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REPRESENTATION TYPE OF POSETS AND

FINITE RANK BUTLER GROUPS

BY

D. ARNOLD AND M. DUGAS (WACO, TEXAS)

Some special classes of finite rank indecomposable Butler groups have
recently been classified, up to quasi-isomorphism and near isomorphism, by
complete sets of invariants as surveyed in [Arnold, Vinsonhaler, 93]. This
leads to the question of determination of representation type, i.e. when is
a classification even feasible? The approach in this paper is to use inter-
pretations of classes of Butler groups as representations of finite partially
ordered sets (posets) over various rings. In case the ring is a field, there
are well known, suitable definitions of representation type. In particular,
each poset has exactly one of finite, tame, or wild representation type, the
representation type can be determined from the poset, and classification of
indecomposable representations of a poset with finite or tame representation
type is feasible.

For a ring R and finite poset S, rep(S,R) denotes the category of finitely
generated filtered R-representations of S [Simson, 92, 96]. The objects are
U = (U0, Ui : i ∈ S) such that U0 is a finitely generated submodule of a
finitely generated free R-module, each Ui is a finitely generated submodule
of U0, and if i ≤ j in S, then Ui is contained in Uj . A morphism f : U → U ′

is an R-module homomorphism f : U0 → U ′

0 such that f(Ui) is contained in
U ′

i for each i. Direct sums are given by U ⊕ V = (U0 ⊕ V0, Ui ⊕ Vi). If k is
a field, then rep(S, k) is also known as the category of S-spaces (or filtered
k-linear representations of S) [Simson, 92, Chapter 3].

As an illustration of an interpretation of Butler groups as representa-
tions, let T be a finite sublattice of the lattice of types (isomorphism classes
of subgroups of Q) and B(T ) the category of finite rank Butler groups with
typeset contained in T [Butler, 65]. Each finite rank Butler group G is
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in B(T ) for T the lattice generated by typeset G, known to be a finite
set. There is a category equivalence from the quasi-homomorphism cate-
gory B(T )Q of B(T ) to the category rep(JI(T )op, Q) of Q-representations of
JI(T )op, the finite poset of join-irreducible elements of T with inverse order-
ing [Butler, 68, 87]. The quasi-isomorphism representation type of B(T ) can
then be determined from JI(T ) as surveyed in [Arnold, 89]. Consequently,
strongly indecomposables can be classified up to quasi-isomorphism in case
B(T )Q has finite or tame representation type.

Representation type for the quasi-homomorphism category is not suf-
ficient from the point of view of groups as an indecomposable group can
decompose up to quasi-isomorphism. The focus of this paper is on the
representation type of B(T )p, the isomorphism at p category of B(T ). Iso-
morphism at p is the local version of near isomorphism as introduced in
[Lady, 75]. This is relevant to representation type of indecomposable groups
as a Butler group G, being a torsion-free abelian group of finite rank, is
indecomposable if and only if G is indecomposable up to near isomorphism,
i.e. isomorphism at p for each prime p [Arnold, 82].

Let Z(p) denote the localization of the integers at a prime p and
repfpure(S, Z(p)) the full subcategory of rep(S,R) consisting of representa-
tions (U0, Ui : i ∈ S) with U0 a finitely generated free Z(p)-module and
each Ui pure in, hence a summand of, U0. Given a positive integer j, define
repfpure(S, Z(p), j) to be the full subcategory of repfpure(S, Z(p)) with objects

(U0, Ui : i ∈ S) such that pjU0 is contained in
∑

i Ui.

If T is a finite p-locally free lattice of types, then there is a category
equivalence between B(T )p and repfpure(JI(T )op, Z(p)), the category of free,
pure Z(p)-representations of JI(T ) [Richman, 94]. Not much is known about
the representation type of the category rep(S,R) of R-representations of a
finite poset S in case R is not a field, but see [Plahotnik, 76], [Simson, 96],
and [Files, Goebel, 96] and references therein.

Section 1 is devoted to the representation type of repfpure(S, Z(p), j) for
a finite poset S. The choice of appropriate definitions of tame and wild
representation type for Z(p)-representations remains unclear. In the mean-
time, we use finite representation type to mean only finitely many isomor-
phism classes of indecomposables and introduce the notion of wild modulo
p representation type in Section 1. One of the main results of Section 1
(Corollary 1.10) asserts that the category repfpure(S, Z(p), j) has:

(a) wild modulo p representation type if widthS ≥ 3, j ≥ 0,

(b) infinite representation type if widthS = 2 and S contains the poset
(1, 2), j ≥ 0,

(c) finite representation type if widthS = 1, j ≥ 0 or widthS = 2 and
S does not contain the poset (1, 2), j ≥ 0.
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We conjecture that if width S = 2 and S contains the poset (1, 2), then
repfpure(S, Z(p), j) does not have wild modulo p representation type. Even
if this conjecture is resolved in the affirmative, it remains unclear whether
or not indecomposables can be classified.

Let Sn denote an antichain with n elements. As a special case of Corol-
lary 1.10, together with known results for comparison, we have:

(a) For a field k, rep(Sn, k) has finite representation type if n ≤ 3, tame
representation type if n = 4, and wild representation type if n ≥ 5.

(b) repfpure(Sn, Z(p), j) has finite representation type if n ≤ 2, j ≥ 0 and
wild modulo p representation type if n ≥ 3, j ≥ 0.

(c) rep(Sn, Z(p), j) has finite representation type if n = 1, j ≥ 0, infinite
representation type if n = 2, j ≥ 0, and wild modulo p representation type
if n ≥ 3, j ≥ 0.

(d) If S = (1, 2), then repfpure(S, Z(p), 0) has infinite representation type
and each indecomposable has rank ≤ 2 (Theorem 1.8(a)).

(e) If S = (1, 2), then repfpure(S, Z(p)) has indecomposables of arbitrarily
large rank (Theorem 1.8(b)).

Computations of indecomposables in repfpure(S, Z(p)) cited in (d) and
(e) for the “critical” poset S = (1, 2) demonstrate some anomalies that do
not occur for fields. In particular, (d) illustrates a distinction between rank

finite representation type (there is a bound on the ranks of indecomposables)
and finite representation type as defined above. In fact, repfpure(S, Z(p)) has
rank finite representation type if and only if S does not contain the poset
(1, 2) (Corollary 1.11).

In Section 2, computations of representation type in Section 1 are applied
to isomorphism at p categories B(T, j)p of Butler groups (Corollary 2.3).
Specifically, the representation type of B(T, j)p is the same as the repre-
sentation type of repfpure(S, Z(p), j) for S the finite poset of join-irreducible
elements of T in case T is p-locally free. Thus, Corollary 1.10 applies di-
rectly. For example, let Tn be a finite p-locally free Boolean algebra of types
with n atoms.

(a′) B(Tn)Q has finite representation type if n ≤ 3, tame representation
type if n = 4, and wild representation type if n ≥ 5.

