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Introduction. Let k£ be a commutative ring with unity and let cMod
denote the category of all complete k-modules (see Section 2). By applying
the complete tensor product & in cMod we define in a natural way complete
k-algebras, complete Hopf k-algebras, and complete comodule algebras over
a complete Hopf k-algebra (and corresponding morphisms). Let H be a
complete Hopf k-algebra. If A is a complete H-comodule algebra, via o :
A — A® H, then the subalgebra A7 = {a € A: p(a) = a®1} of A is called
the algebra of invariants. The main result of the paper is the following
decomposition theorem (see Theorem 3.4).

If A is a complete H-comodule algebra admitting a morphism f: H — A
of complete comodule k-algebras such that f(h)a = af(h) for h € H, a €
AR then the map a : A" @ H — A, a(a ® h) = af(h), is an A -linear
isomorphism of complete k-algebras.

The above theorem can be vieved as a Hopf-theoretic counterpart of the
following well-known fact:

If k is an algebraically closed field and G XY — Y is an algebraic action
of an algebraic group G over k on an algebraic variety Y admitting a G-
morphism f :' Y — G, then the geometric quotient Y /G exists, and there
exists an isomorphism of G-varieties Y = Y/G x G.

In Section 4 some consequences of the above theorem are given.

One of them is as follows.

Let G be an abstract group and let A = @geG Ay be a G-graded algebra
such that there exists a group homomorphism t : G — U(A) with t(g) € A,
for g € G (U(A) is the group of invertible elements in A). If t(g)a = at(g)
for all g € G and a € Ay, then the map o : Ay @ kG, a(a ® g) = at(g), is
an Aq-linear isomorphism of G-graded algebras, where kG denotes the group
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algebra of G over k. In particular, if G is the group of rational integers,
then the assumptions on the G-graded algebra A reduce to existence of a
y € A1 NU(A) commuting with every a € A;.

1. Preliminaries and notation. Let k be a fixed commutative ring
with unity. All modules, algebras, and tensor products are defined over k,
unless stated otherwise.

By a topological module we mean a module M provided with a topology
given by a family {M;} of submodules of M (as a fundamental system of
neighborhoods of 0). When we want to indicate the topology of M we
write (M, {M;}). The module k will be viewed as a topological module with
the discrete topology. A morphism of topological modules is a continuous
morphism of modules. All submodules and quotient modules of a topological
module will be viewed as topological modules with the induced topology and
the quotient topology, respectively.

If {Nj,t; -} is an inverse system of topological modules, then the module
M =lim;{M;,,t; j»} with the topology inherited from the product topology
in [, M; is obviously a topological module. If (M, {M;}) and (N, {N;})
are topological modules, then the tensor product M ® N will be treated as
a topological module with the topology defined by the family {M; ® N +
M ® N} (precisely, their images in M ® N).

If (M, {M,}) is a topological module, then its completion M is defined to
be the topological module lim; M /M; (notice that M /M;’s have the discrete
topology).

A topological module M is said to be complete if the canonical homo-
morphism p : M — M is an isomorphism of topological modules. It is
easy to show that the topology of M is given by the family of submodules
{M }, p induces isomorphisms of modules M /M; = M / M; for all i, and that

M is complete. Moreover, for any complete module L and any morphism
t: M — L of topological modules, there is a unique morphism of topological
modules ¢ : M — L such that t'p =¢. If f: M — N is a morphism of
topological modules, then f : M — N denotes the natural morphism of
topological modules induced by f.

The category of all complete modules will be denoted by cMod. Since for
every module M the topological module (M, {0}) is complete, the category
of modules will be identified with the full subcategory of cMod formed by
all discrete modules.

If M, N are complete modules, then we write M ® N for the completion
of M ® N and call it the complete tensor product of M and N.

A complete algebra is a triple (A, m,n), wherem : AQA — A, n:k— A
are morphisms in cMod satisfying the appropriate associativity and unity
axioms (compare for example [5]).
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It is easy to prove that a complete algebra is a topological algebra A
such that its topology is equivalent to the topology given by a family of
two-sided ideals and A is complete as a topological module. If A and A" are
complete algebras, then by a morphism f : A — A’ we mean a morphism in
cMod which preserves the multiplication and the unity.

