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Introduction. Let k be a commutative ring with unity and let cMod
denote the category of all complete k-modules (see Section 2). By applying
the complete tensor product ⊗̂ in cMod we define in a natural way complete
k-algebras, complete Hopf k-algebras, and complete comodule algebras over
a complete Hopf k-algebra (and corresponding morphisms). Let H be a
complete Hopf k-algebra. If A is a complete H-comodule algebra, via ̺ :
A → A ⊗̂H, then the subalgebra AH = {a ∈ A : ̺(a) = a ⊗̂1} of A is called
the algebra of invariants. The main result of the paper is the following
decomposition theorem (see Theorem 3.4).

If A is a complete H-comodule algebra admitting a morphism f : H → A
of complete comodule k-algebras such that f(h)a = af(h) for h ∈ H, a ∈
AH , then the map α : AH ⊗̂ H → A, α(a ⊗ h) = af(h), is an AH-linear

isomorphism of complete k-algebras.

The above theorem can be vieved as a Hopf-theoretic counterpart of the
following well-known fact:

If k is an algebraically closed field and G×Y → Y is an algebraic action

of an algebraic group G over k on an algebraic variety Y admitting a G-

morphism f : Y → G, then the geometric quotient Y/G exists, and there

exists an isomorphism of G-varieties Y ∼= Y/G × G.
In Section 4 some consequences of the above theorem are given.

One of them is as follows.

Let G be an abstract group and let A =
⊕

g∈G Ag be a G-graded algebra

such that there exists a group homomorphism t : G → U(A) with t(g) ∈ Ag

for g ∈ G (U(A) is the group of invertible elements in A). If t(g)a = at(g)
for all g ∈ G and a ∈ A1, then the map α : A1 ⊗k kG, α(a ⊗ g) = at(g), is

an A1-linear isomorphism of G-graded algebras, where kG denotes the group
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algebra of G over k. In particular , if G is the group of rational integers,
then the assumptions on the G-graded algebra A reduce to existence of a

y ∈ A1 ∩ U(A) commuting with every a ∈ A1.

1. Preliminaries and notation. Let k be a fixed commutative ring
with unity. All modules, algebras, and tensor products are defined over k,
unless stated otherwise.

By a topological module we mean a module M provided with a topology
given by a family {Mi} of submodules of M (as a fundamental system of
neighborhoods of 0). When we want to indicate the topology of M we
write (M, {Mi}). The module k will be viewed as a topological module with
the discrete topology. A morphism of topological modules is a continuous
morphism of modules. All submodules and quotient modules of a topological
module will be viewed as topological modules with the induced topology and
the quotient topology, respectively.

If {Nj , tj,j′} is an inverse system of topological modules, then the module
M = limj{Mj , tj,j′} with the topology inherited from the product topology
in

∏
j Mj is obviously a topological module. If (M, {Mi}) and (N, {Ns})

are topological modules, then the tensor product M ⊗ N will be treated as
a topological module with the topology defined by the family {Mi ⊗ N +
M ⊗ Ns} (precisely, their images in M ⊗ N).

If (M, {Mi}) is a topological module, then its completion M̂ is defined to
be the topological module limi M/Mi (notice that M/Mi’s have the discrete
topology).

A topological module M is said to be complete if the canonical homo-
morphism p : M → M̂ is an isomorphism of topological modules. It is
easy to show that the topology of M̂ is given by the family of submodules
{M̂i}, p induces isomorphisms of modules M/Mi

∼= M̂/M̂i for all i, and that

M̂ is complete. Moreover, for any complete module L and any morphism
t : M → L of topological modules, there is a unique morphism of topological
modules t′ : M̂ → L such that t′p = t. If f : M → N is a morphism of
topological modules, then f̂ : M̂ → N̂ denotes the natural morphism of
topological modules induced by f .

The category of all complete modules will be denoted by cMod. Since for
every module M the topological module (M, {0}) is complete, the category
of modules will be identified with the full subcategory of cMod formed by
all discrete modules.