(b′) B(Tn, j)p has finite representation type if n ≤ 2, j ≥ 0, and wild
modulo p representation type if n ≥ 3, j ≥ 0.

While determining the representation type of repfpure(S, Z(p), j), vari-
ous indecomposable representations are constructed. Included are several
examples illustrating how such representations can be translated into inde-
composable Butler groups of finite rank (Examples 2.4 and 2.5).
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1. Representation type of repfpure(S, Z(p)) and repfpure(S, Z(p), j).
A category C has finite representation type if IndC is finite, where IndC
is the set of isomorphism classes of indecomposables in C, and rank finite

representation type if there is a finite bound on ranks of indecomposables
in C.

Given U = (U0, Ui) ∈ rep(S, k), k a field, define the coordinate vector

cdn U = (u0, ui : i ∈ S), where u0 = dimk U0 and ui = dimk Ui/
∑

{Uj :
j < i in S} are non-negative integers [Simson, 92]. The category rep(S, k)
has tame representation type provided that it has infinite representation
type and for each coordinate vector w = (w0, wi) there are finitely many
N1, . . . , Nm ∈ rep(S, k[x]) such that if U ∈ rep(S, k) is indecomposable with
cdn U = w, then U is isomorphic to Ni⊗k[x]B for some finite-dimensional in-
decomposable k[x]-module B [Simson, 92]. In other words, indecomposables
U in rep(S, k) are characterized up to isomorphism by cdnU , finitely many
indecomposable k[x]-representations of S, and k[x]-modules k[x]/〈g(x)e〉,
g(x) an irreducible polynomial.

The category rep(S, k) has wild representation type if there is an ex-
act k-linear functor mod k〈x, y〉 → rep(k, S) that sends indecomposables to
indecomposables and reflects isomorphism classes, where k〈x, y〉 is the poly-
nomial ring with non-commuting indeterminates x and y and mod k〈x, y〉 is
the category of k〈x, y〉-modules having finite k-dimension (see [Simson, 92,
93]).

The following theorem, due to Drozd, Kleiner, and Nazarova, is well
known (see [Simson, 92, Theorems 10.1 and 15.1]). The poset

{a < b > c < d}

is denoted by N . Let j ≥ 0, S a finite poset, and define a poset (S, j) to be
the disjoint union of S and a chain C of length j. The ordering on (S, j) is
exactly that on S and C, i.e. there are no relations between elements of C
and S. Thus, for example, (i, j, k) denotes the disjoint union of 3 chains of
length i, j, and k respectively.

Theorem 1.1. Let S be a finite poset and k a field.

(a) rep(S, k) has exactly one of finite, tame, or wild representation type.

(b) rep(S, k) has finite representation type if and only if S does not

contain (1, 1, 1, 1), (2, 2, 2), (1, 3, 3), (1, 2, 5), or (N, 4) as a subposet.

(c) rep(S, k) has tame representation type if and only if S does not con-

tain (1, 1, 1, 1, 1), (1, 1, 1, 2), (2, 2, 3), (1, 3, 4), (1, 2, 6), or (N, 5) as a sub-

poset.
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Given a finite poset S, let S∗ = (S, 1) be the disjoint union of S with
a point ∗. An additive functor F from a category C to a category D is
a fully faithful embedding if F : HomC(U, V ) → HomD(F (U), F (V )) is an
isomorphism for each U , V in C. If F is a fully faithful embedding, then F
induces an injection from IndC into IndD.

Lemma 1.2. Suppose that S is a finite poset.

(a) If S′ is a subposet of S and j′ ≤ j, then there is a fully faithful

embedding

repfpure(S
′, Z(p), j

′) → repfpure(S, Z(p), j).

(b) There is a fully faithful embedding

repfpure(S, Z(p), j) → rep(S∗, Z(p), 0).

The image consists of all V = (V0, Vi, V∗ : i ∈ S) with each V0 =
∑

i Vi a

free Z(p)-module, each Vi pure in V0, and V∗ ∩ Vi = pjVi for each i in S.

P r o o f. (a) Given U = (U0, Ui) ∈ repfpure(S
′, Z(p), j

′), define F (U) =
(V0, Vs : s ∈ S) ∈ repfpure(S, Z(p), j) by V0 = U0, Vs = Us if s ∈ S′,
Vs =

⋂

{Ut : s < t, t ∈ S′} if s 6∈ S′ and there is some t ∈ S′ with s < t, and
Vs = U0 otherwise. It is routine to see that F is a fully faithful embedding,
where F (f) = f (see [Simson, 92, Section 5.3]).

(b) The correspondence U = (U0, Ui : i ∈ S) → V = (
∑

i Ui, Ui, p
jU0)

is a functor, where f → g = f |∑Ui
. Note that V satisfies the given con-

ditions. This functor is a fully faithful embedding, since if g : V → V ′ is
a representation morphism, then f = g/pj : U → U ′ is a unique extension
of g.

Now let V = (V0, Vi, V∗ : i ∈ S) ∈ rep(S∗, Z(p), 0) satisfy the given
conditions and define U = (V0 + (1/pj)V∗, Vi : i ∈ S). Then U0 = V0 +
(1/pj)V∗ is finitely generated torsion-free, hence free, as a Z(p)-module, and
pjU0 is contained in

∑

i Vi = V0. The fact that each Vi is pure in U0 follows
from the assumption that V∗ ∩ Vi = pjVi for each i.

We next consider some cases for which repfpure(S, Z(p), j) has finite repre-
sentation type. The first theorem, and proof, is exactly as for fields. Given
a finite poset S, the width of S, w(S), is the largest number of pairwise
incomparable elements of S.

Theorem 1.3. Assume that w(S) = 1. Then the poset S is a chain and

repfpure(S, Z(p), j) has finite representation type for each j ≥ 0. A complete

list of Ind repfpure(S, Z(p), j) is (Z(p), 0, . . . , 0, Z(p)), (Z(p), 0, . . . , 0, Z(p), Z(p)),
. . . , (Z(p), Z(p), . . . , Z(p), Z(p)). Each indecomposable has endomorphism ring

isomorphic to Z(p).

P r o o f. Since w(S) = 1, any two elements of S are comparable, from
which it follows that S is a chain, say S = {1 < 2 < . . . < m}. Let 0 6= U =
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(U0, U1, . . . , Um) ∈ repfpure(S, Z(p), j) with Ui contained in Ui+1 for i ≥ 1
and write U0 = Um ⊕ V0. This is possible as pure submodules of finitely
generated free Z(p)-modules are summands. Then

U = (Um, U1, . . . , Um−1, Um) ⊕ (V0, 0, . . . , 0).

But U is indecomposable with 0 6= pjU0 contained in
∑

i Ui = Um. Thus,
V0 = 0 and U = (Um, U1, . . . , Um−1, Um). Next write Um = Um−1 ⊕ Vm.
Then

U = (Um−1, U1, . . . , Um−1, Um−1) ⊕ (Vm, 0, . . . , 0, Vm).