Examples of complete algebras are the formal power series algebras
k[[X1,...,X,]] provided with the (X7,..., X, )-adic topology. If k is a field,
then clearly all linearly compact k-algebras [1, Chap. I] are complete al-
gebras. Just as for modules, ordinary algebras will be viewed as complete
algebras with the discrete topology.

If A is a topological algebra whose topology is given by a family of two-
sided ideals, then A admits a unique complete algebra structure such that
p:A— Ais a morphism of complete algebras. In particular, the complete
tensor product of complete algebras is a complete algebra. Moreover, if
F: A — A’isamorphism of topological algebras whose topologies are given
by families of two-sided ideals, then f: A= Aisa morphism of complete
algebras. Obviously k is a complete algebra and k ® A = A = A® k for
each topological algebra A. Also it is not difficult to prove (see Theorem 1
in [2, Chap. I, 1.]) that, given a complete algebra (A,{I;}) (I;’s are two-
sided ideals), the complete algebra A ® k[[X1, ..., X,]] is isomorphic to the
complete algebra A[[X,...,X,]] with the topology given by the family of
two-sided ideals {;[[X]] + (X1,..., Xn)™}jm-

If A is a complete algebra, then a (right) complete A-module is a complete
module M together with a morphism of complete modules M ® A — M,
which satisfy the associativity and the unity axioms.

Replacing modules and algebras by complete modules and complete al-
gebras, and also the tensor product by the complete tensor product, we
define in exactly the same way as in [5] a complete coalgebra, a complete
comodule over a complete coalgebra, and a complete Hopf algebra (and the
corresponding morphisms). For example, a complete Hopf algebra is a sys-
tem (H,A,S,e), where H is a complete algebra and A : H — H ® H,
S : H — H, e: H— k are morphisms in cMod satisfying appropriate
conditions (see [5, 4]).

Obviously, the ordinary Hopf algebras are complete Hopf algebras with
the discrete topology. Examples of complete Hopf algebras provide (smooth)
formal groups. Let us recall that an n-dimensional formal group (over the
basic ring k) is a sequence

F=F(XY)=(F(X,Y),..., Fo(X,Y))

of formal power series from k[[X,Y]], X ={X;y,..., X}, Y ={V1,...,Y,,}
such that

(1) F(X,0) =X, F(0,Y)=Y,
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(2) F(F(X,Y), 2) = F(X, F(Y, 7))
(see [2]). If F is such a formal group, then one easily verifies that
H(F) = (k[[X]], 4, 5,¢)

with A(g(X)) = g(F(X,Y)), e(X;) =0, ¢ =1,...,n, and S constructed
as in [2, Chap. I, 3.] is a complete Hopf algebra. Moreover, if k is a field,
then each complete Hopf algebra “living” on the complete algebra k[[X]] is
of this form.

ProposITION 1.1. If (H, A, S,¢) is a complete Hopf algebra, then
(1) S(gh) = S(h)S(g) for all h,g € H,
(2) S(1) =
(3) eS =¢,
4) (S®S)A AS, where T : H® H — H & H is the twist map
h®grs g® h.

Proof. Apply the arguments used in the proof of Proposition 4.0.1
of [5]. m

2. Complete Hopf modules and complete comodule algebras.
By analogy with definitions of comodule algebras and Hopf modules (and
their morphisms) over an ordinary Hopf algebra (see [5]) we define also the
concept of a complete comodule algebra and a complete Hopf module (and
their morphisms) over a complete Hopf algebra. These two concepts are
of special interest for us, so we give precise definitions. For that purpose
assume that (H, A, S,¢) is a complete Hopf algebra. If V,W are complete
right H-modules, viat : V® H — V and ¢/ : W & H — W, respectively,
then V ® W is also a right H-module, via the composed morphism

veweH 22 veweneon Y veneweHn vaw,
where T is the twist map.

DEFINITION 2.1. A complete H-comodule algebra is a complete algebra
A together with a morphism of algebras D : A — A ® H, which makes A
a complete H-comodule. If A and A’ are complete H-comodule algebras,
then a morphism A — A’ is a morphism of complete algebras, which is also
a morphism of complete H-comodules.