If M,N are complete modules, then we write M ⊗̂N for the completion
of M ⊗ N and call it the complete tensor product of M and N .

A complete algebra is a triple (A,m, η), where m : A⊗̂A → A, η : k → A
are morphisms in cMod satisfying the appropriate associativity and unity
axioms (compare for example [5]).
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It is easy to prove that a complete algebra is a topological algebra A
such that its topology is equivalent to the topology given by a family of
two-sided ideals and A is complete as a topological module. If A and A′ are
complete algebras, then by a morphism f : A → A′ we mean a morphism in
cMod which preserves the multiplication and the unity.

Examples of complete algebras are the formal power series algebras
k[[X1, . . . ,Xn]] provided with the (X1, . . . ,Xn)-adic topology. If k is a field,
then clearly all linearly compact k-algebras [1, Chap. I] are complete al-
gebras. Just as for modules, ordinary algebras will be viewed as complete
algebras with the discrete topology.

If A is a topological algebra whose topology is given by a family of two-

sided ideals, then Â admits a unique complete algebra structure such that
p : A → Â is a morphism of complete algebras. In particular, the complete
tensor product of complete algebras is a complete algebra. Moreover, if
F : A → A′ is a morphism of topological algebras whose topologies are given

by families of two-sided ideals, then f̂ : Â → Â′ is a morphism of complete
algebras. Obviously k is a complete algebra and k ⊗̂ A ∼= Â ∼= A ⊗̂ k for
each topological algebra A. Also it is not difficult to prove (see Theorem 1
in [2, Chap. I, 1.]) that, given a complete algebra (A, {Ij}) (Ij ’s are two-
sided ideals), the complete algebra A ⊗̂ k[[X1, . . . ,Xn]] is isomorphic to the
complete algebra A[[X1, . . . ,Xn]] with the topology given by the family of
two-sided ideals {Ij [[X]] + (X1, . . . ,Xn)m}j,m.

If A is a complete algebra, then a (right) complete A-module is a complete
module M together with a morphism of complete modules M ⊗̂ A → M ,
which satisfy the associativity and the unity axioms.

Replacing modules and algebras by complete modules and complete al-
gebras, and also the tensor product by the complete tensor product, we
define in exactly the same way as in [5] a complete coalgebra, a complete
comodule over a complete coalgebra, and a complete Hopf algebra (and the
corresponding morphisms). For example, a complete Hopf algebra is a sys-
tem (H,∆,S, ε), where H is a complete algebra and ∆ : H → H ⊗̂ H,
S : H → H, ε : H → k are morphisms in cMod satisfying appropriate
conditions (see [5, 4]).

Obviously, the ordinary Hopf algebras are complete Hopf algebras with
the discrete topology. Examples of complete Hopf algebras provide (smooth)
formal groups. Let us recall that an n-dimensional formal group (over the
basic ring k) is a sequence

F = F (X,Y ) = (F1(X,Y ), . . . , Fn(X,Y ))

of formal power series from k[[X,Y ]], X = {X1, . . . ,Xn}, Y = {Y1, . . . , Yn}
such that

(1) F (X, 0) = X, F (0, Y ) = Y ,
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(2) F (F (X,Y ), Z) = F (X,F (Y,Z))

(see [2]). If F is such a formal group, then one easily verifies that

H(F ) = (k[[X]],∆, S, ε)

with ∆(g(X)) = g(F (X,Y )), ε(Xi) = 0, i = 1, . . . , n, and S constructed
as in [2, Chap. I, 3.] is a complete Hopf algebra. Moreover, if k is a field,
then each complete Hopf algebra “living” on the complete algebra k[[X]] is
of this form.

Proposition 1.1. If (H,∆,S, ε) is a complete Hopf algebra, then

(1) S(gh) = S(h)S(g) for all h, g ∈ H,
(2) S(1) = 1,
(3) εS = ε,
(4) T (S ⊗̂ S)∆ = ∆S, where T : H ⊗̂ H → H ⊗̂ H is the twist map

h ⊗̂ g 7→ g ⊗̂ h.