Since U is indecomposable, either

Um−1 = 0 and U is isomorphic to (Z(p), 0, . . . , 0, Z(p)) or else

Vm = 0 and U = (Um−1, U1, . . . , Um−1, Um−1).

Continuing in this fashion completes the list of indecomposables. The en-
domorphism ring of each indecomposable is Z(p) since Z(p) is its own endo-
morphism ring.

Recall that Sn = (1, 1, . . . , 1) denotes the poset of n pairwise incompa-
rable elements.

Theorem 1.4 ([Arnold, Dugas, 93B] or [Files, Goebel, 96]). The cat-

egory repfpure(S2, Z(p), j) has finite representation type for each j ≥ 0.
A complete list of representations in Ind repfpure(S2, Z(p), j) for j ≥ 1 is

(Z(p), 0, 0), (Z(p) , Z(p), Z(p)), (Z(p), Z(p), 0), (Z(p) , 0, Z(p)), and Ub = (Z(p) ⊕
Z(p) + Z(p)(1, 1)/p

j , Z(p) ⊕ 0, 0 ⊕ Z(p)).

The case j = 0 has an interpretation as a “matrix problem” over Z(p)

(see [Simson, 92, Chapter 1] for a discussion of matrix problems over fields).
In subsequent corollaries, some matrix problems are “solved” over Z(p) in
the sense that representation type is determined.

Theorem 1.5. There is a fully faithful embedding

H : repfpure(S, Z(p), 0) → repfpure(S
∗, Z(p), 0)

with image H those V = (V0 =
⊕

i Vi, Vi, V∗ : i ∈ S) such that Vi ∩ V∗ = 0
and Vi ⊕ V∗ is pure in V0 for each i ∈ S.

P r o o f. Let U = (U0, Ui : i ∈ S) ∈ repfpure(S, Z(p), 0) with U0 =
∑

i Ui

and define

H(U) =
(

⊕

i

Ui, Ui, U∗

)

,

where U∗ is the kernel of the epimorphism π :
⊕

i Ui → U0 induced by
inclusion of the Ui’s in U0. Then H(U) ∈ repfpure(S

∗, Z(p), 0) with Ui∩U∗ =
0 and Ui ⊕ U∗ pure in U0 for each i ∈ S as (

⊕

i Ui)/(Ui ⊕ U∗), being
isomorphic to U0/Ui, is torsion-free.
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To see that H is a functor, let f : U → U ′ be a representation morphism.
Then g =

⊕

f |U(i) :
⊕

i Ui →
⊕

i U ′

i with fπ = π′g. Thus, g : U∗ = ker π →
U ′

∗
= ker π′ and H(f) = g : H(U) → H(U ′) is a representation morphism.

The reverse of this argument shows that H is a fully faithful embedding.
Finally, to see that imageH is as described, let V = (V0 =

⊕

i Vi, Vi, V∗ :
i ∈ S) ∈ repfpure(S

∗, Z(p), 0) with Vi∩V∗ = 0 and Vi⊕V∗ pure in V0 for each
i ∈ S. Define U = (U0, Ui : i ∈ S) by U0 = V0/V∗ and Ui = (Vi ⊕ V∗)/V∗ for
each i ∈ S. Then U0 is a free Z(p)-module since V∗ is pure in V0, U0 =

∑

i Ui,
Ui is isomorphic to Vi, and Ui is pure in U0 since U0/Ui, being isomorphic
to V0/(Vi ⊕ V∗), is torsion-free. It now follows that U ∈ repfpure(S, Z(p), 0)
with H(U) isomorphic to V , as desired.

We say that repfpure(S, Z(p), j) is wild modulo p if given two n × n Z(p)-
matrices A and B with A (mod p) and B (mod p) non-zero Z/pZ-matrices,
there is U ∈ repfpure(S, Z(p), j) and a Z(p)-algebra epimorphism

End U → C(A (mod p), B (mod p)),

where A (mod p) denotes the Z/pZ-matrix obtained by reducing the en-
tries of A modulo p and C(A (mod p), B (mod p)) is the ring of all n × n
Z/pZ matrices that commute with both A (mod p) and B (mod p). This
definition is motivated by the fact that if k is a field and rep(S, k) has
wild representation type, then for each finite-dimensional k-algebra Λ there
is some U in rep(S, k) with EndU isomorphic to Λ [Brenner, 74]. More-
over, the latter condition is equivalent to the condition that for each pair of
non-zero k-matrices A′ and B′ there is some U with EndU isomorphic to
C(A′, B′).

Lemma 1.6. The category repfpure(S3, Z(p), 0) has wild modulo p repre-

sentation type.

P r o o f. Note that S∗

3 = S4. Let A and B be an n × n Z(p)-matrices
with A (mod p) and B (mod p) non-zero Z/pZ-matrices. Define U ∈
repfpure(S

∗

3 , Z(p), 0) by U0 = Z7n
(p) ⊕ Z6n

(p) ⊕ Z5n
(p), U1 = Z7n

(p) ⊕ 0 ⊕ 0, U2 =

0 ⊕ Z6n
(p) ⊕ 0, and U3 = 0 ⊕ 0 ⊕ Z5n

(p), and U∗ = (M1,M2,M3) the free

Z(p)-module with the rows of the following matrix as a basis:














I 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 p2I 0 0
0 0 0 0 0 p6I 0
0 0 0 0 0 0 p7I

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I 0 0 0 0 0
−pA p2I 0 0 0 0
−p4I 0 p6I 0 0 0
p5I 0 0 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 I 0
I 0 0 0 p2I

0 I 0 0 p5B
0 0 I 0 p6I

I 0 0 0 0
0 I 0 0 0
0 0 I 0 0















for I an n×n identity matrix and 0 an n×n matrix of 0’s. Now Ui∩U∗ = 0
and Ui ⊕ U∗ is pure in U0 for each 1 ≤ i ≤ 3. Thus, U = H(V ) for some
V ∈ repfpure(S3, Z(p), 0) with EndU isomorphic to EndV , by Theorem 1.5.
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A routine but quite lengthy computation shows that if A and B are
invertible modulo p, then there is an epimorphism EndU → C(A (mod p),
B (mod p)). This computation is outlined in the Appendix. Finally, if A
(mod p) and B (mod p) are non-zero, then there are elements a, b in Z(p)

with A′ = aI+A and B′ = bI+B invertible modulo p. Since C(A′ (mod p),
B′ (mod p)) = C(A (mod p), B (mod p)), the proof is now complete.

The rank of U = (U0, Ui) ∈ repfpure(S, Z(p), j) is the rank of U0 as a
(finitely generated) free Zp-module.

Theorem 1.7. Given n ≥ 2, let Cn denote a chain with n elements so

that C∗

n = (n, 1).

(a) There is a fully faithful embedding Fj : repfpure(C
∗

n−1, Z(p), j) →
repfpure(C

∗

n, Z(p), 0) for each j.
(b) If V is an indecomposable in repfpure(C

∗

n, Z(p), 0) with rank > 1,
then there is some j and indecomposable U in repfpure(C

∗

n−1, Z(p), j) with

Fj(U) = V .