If A is a complete algebra, then A® H is a complete H-comodule algebra,
via 1 ® A.
DEFINITION 2.2. A (right) complete Hopf module over H is a complete

module M satisfying the following conditions.

(1) M is a complete right H-module,
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(2) M is a complete right H-comodule, via o : M — M ® H,

(3) 0 is a morphism of complete H-modules, where H acts on itself by
right multiplication. A morphism of complete Hopf modules M, M’ is a
morphism of complete modules M — M’ which is a morphism of complete
H-modules and complete H-comodules.

Let H be a complete Hopf algebra. If M is a complete module, then
M ® H is a complete Hopf module, via 1@my - M@H® H — M ® H
and 1® A: M®H — M ® H® H, where my is the multiplication in H.
Similarly to [5], for each complete H-comodule ¢ : M — M & H, we define
the module of (co)invariants M = {m € M : o(m) = m & 1}. One easily
checks that M (with the induced topology) is a complete submodule of
M. If A is a complete H-comodule algebra, then clearly A¥ is a complete
subalgebra of A. Our first result is a generalization of [5, Theorem 4.1.1].

THEOREM 2.3. If (H,A,S,¢) is a complete Hopf algebra and M is a
complete Hopf module over H, then the map o : MH @ H — M, a(m®h) =
m.h, is an isomorphism of complete Hopf modules.

Proof. Denote by @5, and @ the families of submodules defining the
topologies in M and H, respectively Let P: M — M be the composition

M—)M@H M®H—>M

where ¢ makes M a complete H-module. We are going to show that P(M) C
M*H . Tt suffices to show that for each m € M and each M, € &), H, € Py,
o(P(m)) = P(m) ® 1 modulo (M; ® H + M ® H;)". Fix then m € M and
M, € &pr,Hy € by. Since M @H/(M' @ H+ M @ H) = M/M' ® H/H'
for all M’ € &y, H € &y, and we deal with continuous morphisms, there
exists a commutative diagram

M 2 M/M; ® H/H
19 Ry
M/Ms @ H/Hg == M/M5®H/H5®H/H5®H/H5
188 Ry
MM, ® H/H, 222 M/M; @ H/H; @ H/Hs © H/H;
t R3
M/ M, 2 M/M; ® M/Mj,
where R = 1® (A®1)A, Ry = 1®@12T(S®S), Ry = f@my)(1®
T®1l), M; E__@M H, € &g, i = 1,...,7, myg is the multiplication in
H, and 9, A, S,t,my denote the maps 1nduced by the maps o0, A, S, t,my,
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respectively (commutativity follows from the corresponding definitions and
Proposition 1). Now, using the sigma notation from [5], we proceed in
exactly the same way as in [5, Proof of Theorem 4.1.1]. Let a(m) = Y m)®
m() € M/Ms® H/Hg and, as above, write t(a ® h) = a.h. Then we get the
following equalities modulo (M, ® H + M ® H;)":

o(P(m)) = Y " a(mo).S(m(1))) = Y mo).S(ms)) @ m)S(mz))
= > _m)-S(me) @E(ma)
= > m)Slma) ®1=Pm) & 1.

Thus we have shown that P(M) C M¥. Define the map §: M — M7 & H
by 8 = (P ® 1)p. We show that a8 = 1; and fa = 1y ugpg- The first
equality is a consequence of the commutativity of the diagram

~ ®1 o~ 1BS® PR ® -
MaHZ > H 2 veoHoH 2> MeH

@T @AT l@mH lt

To prove the second one, fix m’ € M h € H and M, € &y, H, € Py,
and observe that there exists a commutative diagram

(t@mupmp)(1T")

M7 e H L M
Q@ll g
M/ M @ (H/Hg)® — =0T M, & MM,
g®1®A®1l o®1
(

M/M; ® H/Hy @ H/H;

M/Ms @ (H/H5)®’
1®5®1
M/My; ® H/Hy ® H/H,
t®1

M/M1®H/H1

where as above all M;’s are in @), all H;’s are in @, and T" : (H/H5)®5 —
(H/H5)®5 is given by 7" (21 @22 ®. . .Qu5) = T3Qx4 @11 @xa@x5 (notation
and arguments as above). Now as in [5, the proof of Theorem 4.1.1] we get
the following equalities modulo (M; ® H + M ® Hy)":
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Ba(m’ ® h) = Z F(m’.h(l)) & h(z) = Z(m’.h(l)).g(h(g)) & h(g)
= Z m/.(h(l)g(h(z)) & h(g) = Z m’é(h(l)) & h(z) =m' ® h.

