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SINGULAR INTEGRALS ON THE COMPLEX AFFINE GROUP

BY

GARTH GAUDRY (SYDNEY, NEW SOUTH WALES)

AND PETER S J ÖGREN (GÖTEBORG)

Let G = C ⋊ C
∗ be the complex affine group. We study a canonical

right-invariant Laplacian ∆ = −(X2 + Y 2 + U2 + V 2). We show that the
Newtonian kernel N that defines the operator ∆−1 is remarkably simple. It
is a rational function of the complex variables z = x+ iy and w = u+ iv:

N =
1

4π2
· |w|2
|z|2 + |1 − w|2 .

There are associated Riesz operators of the form Z1∆
−1Z2, P∆

−1 and
∆−1P, where Zi, i = 1, 2, are elements of order 1 of the right-invariant
universal enveloping algebra G, and P ∈ G is of order at most 2. We give
a complete description of the operators of these kinds which are bounded
in Lp(G), 1 < p < ∞, and of weak type (p, p), 1 ≤ p < ∞. We prove
in particular that the operators P∆−1 and ∆−1P that depend on V (in a
certain sense) are bounded , whereas all others are unbounded.

This is a notable contrast with other solvable Lie groups of exponential
growth: for instance the groups NA that arise from the Iwasawa decompo-
sition of a rank 1 semisimple group. In that case, the (nonzero) operators
Z1Z2∆

−1 and ∆−1Z1Z2 are always unbounded.

1. Introduction. Let G be the complex affine group C ⋊ C
∗, where C

∗

is the multiplicative group of nonzero complex numbers. The group product
is given by

(z,w)(z′, w′) = (z + wz′, ww′).

This corresponds to composition of affine mappings ζ 7→ wζ + z. We write
elements z and w of C and C

∗ respectively as

z = x+ iy = reiθ, w = u+ iv = ̺eiφ.
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The Lie algebra g of G can be identified with C ⊕ C; the exponential
mapping is given by

exp(ζ, τ) =

(
eτ − 1

τ
ζ, eτ

)
.

We take as canonical basis in g the elementsX = (1, 0), Y = (i, 0), U = (0, 1)
and V = (0, i). We regard the elements of g as right-invariant vector fields
on G. The corresponding right-invariant Laplacian is then the operator

∆ = −(X2 + Y 2 + U2 + V 2).

For the sake of simplicity, we shall not distinguish between the differential
operator ∆ and its self-adjoint closure in L2(G). Here and in the sequel,
Lp spaces on G are defined by means of the left Haar measure. Where
necessary, we shall use superscripts to distinguish between right-invariant
fields (Xr, etc.) and left-invariant fields (Xl, etc.).

The operator ∆ is positive and does not have 0 in its point spectrum.
Hence it has an inverse, defined by spectral theory. See §4 for details.
We identify the kernel N of the operator ∆−1; the expression for N is
surprisingly simple, namely,

N =
1

4π2
· |w|2
|z|2 + |1 − w|2 .

The Riesz operators are defined using the kernel N : for instance, Z1∆
−1Z2f

= Z1N ∗ (Z2f).

1.1. Statement of results. We shall study second-order Riesz operators
on G; they are defined as products, in some order, of ∆−1 and two vector
fields Z1, Z2 ∈ g. As remarked below, G is a solvable group of type N ⋊A,
where N is nilpotent and A is abelian. In the authors’ earlier papers [7] and
[6], similar Riesz operators were studied in the case where G is the solvable
group N ⋊A arising from the Iwasawa decomposition of a rank 1 symmetric
space. In that case, the operators Z1∆

−1Z2 are bounded. Our first result
states that this remains true in the case of the complex affine group.

Theorem 1. Every operator Z1∆
−1Z2 with Z1, Z2 ∈ g is bounded on

Lp(G) for all p ∈ (1,∞), and of weak type (1, 1).

In the setting of [7] and [6], it was found that all of the operators
Z1Z2∆

−1 and ∆−1Z1Z2 (for Z1, Z2 ∈ g) are unbounded. In our case, how-
ever, some of them turn out to be bounded. To state the criterion for
boundedness, we need some notation.

Definition 1. Let G2 be the vector space of all right-invariant differential
operators of order at most 2, including the identity operator I.
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The space G2 is spanned by I, g and the set of products Z1Z2, with
Z1, Z2 ∈ g. Notice that it is a vector subspace of G, the universal enveloping
algebra of G. The vector field V plays a special role, and we need two
subspaces of G2 generated by V in the following way.