P r o o f. (a) Let U = (U0, U1, . . . , Un−1, U∗) ∈ repfpure(C
∗

n−1, Z(p), j)
and define Fj(U) = V = (U0, U1, . . . , Un−1, U0, U∗) ∈ repfpure(C

∗

n, Z(p), 0).
It is routine to verify that, with Fj(f) = f , Fj : repfpure(C

∗

n−1, Z(p), j) →
repfpure(C

∗

n, Z(p), 0) is a fully faithful embedding.
(b) Let V = (V0, V1, . . . , Vn, V∗) be an indecomposable representation

in repfpure(C
∗

n, Z(p), 0) with rank > 1 and V0 = Vn + V∗. Then we have
V∗ = W1⊕(V∗∩Vn) for some W1, since pure submodules of finitely generated
Z(p)-modules are summands. Hence, V0 = Vn + V∗ = W1 ⊕ Vn and so

V = (W1, 0, . . . , 0, 0,W1) ⊕ (Vn, V1, . . . , Vn−1, Vn, Vn ∩ V∗).

Since W1 is a direct sum of rank-1’s and V is indecomposable with rank
> 1, it follows that W1 = 0, V0 = Vn contains V∗, and V = (Vn, V1, . . .
. . . , Vn−1, Vn, V∗).

In fact, pjVn is contained in Vn−1 + V∗ for some j. To see this, let W be
the pure submodule of Vn generated by Vn−1 + V∗. Then Vn = W ′ ⊕W for
some W ′ and V = (W ′, 0, . . . , 0,W ′, 0) ⊕ (W,V1, . . . , Vn−1,W, V∗). Again,
W ′ = 0 since V is indecomposable of rank > 1 and Vn = W . Thus there is
some j with pjVn contained in Vn−1 + V∗ as Vn is a finitely generated free
Zp-module. It now follows that V = Fj(U) for U = (Vn, V1, . . . , Vn−1, V∗)
in repfpure(C

∗

n−1, Z(p), j).

Theorem 1.8. Let S = (1, 2).

(a) repfpure(S, Z(p), 0) has infinite representation type and each inde-

composable has rank ≤ 2. A rank-2 indecomposable is of the form U =
(U0, Z(p) ⊕ 0, U0, 0 ⊕ Z(p)) and U0 = Z(p) ⊕ Z(p) + Z(p)(1, 1)/p

j .

(b) repfpure(S, Z(p)) has indecomposables of arbitrarily large finite rank.
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P r o o f. (a) is a consequence of Theorems 1.4 and 1.7(b).
(b) We construct an indecomposable U = (U0, U1 = E ⊕ X,U2, U3) in

repfpure(S, Z(p), 2n + 1) of rank 2n as follows:

U1 = E ⊕ X, E = Z(p)e1 ⊕ . . . ⊕ Z(p)en, X = Z(p)x1 ⊕ . . . ⊕ Z(p)xn,

U2 = Z(p)f1 ⊕ . . . ⊕ Z(p)fn, U3 = U2 ⊕ G1, G1 = Z(p)ε1 ⊕ . . . ⊕ Z(p)εn,

εi = (ei + fi)/p
2i−1,

U0 = E ⊕ X ⊕ G2, G2 = Z(p)µ1 ⊕ . . . ⊕ Z(p)µn,

µi = (p(ei + fi) + ei+1 + fi+1 + p2ixi)/p
2n+1 for i ≤ n − 1,

µn = (p(en + fn) + p2nxn)/p2n+1.

Notice that p2n+1U0 is contained in E ⊕ X ⊕ U2, U0 = U1 ⊕ G2, and U0 =
U2 ⊕ X ⊕ G2. To see that U3 is pure in U0, observe that

µi = ((ei + fi)/p
2i−1 + (ei+1 + fi+1)/p

2i + xi)/p
2(n−i)+1

= (εi + pεi+1 + xi)/p
2(n−i)+1

for 1 ≤ i ≤ n − 1 and

µn = (εn + xn)/p.

It follows that U3 = U2 ⊕G1 is a pure submodule of U0 = E ⊕X ⊕G2 since
ε1 + pε2, . . . , εn−1 + pεn, εn is a basis of G1.

Let f be a representation endomorphism of U , so that f(Ui) is contained
in Ui for each i. Then f(E) is contained in E because U3 ∩ U1 = E.
Restriction induces an embedding of EndU into End(U1 ⊕ U2) = End(E ⊕
U2 ⊕ X) with

f → ϕ =





α 0 0
0 β 0
δ 0 γ





for some n × n Z(p)-matrix where

• α = (αij) represents an endomorphism of E relative to the basis
e1, . . . , en,

• β = (βij) represents an endomorphism of U2 relative to the basis
f1, . . . , fn,

• δ : X → E, and
• γ = (γij) represents an endomorphism of X relative to the basis

x1, . . . , xn.

It is sufficient to prove that ϕ (mod p) = aI + N for some a ∈ Z/pZ,
where I is the identity matrix and N is a nilpotent Z/pZ-matrix with zeros
on the diagonal. To see this, first note that the embedding EndU → EndV ,
for V = E⊕U2⊕X, is pure since E, U2, and X are pure and fully invariant
in U0. Thus, EndU/p EndU → EndV/p EndV is an embedding, whence
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elements of EndU/p End U are of the form aI + N , N a nilpotent Z/pZ-
matrix with zeros on the diagonal. If f is an idempotent endomorphism
of U , then f (mod p) = aI + N is idempotent. A matrix multiplication
shows that the diagonal elements of f (mod p) are a2 = a, so that a is
either 0 or 1. Since N is in the Jacobson radical of EndU/p End U and p is
in the Jacobson radical of EndU , f must be either 0 or 1. This shows that
U is an indecomposable representation, as desired.

Now

εiφ = (((ei + fi)/p
2i−1)α, ((ei + fi)/p

2i−1)β, 0) =

n
∑

j=1

rijεj + (e, u2, 0),

for some (e, u2) ∈ E ⊕ U2, rij ∈ Zp. This is because U3 = G1 ⊕ E is the
purification of E ⊕ U2 in U0. Evaluate and multiply both sides by p2i−1 to
get

n
∑

j=1

(αijej + βijfj) ≡
n

∑

j=1

p2i−1−(2j−1)(rijej + rijfj) mod p2i−1(E ⊕ U2).

Equate coefficients of the ei’s and fi’s to see that

(∗) αij ≡ p2(i−j)rij ≡ βij mod p2i−1.

In particular, αij ≡ βij ≡ 0 mod p if i > j.