Hence fa = 1. It remains to verify that « is a morphism of complete
Hopf modules. « is trivially a morphism of complete H-modules. Since
0: M — M ® H is a morphism of H-modules, « is also a morphism of
complete comodules. m

THEOREM 2.4. Suppose that A is a complete H-comodule algebra, via
0: A— A® H, and that there exists a morphism of complete H-comodule
algebras f : H — A. Then

(a) the mapt : AQH — A, t(a®h) = af(h), defines a complete H-Hopf
module structure on (A4, o),

(b) the map o : A" @ H — A, a(a ® h) = af(h), is an isomorphism
of complete Hopf modules and left A™ -modules. Moreover, f =a 1 : A —
A" & H is given as in the proof of Theorem 2.3,

(c) if f(h)y =yf(h) for h € H and y € A", then « is an isomorphism
of complete algebras.

Proof. Part (a) is a simple calculation. Parts (b) and (c) are immediate
consequences of (a) and Theorem 2.3.

Remark 2.5. If A and H are discrete as topological modules, then
parts (b) and (c) of the above theorem can be easily deduced from [4, Propo-
sition 7.2.3], because every morphism of algebras H — A is invertible in the
convolution algebra (Homy(H, A), *), see [5, Chap. IV] or [4, Def. 1.4.1].

Remark 2.6. If k is an algebraically closed field and G x Y — Y is
an (algebraic) action of an algebraic group G over k on an algebraic variety
Y admitting a G-morphism f : Y — G, then the geometric quotient Y/G
exists, and the G-varieties Y and Y/G x G are isomorphic. Theorem 2.4(c)
can be viewed as a Hopf-theoretic counterpart of this fact.

3. Applications. In this section we give some consequences of Theo-
rem 2.4.

If A is a complete algebra and A’ is a subalgebra of A, then we consider
the set

Ca(A")y={a € A:Vyeca ay = ya}.

Let N be the set of all non-negative rational integers and let n be a positive
rational integer. If v = (v1,...,7vs), 7= (n1,...,mn) are in N, we set

= () (1)
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Recall that an n-dimensional differentiation of an algebra A is a mor-
phism of algebras D : A — A[[X]], X = {X1,...,X,}, such that D(a) = a
(mod X). Given such a differentiation D, AP will denote the subalgebra
of its constants, i.e., A” = {a € A: D(a) = a}. Recall also that an n-
dimensional differentiation D is said to be locally nilpotent if D(A) C A[X],
and D is said to be iterative if DD, = (v,1n)Dy4y, where D, : A — A,
p € N™ are the maps determined by the equality D(a) = > D, (a)X"
(X# = X" ... Xkn). Finally, if A is an algebra, U(A) will denote the group
of invertible elements of A.

The following corollary is well-known (for n = 1 and commutative A (see
[3, Lemma 1.4]).

COROLLARY 3.1. Suppose that n > 1 is an integer and D : A — A[[X]]
is an n-dimensional locally nilpotent iterative differentiation of an alge-
bra A such that there are elements a,...,a, € A with a;a; = aja; and
D(a;) = a; + X; fori,j = 1,....n. If a1,...,a, € Ca(AP), then the
map AP @ k[X] — A, a ® g(X) — ag(ai,...,a,) is an isomorphism of
AP _algebras.