Definition 2. Denote by Il the subspace of G2 generated by ∆, V and
all products ZV with Z ∈ g. The subspace Ir is defined in a similar way,
using the products V Z in place of ZV .

Theorem 2. Let P ∈ G2.

(a) If P ∈ Il, then the operator P∆−1 is bounded on Lp(G) for all

p ∈ (1,∞), and of weak type (1, 1). If P 6∈ Il, then P∆−1 is not of weak or

strong type (p, p) for any p ∈ [1,∞).

(b) Similarly , if P ∈ Ir, then the operator ∆−1P is bounded on Lp(G)
for all p ∈ (1,∞), and of weak type (1, 1). If P 6∈ Ir, then ∆−1P is not of

weak or strong type (p, p) for any p ∈ [1,∞).

We refer to [7] and [6] for further background material.

Acknowledgements. We are grateful to Andreas Bergström for com-
puting the kernels that we deal with by using Mathematica, and also for
checking consistency of the kernel of ∆−1 with the expression for the heat
kernel given in §5.

2. Preliminaries

2.1. Invariant vector fields

Lemma 2.1. Let X = (1, 0), Y = (i, 0), U = (0, 1) and V = (0, i) be

the canonical basis elements of g. The corresponding right-invariant vector

fields Xr, etc., are:

Xr =
∂

∂x
, Ur = x

∂

∂x
+ y

∂

∂y
+ u

∂

∂u
+ v

∂

∂v
,

Y r =
∂

∂y
, V r = −y ∂

∂x
+ x

∂

∂y
− v

∂

∂u
+ u

∂

∂v
.

The commutation relations among the basis vectors are:

[X,Y ] = 0, [Y,U ] = Y,

[X,U ] = X, [Y, V ] = −X,(1)

[X,V ] = Y, [U, V ] = 0.
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The corresponding left-invariant fields are:

Xl = u
∂

∂x
+ v

∂

∂y
, U l = u

∂

∂u
+ v

∂

∂v
,

Y l = −v ∂
∂x

+ u
∂

∂y
, V l = −v ∂

∂u
+ u

∂

∂v
.

P r o o f. This is routine.

If the spaces C and C
∗ are given polar coordinates (r, θ) and (̺, φ) re-

spectively, then

r
∂

∂r
= x

∂

∂x
+ y

∂

∂y
= Rz, ̺

∂

∂̺
= u

∂

∂u
+ v

∂

∂v
= Rw,

∂

∂θ
= −y ∂

∂x
+ x

∂

∂y
= Tz,

∂

∂φ
= −v ∂

∂u
+ u

∂

∂v
= Tw, say.

The operators Rz and Rw are radial operators, and Tz and Tw are tangential
operators, in a natural sense. In this notation, the formulas for Ur, V r and
U l, V l can be written as follows:

Ur = Rz +Rw, U l = Rw,

V r = Tz + Tw, V l = Tw.

2.2. Relationship between left-invariant, right-invariant and transpose

operators. The left- and right-invariant Haar measures µl and µr are given
by

dµl(z,w) = dz
dw

|w|4 and dµr(z,w) = dz
dw

|w|2 ,

where dz and dw denote Lebesgue measure in C. The modular function is
therefore m(z,w) = |w|−2. The following formulas involving the modular
function are used implicitly in (2) and Lemma 2.2:\

G

f(ts) dµl(t) = m(s)−1
\
G

f(t) dµl(t),\
G

f(t−1)m(t)−1 dµl(t) =
\
G

f(t) dµl(t).

We shall generally use the left-invariant measure. In particular, the Lebesgue
spaces Lp(G), 1 ≤ p <∞, are formed relative to left Haar measure.

The various operators which we study are convolution operators, the
kernel in each case being a distribution. As shown in [7, §4], it is natural
to define the left-invariant derivative of a distribution k as the distribution
Z lk for which

(2) 〈Z lk, g〉 = 〈k,−Z lg〉 − Zm(e)〈k, g〉 (g ∈ C∞
c (G)).
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Definition 3. Let Z be a right-invariant vector field. Define the trans-

pose operator Zt by

Zt = Z l + Zm(e)I.

In terms of this definition,

k ∗ Zf = (Ztk) ∗ f.
See [7, Lemma 8]. It is simple to see that (Z1Z2)

t = Zt
2Z

t
1 for all Z1, Z2 ∈ g.