Similarly,

µiφ ≡
n

∑

j=1

sijµj + (e, u2, x) for some (e, u2, x) ∈ E ⊕ U2 ⊕ X, sij ∈ Zp,

since p2n+1U0 ≤ E ⊕ U2 ⊕ X. Evaluate and multiply by p2n+1 to get

n
∑

j=1

(pαij + αi+1,j + p2iδij)ej + (pβij + βi+1,j)fj + p2iγijxj

≡
n

∑

j=1

((psij +si,j−1)ej +(psij +si,j−1)fj +sijp
2jxj) mod p2n+1(E⊕U2⊕X).

Equating coefficients for each i ≤ n − 1 and j ≤ n gives

(i) pαij + αi+1,j + p2iδij ≡ psij + si,j−1 mod p2n+1,

(ii) pβij + βi+1,j ≡ psij + si,j−1 mod p2n+1, and

(iii) p2iγij ≡ p2jsij mod p2n+1

and for i = n, j = n,

(iv) pβnn + 0 ≡ psnn + sn,n−1 mod p2n+1 and

(v) γn,n−1 ≡ p−2sn,n−1 mod p2n+1.
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From (ii) for j = i,

pβii + βi+1,i ≡ psii + si,i−1 mod p2n+1,

and from (ii) for j = i + 1,

(vi) pβi,i+1 + βi+1,i+1 ≡ psi,i+1 + sii mod p2n+1.

Combining these equations gives

pβii + βi+1,i ≡ p(pβi,i+1 + βi+1,i+1 − psi,i+1) + si,i−1 mod p2n+1

and so

(vii) p(βii − βi+1,i+1) ≡ −βi+1,i + p2βi,i+1 − p2si,i+1 + si,i−1 mod p2n+1.

By (∗),

βi+1,i ≡ p2ri+1,i mod p2i−1,

whence p2 divides βi+1,i. Also, (iii) gives

p2iγij ≡ p2(i−1)si,i−1 mod p2n+1

so si,i−1 ≡ 0 mod p2. Using the above two equations in (vii) yields

βii ≡ βi+1,i+1 mod p for each i ≤ n − 1.

By (iii),

γij ≡ p2(j−i)sij mod p2n+1,

so that

γij ≡ 0 mod p for j > i, γii ≡ sii mod p2(n−i)+1.

Combining this with (vi) gives

γii ≡ sii ≡ βi+1,i+1 mod p for all i ≤ n − 1.

Finally, p2 divides sn,n−1 by (v) and so βnn ≡ snn ≡ γnn mod p by (iv).
It now follows that there is an a ∈ Z(p) with a ≡ αii ≡ βii ≡ γii mod p

for all i and

a (mod p)I + N ≡ ϕ mod p ≡





α 0 0
0 β 0
δ 0 γ



 mod p

for some Z/pZ-matrix N with zeros on the diagonal. Since α (mod p) and β
(mod p) are upper triangular matrices and γ (mod p) is a lower triangular
matrix, we conclude that N is nilpotent as desired.

Theorem 1.9. Let S be a poset of width 2 such that S does not contain

the poset (1, 2). For each j ≥ 0, repfpure(S, Z(p), j) has finite representation

type and each indecomposable has rank ≤ 2.

P r o o f. Let a and b be pairwise incomparable elements of S. Then the
poset S is the disjoint union of X,Y = {a, b}, and Z, where x ≤ a and x ≤ b
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for each x ∈ X and a ≤ z, b ≤ z for each z ∈ Z. This is a consequence of
the hypothesis that the poset (1, 2) is not contained in S.

Let V = (V0, Vi) be an indecomposable in repfpure(S, Z(p)) and W the
purification of Va + Vb in V0. Then W is a summand of V0 contained in Vz

for each z in Z and Vx contained in Va∩Vb for each x in X, say V0 = W ⊕U .
Also, Vz = W ⊕ U ∩ Vz for each z in Z and

V = (U,Ux = 0, Ua = 0, Ub = 0, Vz ∩ U : x ∈ X, z ∈ Z)

⊕ (W,Vx, Va, Vb, Vz ∩ W = W : x ∈ X, z ∈ Z).

Since V is indecomposable, either W = 0 or else U = 0 and V0 = W = Vz

for each z in Z. If W = 0, the proof is concluded by induction on the
cardinality of S.

Next, assume U = 0 and write V0 = Vz = W = U ⊕ (Va ∩ Vb) for each z
in Z. Then Va = (U ∩ Va) ⊕ (Va ∩ Vb), Vb = (U ∩ Vb) ⊕ (Va ∩ Vb), and Vx is
contained in Va ∩ Vb for x in X. So,

V = V ′ ⊕ V ′′ = (U,Ux = 0, U ∩ Va, U ∩ Vb, Uz = U)

⊕ (Va ∩ Vb, Vx, Va ∩ Vb, Va ∩ Vb, Va ∩ Vb ∩ Vz = Va ∩ Vb).

Since V is indecomposable, either V = V ′ or V = V ′′. In the first case, if X
is non-empty, then V is induced by a representation of the proper subposet
Y ∪ Z and so the proof is concluded by induction on the cardinality of S.
In the second case, W = Va ∩ Vb. Thus, Va = Vb and if Z is non-empty,
then V = V ′′ is induced by a representation of the proper subposet X ∪ Y .
Once again, the proof follows by induction. We are left with the case where
X = Z = ∅, which is just the case S = S2. Now apply Theorem 1.4.

Corollary 1.10. The category repfpure(S, Z(p), j) has:

(a) wild modulo p representation type if w(S) ≥ 3, j ≥ 0,
(b) infinite representation type if w(S) = 2, S ≥ (1, 2), j ≥ 0,
(c) finite representation type if w(S) = 1, j ≥ 0 or w(S) = 2, S does

not contain (1, 2), j ≥ 0.

P r o o f. The wild modulo p condition comes from Lemmas 1.6 and 1.2(a).
The finiteness conditions arise from Theorems 1.3 and 1.9 while the

infinite condition for w(S) = 2 is Theorem 1.8.

We next examine some conditions for rank finite representation type.

Corollary 1.11. The category repfpure(S, Z(p)) has rank finite repre-

sentation type if and only if S does not contain (1, 2).

P r o o f. A consequence of Theorems 1.8, 1.9, and Lemma 1.2.

Theorem 1.12. If S = (1, 3) or (2, 2), then repfpure(S, Z(p), 0) has rank

infinite representation type.
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P r o o f. The case of S = (1, 3) is a consequence of Theorems 1.8(b)
and 1.7.

Let S = (2, 2). We construct an indecomposable U = (U0, U1, U2, U3, U0)
in repfpure(S, Z(p), 2n − 1) with rank U0 = 2n as follows:

U1 = Z(p)(p
n−1e1 + . . . + pen−1 + en) ≤ U2 = Z(p)e1 ⊕ . . . ⊕ Z(p)en,

U3 = Z(p)f1 ⊕ . . . ⊕ Z(p)fn

≤ U0 = U2 ⊕ Z(p)(e1 + f1)/p ⊕ . . . ⊕ Z(p)(en + fn)/p2n−1.

Note that each Ui is pure in U0.