P r o o f. Apply the arguments used in the proof of Proposition 4.0.1
of [5].

2. Complete Hopf modules and complete comodule algebras.

By analogy with definitions of comodule algebras and Hopf modules (and
their morphisms) over an ordinary Hopf algebra (see [5]) we define also the
concept of a complete comodule algebra and a complete Hopf module (and
their morphisms) over a complete Hopf algebra. These two concepts are
of special interest for us, so we give precise definitions. For that purpose
assume that (H,∆,S, ε) is a complete Hopf algebra. If V,W are complete
right H-modules, via t : V ⊗̂ H → V and t′ : W ⊗̂ H → W , respectively,
then V ⊗̂ W is also a right H-module, via the composed morphism

V ⊗̂ W ⊗̂ H
1⊗̂1⊗̂∆
−−−−→ V ⊗̂ W ⊗̂ H ⊗̂ H

1⊗̂T ⊗̂1
−−−→ V ⊗̂ H ⊗̂ W ⊗̂ H

t⊗̂t′

−−→ V ⊗̂ W,

where T is the twist map.

Definition 2.1. A complete H-comodule algebra is a complete algebra
A together with a morphism of algebras D : A → A ⊗̂ H, which makes A
a complete H-comodule. If A and A′ are complete H-comodule algebras,
then a morphism A → A′ is a morphism of complete algebras, which is also
a morphism of complete H-comodules.

If A is a complete algebra, then A⊗̂H is a complete H-comodule algebra,
via 1 ⊗̂ ∆.

Definition 2.2. A (right) complete Hopf module over H is a complete
module M satisfying the following conditions.

(1) M is a complete right H-module,
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(2) M is a complete right H-comodule, via ̺ : M → M ⊗̂ H,
(3) ̺ is a morphism of complete H-modules, where H acts on itself by

right multiplication. A morphism of complete Hopf modules M,M ′ is a
morphism of complete modules M → M ′ which is a morphism of complete
H-modules and complete H-comodules.

Let H be a complete Hopf algebra. If M is a complete module, then
M ⊗̂ H is a complete Hopf module, via 1 ⊗̂ mH : M ⊗̂ H ⊗̂ H → M ⊗̂ H
and 1 ⊗̂ ∆ : M ⊗̂ H → M ⊗̂ H ⊗̂ H, where mH is the multiplication in H.
Similarly to [5], for each complete H-comodule ̺ : M → M ⊗̂ H, we define
the module of (co)invariants MH = {m ∈ M : ̺(m) = m ⊗̂ 1}. One easily
checks that MH (with the induced topology) is a complete submodule of
M . If A is a complete H-comodule algebra, then clearly AH is a complete
subalgebra of A. Our first result is a generalization of [5, Theorem 4.1.1].

Theorem 2.3. If (H,∆,S, ε) is a complete Hopf algebra and M is a

complete Hopf module over H, then the map α : MH ⊗̂H → M , α(m⊗h) =
m.h, is an isomorphism of complete Hopf modules.

P r o o f. Denote by ΦM and ΦH the families of submodules defining the
topologies in M and H, respectively. Let P : M → M be the composition

M
̺
→ M ⊗̂ H

1⊗̂S
−−→ M ⊗̂ H

t
→ M,

where t makes M a complete H-module. We are going to show that P (M) ⊆
MH . It suffices to show that for each m ∈ M and each M1 ∈ ΦM , H1 ∈ ΦH ,
̺(P (m)) = P (m) ⊗̂ 1 modulo (M1 ⊗ H + M ⊗ H1)

∧. Fix then m ∈ M and
M1 ∈ ΦM ,H1 ∈ ΦH . Since M ⊗̂H/(M ′ ⊗H + M ⊗H ′)∧ = M/M ′ ⊗H/H ′

for all M ′ ∈ ΦM , H ′ ∈ ΦH , and we deal with continuous morphisms, there
exists a commutative diagram

