [g(PAaeja ei)g<ej7 PAaei) - g(PAaej7 ei)g(eja JDan)
a,t,j
— g(JDjvg, e;)g(ej, PAge;) + g(JDjvg, €i)g(ej, JD;v,)]
= — Zg(PAaej,AaPej) + Z 9(Djvg, Je;)g(Jej, Divg)

a,j a,,J

= ZTr(PAa)Z + Z g(DJbvmvc)g(vbv DJcUa)

a,b,c
= > Tr(PA)*+ > g(Dyyva,m)?,
a a,b
where we have put V;, Dj;, Dy as Ve, De,, Dy, to simplify notation, and
a,b,c=1,2. We also have

Z(div Jug)? = Zg(ViJva,ei)g(Vija,ej)

a a,i,]
= Z 9(JD;vg,€;)g(JDjvg, €;)
a7i7j
= Zg(Dwa, Jei)g(Djva, Jej) = ZQ(DJbva,Ub)2-
a,t,j a,b

Generally, we have (cf. Yano [3])
div(VxX) — div((div X) X)
=S(X,X)+ Zg(VjX, ei)g(e;, ViX) — (div X)2.

1,J
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Using the equations above, we obtain

> div(Vadva) — Z div((div Jvg)Jva)

—ZS Jvg, Jvg) +ZT1" PA)
_Zn—l —i—ZTrPA
2(n — 1) Z|PA +ZTrP2A2)

=2(n—1) —2(n—2) ZTrAZ ZTr (P?42%) >

If M is compact, the equation above gives a contradlctlon. Thus we have
p # 2. Therefore, we must have p = 1, and hence M is a real hypersurface
of CP™. This proves Theorem 1.

From Theorem 1 and a theorem of Maeda [2] we have

THEOREM 2. Let M be a compact n-dimensional proper generic minimal
submanifold of a complex m-dimensional projective space CP™. If the Ricci
tensor S of M satisfies (n—1)g(X, X) < S(X,X) < (n+1)g(X, X) for any
vector field X tangent to M, then M is a pseudo-FEinstein real hypersurface

r(SMHN/2((/172) x SCHV/2((/1)2)).
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