Proof. Let H denote the Hopf algebra (k[X], A, S,¢), where A(X;) =
X;®1+1® X;, S(X;) = —X;, e(X;) = 0. Then an H-comodule algebra
structure on A is nothing else than an n-dimensional, locally nilpotent,
iterative differentiation D : A — A[[X]], and, given such a D, a morphism of
H-comodule algebras H — A is simply a sequence (a1, ..., a,) of commuting
elements from A such that D(a;) = a; + X; for all i. So, the corollary follows
from Theorem 2.4(c), because A7 = AP, u

COROLLARY 3.2. Let G be an (abstract) group and let A =P, Ay be a
G-graded algebra such that there exists a group homomorphismt : G — U(A)
with t(g) € Ay for g € G. If t(G) C Ca(A1), then the map o : Ay @ kG —
A, ala® g) = at(g), is an Aj-linear isomorphism of G-graded algebras,
where kG denotes the group algebra of G over k.

Proof. Denote by H the Hopf algebra kG with A(g) =g® g, S(g9) =
g% e(g) = 1 for g € G. Then an H-comodule algebra structure on
A is simply a G-grading A = EBQGG Ay, AH is then equal to A;, and a
morphism of H-comodule algebras H — A is a homomorphism of groups
t: G — U(A) such that t(g) € A,y for all g € G. So, we are done, again by

Theorem 2.4(c). =

Recall that a derivation d : A — A of an algebra A is called locally
nilpotent if for each a € A there is an s € N with d°(a) = 0. Given such a
derivation d, A? = Kerd is the algebra of its constants.
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By P we denote the divided power algebra @20 ky; with vy;y; =
(Zvj)yz-i-] for Za] > 0.

COROLLARY 3.3. Let d : A — A be a locally nilpotent derivation of an
algebra A such that there exists a sequence 1 = ag,ay,...,a; € A, with
aia; = (i,5)a;4; and d(a;+1) = a; fori > 0. If a; € Ca(A?) for all i, then
the map a : A2®@ P — A, ala®y;) = aa;, i > 0, is an isomorphism of
A?-qlgebras.

Proof. Apply Theorem 2.4(c) to the Hopf algebra H = (P, A, S,¢),
where A(y,,) = Eiﬂ:n Yi @Yj, €(y;) = 0p;. The existence of an antipode S
is an easy exercise. m

By applying Theorem 2.4(c) to complete Hopf algebras of the form H (F),
where F' is a formal group (see Section 1), and to complete algebras with
topologies defined by powers of some ideal we get the following result.

COROLLARY 34. Let F(X,Y) = (F1(X,Y),...,F,(X,Y)) be an n-
dimensional formal group, and let A be a complete algebra with topology
defined by powers of a two-sided ideal J. Moreover, let D : A — A[[X]] be
an n-dimensional differentiation satisfying the conditions:

(1) Zﬁy,u D'YDH((I)XAYYN = Zn Dn(a)F(X7Y)n
(ii) There exists a sequence a = (ai,...,a,) with a; € J, a;a; = a;a;,
and D(a;) = Fi(a,X), i,j=1,...,n.

If ai,...,a, € Ca(AP), then the map a : AP @ k[[X]] — A, a(a ®
9(X)) = aglay,...,a,), is an isomorphism of AP-algebras. In particular,
the induced topology in AP is equivalent to the JN AP -adic topology in AP.

Remark 3.5. (a) In the situation of the above corollary, if F = X+Y,
then condition (i) says that D is an iterative differentiation of A, and in this
case the corollary is well known.

(b) If n=1and F = X +Y + XY, then condition (i) says that D;D; =
ok (1:) (H;fk) ((%) =0 when r < s) for all 4, j, and condition (ii) says that

D(a) =a+ (1+a)X for some a € J.

REFERENCES

[1] J. Dieudonné, Introduction to the Theory of Formal Groups, Marcel Dekker, New
York, 1973.
[2] A.Frohlich, Formal Groups, Lecture Notes in Math. 74, Springer, 1968.

[3] K.Miyanishi, Some remarks on strongly invariant rings, Osaka J. Math. 12 (1975),
1-17.



252 A. TYC

[4] S.Montgomery, Hopf Algebras and their Actions on Rings, CBMS Regional Conf.
Ser. in Math. 82, Amer. Math. Soc., Providence, R.I., 1993.
[6] M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.

Nicholas Copernicus University

Faculty of Mathematics and Informatics
Chopina 12/18

87-100 Torun, Poland

E-mail: atyc@mat.uni.torun.pl

Received 12 November 1996;
revised 24 January 1997