M M/M7 ⊗ H/H7

M/M6 ⊗ H/H6 M/M5 ⊗ H/H5 ⊗ H/H5 ⊗ H/H5

M/M4 ⊗ H/H4 M/M3 ⊗ H/H3 ⊗ H/H3 ⊗ H/H3

M/M2 M/M1 ⊗ M/M1,

¯̺ //

¯̺

��
R1

��
¯̺⊗∆̄ //

1⊗S̄

��
R2

��
¯̺⊗∆̄ //

t̄

��
R3

��
¯̺ //

where R1 = 1 ⊗ (∆ ⊗ 1)∆, R2 = 1 ⊗ 1 ⊗ T (S ⊗ S), R3 = (t ⊗ mH)(1 ⊗
T ⊗ 1), Mi ∈ ΦM ,Hi ∈ ΦH , i = 1, . . . , 7, mH is the multiplication in
H, and ̺,∆, S, t,mH denote the maps induced by the maps ̺,∆, S, t,mH ,
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respectively (commutativity follows from the corresponding definitions and
Proposition 1). Now, using the sigma notation from [5], we proceed in
exactly the same way as in [5, Proof of Theorem 4.1.1]. Let ̺(m) =

∑
m(0)⊗

m(1) ∈ M/M6 ⊗H/H6 and, as above, write t(a⊗h) = a.h. Then we get the
following equalities modulo (M1 ⊗ H + M ⊗ H1)

∧:

̺(P (m)) =
∑

̺(m(0).S(m(1))) =
∑

m(0).S(m(3)) ⊗ m(1)S(m(2))

=
∑

m(0).S(m(2)) ⊗ ε(m(1))

=
∑

m(0).S(m(1)) ⊗ 1 = P (m) ⊗̂ 1.

Thus we have shown that P (M) ⊆ MH . Define the map β : M → MH ⊗̂H
by β = (P ⊗̂ 1)̺. We show that αβ = 1M and βα = 1

MH ⊗̂H
. The first

equality is a consequence of the commutativity of the diagram

M ⊗̂ H M ⊗̂ H ⊗̂ H M ⊗̂ H ⊗̂ H M ⊗̂ H

M M ⊗̂ H M ⊗̂ H M

̺⊗̂1 // 1⊗̂S⊗̂1// t⊗̂1 //

1⊗̂mH

��
t

��
̺

OO

̺ //

1⊗̂∆

OO

1⊗̂εη // t //

To prove the second one, fix m′ ∈ MH , h ∈ H and M1 ∈ ΦM ,H1 ∈ ΦH ,
and observe that there exists a commutative diagram

MH ⊗ H M

M/M6 ⊗ (H/H6)
⊗

3

M/M4 ⊗ M/M4

M/M5 ⊗ (H/H5)
⊗

5

M/M3 ⊗ H/H3 ⊗ H/H3

M/M2 ⊗ H/H2 ⊗ H/H2

M/M1 ⊗ H/H1

t̄ //

̺⊗̂1
��

¯̺

��
(t̄⊗m̄H)(1⊗T⊗1) //

¯̺⊗1⊗∆̄⊗1

��
¯̺⊗1

��
(t̄⊗m̄H⊗m̄H)(1⊗T ′) //

1⊗S̄⊗1

��

t̄⊗1

��

where as above all Mi’s are in ΦM , all Hi’s are in ΦH , and T ′ : (H/H5)
⊗

5

→

(H/H5)
⊗

5

is given by T ′(x1⊗x2⊗. . .⊗x5) = x3⊗x4⊗x1⊗x2⊗x5 (notation
and arguments as above). Now as in [5, the proof of Theorem 4.1.1] we get
the following equalities modulo (M1 ⊗ H + M ⊗ H1)

∧:
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βα(m′ ⊗ h) =
∑

P (m′.h(1)) ⊗ h(2) =
∑

(m′.h(1)).S̄(h(2)) ⊗ h(3)

=
∑

m′.(h(1)S̄(h(2)) ⊗ h(3) =
∑

m′ε̄(h(1)) ⊗ h(2) = m′ ⊗ h.