Let f be a representation endomorphism of U . Then U2⊕U3 is a fully in-
variant submodule of U0 with p2n−1U0 contained in U2⊕U3. The restriction
of f to U2 ⊕U3 is g = (α, β) with α = (aij) an n×n Z(p)-matrix represent-
ing an endomorphism of U2 relative to the basis e1, . . . , en and β = (bij) an
n× n Z(p)-matrix representing an endomorphism of U3 relative to the basis
f1, . . . , fn.

Now

f((ei + fi)/p
2i−1)

= (((ei + fi)/p
2i−1)α, ((ei + fi)/p

2i−1)β)

= (ai1e1/p
2i−1 + . . . + ainen/p2i−1, bi1f1/p

2i−1 + . . . + binfn/p2i−1)

= ri1(e1 + f1)/p + . . . + rin(en + fn)/p2n−1 + (y2, y3)

for some yi in Ui, rij ∈ Z(p). Equate coefficients of the ei’s and fi’s to see
that if i > j, then aij ≡ bij ≡ 0 mod p.

Next, let e = pn−1e1 + . . . + pen−1 + en, whence U1 = Z(p)e is preserved
by f . Then eα = re for some r in Z(p). Equating coefficients yields rpn−j =
pn−1a1j + . . . + anj for each j. It follows that r ≡ ajj mod p for each j.
Thus, g (mod p) = (α, β) (mod p) is of the form

r (mod p)I + M =

[

α (mod p) 0
0 β (mod p)

]

for an upper triangular Z/pZ-matrix M with zeros on the diagonal. Since
M is nilpotent, it follows that 0 and 1 are the idempotents of EndU , just
as in the proof of Theorem 1.8. This shows that U is an indecomposable
representation of rank 2n.

Following is a computation of representation types for rep(S, Z(p), j),
although these categories of representations are not directly applicable to
Butler groups.

Corollary 1.13. The category rep(S, Z(p), j) has:

(a) finite representation type if S = S1, j ≥ 0,
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(b) infinite representation type if w(S) = 1, S 6= S1, j ≥ 0 or w(S) =
2, j ≥ 0,

(c) wild modulo p representation type if w(S) ≥ 3, j ≥ 0.

P r o o f. Indecomposables in rep(S1, Z(p), j) are of the form (Z(p), p
jZ(p))

as a consequence of the stacked basis theorem. If S is a chain of length 2,
then there are infinitely many non-isomorphic indecomposables (Z(p), p

mZ(p),
Z(p)) in rep(S, Z(p), 0). Furthermore, rep(S2, Z(p), j) has infinite representa-
tion type for j ≥ 0 [Arnold, Dugas 93B] or [Files, Goebel 96]. Finally, apply
Corollary 1.10 for the wild modulo p case.

2. Representation type of Butler groups. A type is an isomorphism
class of a rank -1 group, a subgroup of the additive group of rationals. The
set of all types form a lattice [Fuchs, 73]. A Butler group G is a pure
subgroup of a finite direct sum C1 ⊕ . . . ⊕ Cm of rank-1 groups Ci [Butler,
65]. If G is a Butler group, then typeset G, the set of types of pure rank-1
subgroups of G, is contained in the lattice of types generated by the types
of the Ci’s. In particular, typeset G is finite if G is a Butler group.

Let T be a finite sublattice of the lattice of all types with least element
τ0 and B(T ) the category of finite rank Butler groups with typeset con-
tained in T . Fix a prime p. The lattice T is p-locally free if X(p) ≈ Z(p)

for each rank-1 group X with type X ∈ T . For j ≥ 0, let B(T, j) be
the full subcategory of B(T ) consisting of those G with pjG contained in
∑

{G(τ) : τ ∈ JI(T )}. The isomorphism at p category of B(T, j) is de-
noted by B(T, j)p; the objects are groups in B(T, j) and morphisms are
Hom(G,H)p = Hom(G,H) ⊗ Z(p) (see [Arnold, 82]).

The first proposition shows that, up to isomorphism at p, there is essen-
tially no loss of generality in considering B(T, j). The proof is essentially as
in [Arnold, Dugas, 95B].

Proposition 2.1. If G is in B(T ) and has no rank-1 summand of

type τ0, then G is isomorphic at p to a group H ∈ B(T, j) for some j ≥ 0.

P r o o f. First observe that
∑

{G(σ) : σ ∈ JI(T )} = G∗(τ0). This
is because τ0 6∈ JI(T ) and if τ ∈ T \ JI(T ), then τ ≥ σ for some σ ∈
JI(T ), whence G(τ) is contained in G(σ). Since G is a Butler group, G =
G(τ0) = G′⊕G#(τ0) with G′ τ0-homogeneous completely decomposable and
G#(τ0)/G

∗(τ0) finite, where G#(τ0) is the purification of G∗(τ0) [Butler, 65].
By the assumption on G, G′ = 0 and so G/G∗(τ0) is finite. Now let H be a
subgroup of G with H/G∗(τ0) the p-component of G/G∗(τ0). Since G/H is
finite with order prime to p, G is isomorphic to H at p. Moreover, for some i,
pi(H/G∗(τ0)) = 0 so that p2iH is contained in piG∗(τ0) and H ∈ B(T, 2i),
as desired.
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Theorem 2.2 [Richman, 94]. If T is p-locally free, then there is a

category equivalence F from B(T, j)p to repfpure(JI(T )op, Z(p), j) given by

F (G) = (Gp, G(τ)p : τ ∈ JI(T )).

Corollary 2.3. If T is p-locally free and S = JI(T )op, then B(T, j)p

has:

(a) wild modulo p representation type if w(S) ≥ 3, j ≥ 0,
(b) infinite representation type if w(S) = 2, S ≥ (1, 2), j ≥ 0,
(c) finite representation type if w(S) = 1, j ≥ 0 or w(S) = 2, S does

not contain (1, 2), j ≥ 0.

P r o o f. Apply Corollary 1.10 and Theorem 2.2.

The next example demonstrates how to transcribe representations in
rep(JI(T )op, Z(p), j) into groups in B(T, j)p.

Example 2.4. If T3 is a p-locally free Boolean algebra of types with
three atoms, then B(T3, 2)p is wild modulo p.

P r o o f. Let τ1, τ2, τ3 be the atoms of T3 and choose subgroups Ai of
Q with type Ai = τi, 1 ∈ Ai, and 1/p 6∈ Ai for each i. Given two n × n Z-
matrices A and B with A (mod p) and B (mod p) invertible k-matrices,
define G ≤ Qn ⊕ Qn ⊕ Qn ⊕ Qn by

G = A2n
1 ⊕ A2n

2 + (1 + 0 + 0 + 1)An
3 + (0 + 1 + 0 + 1)An

3

+ (1/p2)(1 + 0 + A + 1)Zn + (1/p)(0 + 1 + B + 0)Zn.