Hence βα = 1. It remains to verify that α is a morphism of complete
Hopf modules. α is trivially a morphism of complete H-modules. Since
̺ : M → M ⊗̂ H is a morphism of H-modules, α is also a morphism of
complete comodules.

Theorem 2.4. Suppose that A is a complete H-comodule algebra, via

̺ : A → A ⊗̂ H, and that there exists a morphism of complete H-comodule

algebras f : H → A. Then

(a) the map t : A ⊗̂H → A, t(a⊗h) = af(h), defines a complete H-Hopf

module structure on (A, ̺),

(b) the map α : AH ⊗̂ H → A, α(a ⊗ h) = af(h), is an isomorphism

of complete Hopf modules and left AH -modules. Moreover , β = α−1 : A →
AH ⊗̂ H is given as in the proof of Theorem 2.3,

(c) if f(h)y = yf(h) for h ∈ H and y ∈ AH , then α is an isomorphism

of complete algebras.

P r o o f. Part (a) is a simple calculation. Parts (b) and (c) are immediate
consequences of (a) and Theorem 2.3.

R e m a r k 2.5. If A and H are discrete as topological modules, then
parts (b) and (c) of the above theorem can be easily deduced from [4, Propo-
sition 7.2.3], because every morphism of algebras H → A is invertible in the
convolution algebra (Homk(H,A), ∗), see [5, Chap. IV] or [4, Def. 1.4.1].

R e m a r k 2.6. If k is an algebraically closed field and G × Y → Y is
an (algebraic) action of an algebraic group G over k on an algebraic variety
Y admitting a G-morphism f : Y → G, then the geometric quotient Y/G
exists, and the G-varieties Y and Y/G×G are isomorphic. Theorem 2.4(c)
can be viewed as a Hopf-theoretic counterpart of this fact.

3. Applications. In this section we give some consequences of Theo-
rem 2.4.

If A is a complete algebra and A′ is a subalgebra of A, then we consider
the set

CA(A′) = {a ∈ A : ∀y∈A′ ay = ya}.

Let N be the set of all non-negative rational integers and let n be a positive
rational integer. If γ = (γ1, . . . , γn), η = (η1, . . . , ηn) are in N

n, we set

(γ, η) =

(
γ1 + η1

η1

)
. . .

(
γn + ηn

ηn

)
.
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Recall that an n-dimensional differentiation of an algebra A is a mor-
phism of algebras D : A → A[[X]],X = {X1, . . . ,Xn}, such that D(a) = a
(mod X). Given such a differentiation D, AD will denote the subalgebra
of its constants, i.e., AD = {a ∈ A : D(a) = a}. Recall also that an n-
dimensional differentiation D is said to be locally nilpotent if D(A) ⊆ A[X],
and D is said to be iterative if DγDη = (γ, η)Dγ+η , where Dµ : A → A,
µ ∈ N

n, are the maps determined by the equality D(a) =
∑

Dµ(a)Xµ

(Xµ = Xµ1

1 . . . Xµn

n ). Finally, if A is an algebra, U(A) will denote the group
of invertible elements of A.

The following corollary is well-known (for n = 1 and commutative A (see
[3, Lemma 1.4]).

Corollary 3.1. Suppose that n ≥ 1 is an integer and D : A → A[[X]]
is an n-dimensional locally nilpotent iterative differentiation of an alge-

bra A such that there are elements a1, . . . , an ∈ A with aiaj = ajai and

D(ai) = ai + Xi for i, j = 1, . . . , n. If a1, . . . , an ∈ CA(AD), then the

map AD ⊗ k[X] → A, a ⊗ g(X) 7→ ag(a1, . . . , an) is an isomorphism of

AD-algebras.