Then U = (Gp, G(τ1)p, G(τ2)p, G(τ3)p) ∈ repfpure(Z(p), S3, 2) with

U0 = Zn
(p) ⊕ Zn

(p) ⊕ Zn
(p) ⊕ Zn

(p)

+ (1/p2)(1 + 0 + A + 1)Zn
(p) + (1/p)(0 + 1 + B + 0)Zn

(p),

U1 = Zn
(p) ⊕ Zn

(p) ⊕ 0 ⊕ 0, U2 = 0 ⊕ 0 ⊕ Zn
(p) ⊕ Zn

(p),

U3 = (1 + 0 + 1 + 0)Zn
(p) ⊕ (0 + 1 + 0 + 1)Zn

(p).

By Lemma 1.2(b), EndU is isomorphic to EndV for V = (V0, V1, V2, V3, V∗)
with

V0 = Zn
(p) ⊕ Zn

(p) ⊕ Zn
(p) ⊕ Zn

(p),

V1 = Zn
(p) ⊕ Zn

(p) ⊕ 0 ⊕ 0, V2 = 0 ⊕ 0 ⊕ Zn
(p) ⊕ Zn

(p),

V3 = (1 + 0 + 1 + 0)Zn
(p) ⊕ (0 + 1 + 0 + 1)Zn

(p),

V∗ = p2U0 = p2(Zn
(p) ⊕ Zn

(p) ⊕ Zn
(p) ⊕ Zn

(p))

+ (1 + 0 + A + 1)Zn
(p) + p(0 + 1 + B + 0)Zn

(p).

A lengthy but straightforward computation, working modulo p and p2,
shows that there is a Z(p)-algebra epimorphism EndV → C(A (mod p), B



314 D. ARNOLD AND M. DUGAS

(mod p)). The idea is to write a representation endomorphism f : V0 → V0

and interpret the equations resulting from f(Vi) ≤ Vi for each i and f(V∗) ≤
V∗; the details of this computation are not included. This completes the
proof.

Example 2.5. Let T be a p-locally finite lattice of types with

T =

5

3 4

1 2

0



 1111

 

11 


For example, designate 0 = type Z, 1 = type Z[3], 2 = type Z[5], 3 =
type Z[3] + Z[5], 4 = type Z[5] + Z[7], and 5 = type Z[3] + Z[5] + Z[7], where
Z[n] is the subgroup of Q generated by {1/ni : 1 ≤ i}, and p = 11.

Let Ai be subgroups of Q with 1Q ∈ Ai, typeAi = i, and 1Q/p 6∈ Ai.

(a) B(T, 0)p has infinite representation type but each indecomposable
has rank ≤ 2. The indecomposables in B(T, 0)p of rank 2 are of the form
G = A4 ⊕ A3 + Z(1, 1)/pj .

(b) B(T )p has indecomposables of arbitrarily large finite rank.

P r o o f. (a) Note that

JI(T )op = 1 2

|

4

Now apply Theorems 2.2 and 1.8 to see that indecomposables have rank
≤ 2. In fact, if G is as defined above, then

(Gp, G(1)p, G(4)p, G(2)p) = (Gp, G(1)p, G(4)p, Gp)

= (U0, 0 ⊕ Z(p), Z(p) ⊕ 0, U0)

for U0 = Z(p) ⊕ Z(p) + Z(p)(1, 1)/p
j , as desired.

(b) is a consequence of Theorems 2.2 and 1.8(b).

3. Appendix. Let U = (U0, U1, U2, U3) be as defined in Lemma 1.6
and f : U0 → U0 a representation endomorphism of U . Since f : Ui → Ui

for 1 ≤ i ≤ 3, f can be represented as (α, β, γ) for α = (aij) a 7 × 7 matrix
with entries aij an n×n Z(p)-matrix, β = (bij) is a 6×6 matrix with entries
bij an n × n Z(p)-matrix, and γ = (gij) is a 5 × 5 matrix with entries gij

an n × n Z(p)-matrix. Since f is a Z(p)-homomorphism and α, β, γ are

restrictions of f , it follows that M2β = M1αM−1
1 M2 is a 7 × 6 matrix with
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entries n×n matrices labelled by II(i, j) and M3γ = M1αM−1
1 M3 is a 7× 5

matrix with entries n × n matrices labelled by III(i, j).

A direct computation of the entries II(i, j) and III(i, j) yields the follow-
ing equations, where the equations with ∗ involve matrices on the main
diagonal.

∗II(1, 1) : b11 = −pa12A + p5a14 − p4a13 + a11

II(1, 2) : b12 = p2a12

II(1, 3) : b13 = p6a13

II(1, 4) : b14 = a15p
−2

II(1, 5) : b15 = a16p
−6

II(1, 6) : b16 = a17p
−7

∗II(2, 1) : −pAb11 + p2b21 = −pa22A + p5a24 − p4a23 + a21

∗II(2, 2) : p2b22 − pAb12 = p2a22

II(2, 3) : −pAb13 + p2b23 = p6a23

II(2, 4) : −pAb14 + p2b24 = a25p
−2

II(2, 5) : −pAb15 + p2b25 = a26p
−6

II(2, 6) : −pAb16 + p2b26 = a27p
−7

∗II(3, 1) : −p4b11 + p6b31 = −pa32A + p5a34 − p4a33 + a31

II(3, 2) : p6b32 − p4b12 = p2a32

∗II(3, 3) : p6b33 − p4b13 = p6a33

II(3, 4) : p6b34 − p4b14 = a35p
−2

II(3, 5) : p6b35 − p4b15 = a36p
−6

II(3, 6) : p6b36 − p4b16 = a37p
−7

∗II(4, 1) : p5b11 = −pa42A + p5a44 − p4a43 + a41

II(4, 2) : p5b12 = p2a42

II(4, 3) : p5b13 = p6a43

II(4, 4) : p5b14 = a45p
−2

II(4, 5) : p5b15 = a46p
−6

II(4, 6) : p5b16 = a47p
−7

II(5, 1) : b41 = −p3a52A + p7a54 − p6a53 + p2a51

II(5, 2) : b42 = p4a52

II(5, 3) : b43 = p8a53

∗II(5, 4) : b44 = a55

II(5, 5) : b45 = a56p
−4
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II(5, 6) : b46 = a57p
−5