P r o o f. Let H denote the Hopf algebra (k[X],∆, S, ε), where ∆(Xi) =
Xi ⊗ 1 + 1 ⊗ Xi, S(Xi) = −Xi, ε(Xi) = 0. Then an H-comodule algebra
structure on A is nothing else than an n-dimensional, locally nilpotent,
iterative differentiation D : A → A[[X]], and, given such a D, a morphism of
H-comodule algebras H → A is simply a sequence (a1, . . . , an) of commuting
elements from A such that D(ai) = ai +Xi for all i. So, the corollary follows
from Theorem 2.4(c), because AH = AD.

Corollary 3.2. Let G be an (abstract) group and let A =
⊕

g∈G Ag be a

G-graded algebra such that there exists a group homomorphism t : G → U(A)
with t(g) ∈ Ag for g ∈ G. If t(G) ⊆ CA(A1), then the map α : A1 ⊗ kG →
A, α(a ⊗ g) = at(g), is an A1-linear isomorphism of G-graded algebras,
where kG denotes the group algebra of G over k.

P r o o f. Denote by H the Hopf algebra kG with ∆(g) = g ⊗ g, S(g) =
g−1, ε(g) = 1 for g ∈ G. Then an H-comodule algebra structure on
A is simply a G-grading A =

⊕
g∈G Ag, AH is then equal to A1, and a

morphism of H-comodule algebras H → A is a homomorphism of groups
t : G → U(A) such that t(g) ∈ Ag for all g ∈ G. So, we are done, again by
Theorem 2.4(c).

Recall that a derivation d : A → A of an algebra A is called locally

nilpotent if for each a ∈ A there is an s ∈ N with ds(a) = 0. Given such a
derivation d, Ad = Ker d is the algebra of its constants.
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By P we denote the divided power algebra
⊕∞

i=0 kyi with yiyj =
(i, j)yi+j for i, j ≥ 0.

Corollary 3.3. Let d : A → A be a locally nilpotent derivation of an

algebra A such that there exists a sequence 1 = a0, a1, . . . , ai ∈ A, with

aiaj = (i, j)ai+j and d(ai+1) = ai for i ≥ 0. If ai ∈ CA(Ad) for all i, then

the map α : Ad ⊗ P → A, α(a ⊗ yi) = aai, i ≥ 0, is an isomorphism of

Ad-algebras.

P r o o f. Apply Theorem 2.4(c) to the Hopf algebra H = (P,∆, S, ε),
where ∆(yn) =

∑
i+j=n yi ⊗ yj , ε(yi) = δ0i. The existence of an antipode S

is an easy exercise.

By applying Theorem 2.4(c) to complete Hopf algebras of the form H(F ),
where F is a formal group (see Section 1), and to complete algebras with
topologies defined by powers of some ideal we get the following result.

Corollary 3.4. Let F (X,Y ) = (F1(X,Y ), . . . , Fn(X,Y )) be an n-

dimensional formal group, and let A be a complete algebra with topology

defined by powers of a two-sided ideal J . Moreover , let D : A → A[[X]] be

an n-dimensional differentiation satisfying the conditions:

(i)
∑

γ,µ DγDµ(a)XγY µ =
∑

η Dη(a)F (X,Y )η.

(ii) There exists a sequence a = (a1, . . . , an) with ai ∈ J , aiaj = ajai,
and D(ai) = Fi(a,X), i, j = 1, . . . , n.

If a1, . . . , an ∈ CA(AD), then the map α : AD ⊗̂ k[[X]] → A, α(a ⊗
g(X)) = ag(a1, . . . , an), is an isomorphism of AD-algebras. In particular ,
the induced topology in AD is equivalent to the J ∩AD-adic topology in AD.

R e m a r k 3.5. (a) In the situation of the above corollary, if F = X+Y ,
then condition (i) says that D is an iterative differentiation of A, and in this
case the corollary is well known.

(b) If n = 1 and F = X + Y + XY , then condition (i) says that DiDj =∑
k

(
k
i

)(
i

i+j−k

) ((
r
s

)
= 0 when r < s

)
for all i, j, and condition (ii) says that

D(a) = a + (1 + a)X for some a ∈ J .
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