II(6, 1) : b51 = −p7a62A + p11a64 − p10a63 + p6a61

II(6, 2) : b52 = p8a62

II(6, 3) : b53 = p12a63

II(6, 4) : b54 = p4a65

∗II(6, 5) : b55 = a66

II(6, 6) : b56 = a67p
−1

II(7, 1) : b61 = −p8a72A + p12a74 − p11a73 + p7a71

II(7, 2) : b62 = p9a73

II(7, 3) : b63 = p13a73

II(7, 4) : b64 = p5a75

II(7, 5) : b65 = pa76

∗II(7, 6) : b66 = a77

III(1, 1) : g41 = a15p
−2 + a12

III(1, 2) : g42 = a16p
−6 + a13

III(1, 3) : g43 = a17p
−7 + a14

∗III(1, 4) : g44 = a11

III(1, 5) : g45 = p5a13B + p6a14 + p2a12

∗III(2, 1) : g11 + p2g51 = a25p
−2 + a22

III(2, 2) : p2g52 + g12 = a26p
−6 + a23

III(2, 3) : p2g53 + g13 = a27p
−7 + a24

III(2, 4) : p2g54 + g14 = a21

∗III(2, 5) : p2g55 + g15 = p5a23B + p6a24 + p2a22

III(3, 1) : p5Bg51 + g21 = a35p
−2 + a32

∗III(3, 2) : p5Bg52 + g22 = a36p
−6 + a33

III(3, 3) : p5Bg53 + g23 = a37p
−7 + a34

III(3, 4) : p5Bg54 + g24 = a31

∗III(3, 5) : p5Bg55 + g25 = p5a33B + p6a34 + p2a32

III(4, 1) : p6g51 + g31 = a45p
−2 + a42

III(4, 2) : p6g52 + g32 = a46p
−6 + a43

∗III(4, 3) : p6g53 + g33 = a47p
−7 + a44

III(4, 4) : p6g54 + g34 = a41

∗III(4, 5) : p6g55 + g35 = p5a43B + p6a44 + p2a42
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∗III(5, 1) : g11 = p2a52 + a55

III(5, 2) : g12 = p2a53 + a56p
−4

III(5, 3) : g13 = p2a54 + a57p
−5

III(5, 4) : g14 = p2a51

III(5, 5) : g15 = p7a53B + p8a54 + p4a52

III(6, 1) : g21 = p6a62 + p4a65

∗III(6, 2) : g22 = p6a63 + a66

III(6, 3) : g23 = p6a64 + a67p
−1

III(6, 4) : g24 = p6a61

III(6, 5) : g25 = p11a63B + p12a64 + p8a62

III(7, 1) : g31 = p7a72 + p5a75

III(7, 2) : g32 = p7a73 + pa76

∗III(7, 3) : g33 = p7a74 + a77

III(7, 4) : g34 = p7a71

III(7, 5) : g35 = p12a73B + p13a74 + p9a72

The next step involves a listing of consequences of the above equations,
where ≡ without any modifier denotes congruence mod p. Relations between
main diagonal elements are enclosed in a box for easy identification.

II(1, 1) ⇒ b11 ≡ a11

II(2, 1), III(2, 4), and III(5, 4) ⇒ Ab11 ≡ a22A

II(3, 1) and III(3, 4) ⇒ −p4b11 ≡ −pa32A − p4a33 + a31 mod p5

III(3, 4) ⇒ a31 ≡ g24 mod p5

III(6, 4) ⇒ g24 ≡ 0 mod p6 ⇒ a31 ≡ 0 mod p5

⇒ −p4b11 ≡ −p4a33 − pa32A mod p5

II(3, 2) ⇒ pa32 ≡ −p3b12 mod p5

II(1, 2) ⇒ b12 ≡ 0 mod p2 ⇒ pa32 ≡ 0 mod p5 ⇒ b11 ≡ a33

II(3, 3) and II(1, 3) ⇒ b33 ≡ a33

II(4, 1) ⇒ p5b11 = p5a44 − pa42A − p4a43 + a41

III(4, 4) ⇒ a41 = p6g54 + g34

III(7, 4) ⇒ g34 ≡ 0 mod p7 ⇒ a41 ≡ 0 mod p6

II(4, 3) ⇒ p6a43 = p5b13 = p11a13 ⇒ p4a43 = p9a13

III(4, 1) ⇒ a42 ≡ g31 − a45p
−2 mod p5

III(7, 1) ⇒ g31 ≡ 0 mod p5, II(4, 4) ⇒ a45p
−2 ≡ 0 mod p5
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So a42 ≡ 0 mod p5, and p5b11 ≡ p5a44 − p4a43 mod p6.

Finally, II(4, 5), II(4, 2) ⇒ a43 ≡ g32 mod p2 ⇒ b11 ≡ a44

II(5, 4), II(6, 5), II(7, 6) ⇒ b44 ≡ a55 , b55 ≡ a66 , b66 ≡ a77

III(1, 4) ⇒ g44 ≡ a11

III(2, 1) and II(2, 4) ⇒ g11 ≡ a22

III(2, 5) and III(5, 5) ⇒ g55 ≡ a22

III(3, 2) and II(3, 5) ⇒ g22 ≡ a33

III(3, 5) and III(6, 5) ⇒ p5Bg55 ≡ p5a33B + p2a32 mod p6

II(1, 2) and II(3, 2) ⇒ p2a32 ≡ 0 mod p6 ⇒ Bg55 ≡ a33B

III(4, 3) and II(4, 6) ⇒ g33 ≡ a44

III(4, 5) ⇒ p6g55 + g35 = p5a43B + p6a44 + p2a42

III(7, 5) ⇒ g35 ≡ 0 mod p9

II(4, 3) and II(1, 3) ⇒ p5a43 = p4b13 = p10a13 ≡ 0 mod p10

II(4, 2) and II(1, 2) ⇒ p2a42 = p5b12 = p7a12 ⇒ g55 ≡ a44

III(5, 1) ⇒ g11 ≡ a55

III(6, 2) ⇒ g22 ≡ a66

III(7, 3) ⇒ g33 ≡ a77

II(2, 2) ⇒ p2b22 − pAb12 = p2a22

II(1, 2) ⇒ b12 = p2a12 ⇒ b22 ≡ a22

We now see that all diagonal elements are congruent mod p to a fixed
n × n Z/pZ matrix a with aA ≡ Aa and aB ≡ Ba. Then





α (mod p) 0 0
0 β (mod p) 0
0 0 γ (mod p)



 = a (mod p)I + N

for some nilpotent Z/pZ-matrix N with zero diagonal elements. In partic-
ular, an inspection of the equations for II and III shows that α (mod p) is
of the form



















a ∗ ∗ ∗ 0 0 0
0 a ∗ ∗ 0 0 0
0 0 a ∗ 0 0 0
0 0 0 a 0 0 0
∗ ∗ ∗ ∗ a 0 0
∗ ∗ ∗ ∗ ∗ a 0
∗ ∗ ∗ ∗ ∗ ∗ a



















,
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β (mod p) is of the form














a 0 0 ∗ ∗ ∗
∗ a 0 ∗ ∗ ∗
∗ ∗ a ∗ ∗ ∗
0 0 0 a ∗ ∗
0 0 0 0 a ∗
0 0 0 0 0 a















and γ (mod p) is of the form










a ∗ ∗ 0 0
0 a ∗ 0 0
0 0 a 0 0
∗ ∗ ∗ a 0
∗ ∗ ∗ ∗ a











.

A matrix computation shows that N is nilpotent. It now follows, as in
the proof of Theorem 1.8, that there is a Z(p)-algebra epimorphism EndU →
C(A (mod p), B (mod p)).
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