Lemma 2.2. The transpose operators corresponding to the basis vectors

X,Y,U, V are:

Xt = u
∂

∂x
+ v

∂

∂y
, U t = u

∂

∂u
+ v

∂

∂v
− 2 = Rw − 2,

Y t = −v ∂
∂x

+ u
∂

∂y
, V t = −v ∂

∂u
+ u

∂

∂v
= Tw.

3. Representations and fundamental solutions. In order to iden-
tify the kernel of the operator∆−1, it is natural to use the Fourier transform.
If σ is a unitary representation of G and f is a suitable function, then the

Fourier transform f̂(σ) is given by

f̂(σ) =
\
G

f(x)σ(x) dµl(x).

3.1. Representation theory and Fourier transforms. Since the group G
is a semidirect product G = N ⋊ A in which N = C is a normal, abelian,
regularly-embedded subgroup, we may apply Mackey theory ([8, pp. 159–
199] and [2, M. Räıs, Ch. V, §1.10]). The nontrivial representations are
induced from characters χb(z) = eib·z of N, where b = b1 + ib2 ∈ C, and
b · z = b1x+ b2y.

We realise the representation σb, induced from χb and acting on L2(A) =
L2(C; dη/|η|2), by

[σb(z,w)F ](η) = eib·zηF (wη).

The orbit of b is {bw : w ∈ C
∗}. By Mackey theory, if b 6= 0, there is

a single equivalence class of unitary representations corresponding to that
orbit; each representation is equivalent to the one where b = 1. Let σ = σ1,
so that

[σ(z,w)F ](η) = eiz·ηF (wη).

The representations obtained by extending the characters of the subgroup
A to the whole of G do not appear in the Plancherel formula, and will be
ignored.
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Notice that if we identify A with R
2, and write η = s + it, then the

images under dσ of the Lie algebra basis vectors X,Y,U, V are

dσ(X) = isI, dσ(U) = s
∂

∂s
+ t

∂

∂t
,

dσ(Y ) = −itI, dσ(V ) = −t ∂
∂s

+ s
∂

∂t
,

each operator being an operator on L2(A). It follows that

(3) dσ(∆) = |η|2(I −∆η),

where ∆η is the standard Laplacian on R
2. The formula (3) may also be

interpreted as saying that the Fourier transform of ∆f is

|η|2(I −∆η)f̂(σ),

assuming that f is a test function.

3.2. Heuristic determination of the fundamental solution. In the quest
for fundamental solutions for ∆, it is natural, in view of the remark above,
to attempt to “invert” the operator |η|2(I − ∆η). Formally speaking, this
gives the operator

F 7→
\

R2

J(η − w)
F (w)

|w|2 dw

where J is the convolution kernel corresponding to (I −∆η)−1.
Suppose that N is a convolution kernel on G which is a fundamental

solution of ∆. Then, taking Fourier transforms formally on G, at the repre-
sentation σ, we get

(4)
\\
N(z,w)eiz·ηf(wη)

dw

|w|4 dz =
\
J(η − w)

f(w)

|w|2 dw

for suitable functions f. Writing N̂1 for the Euclidean Fourier transform
with respect to the first variable, and changing variables in the right-hand
side, we may write (4) in the form\̂

N1(−η,w)f(wη)
dw

|w|4 =
\
J(η(1 − w))

f(wη)

|w|2 dw.

So it is reasonable to require that

(5) N̂1(−η,w) = |w|2J(η(1 − w)).

If we invert the Fourier transform formally in (5), we get

(6) N(z,w) =
1

4π2
· |w|2
1 + |z|2/|1 − w|2 · 1

|1 − w|2 =
1

4π2
· |w|2
|z|2 + |1 − w|2 .

We shall see in the next section that this is the kernel of the operator
∆−1 on an appropriate domain.
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4. Spectral theory and the kernel of ∆−1. The spectral measure
dEs of the operator∆ has no mass at 0, and the operator∆−1 is well-defined,
via functional calculus, by

∆−1 =

∞\
0

s−1 dEs.

Its domain is

D(∆−1) =
{
f :

∞\
0

s−2d〈Esf, f〉 <∞
}
;

and for f ∈ D(∆−1) and g ∈ L2(G),

(7) 〈∆−1f, g〉 =

∞\
0

〈e−t∆f, g〉 dt.

Further, the space
V = {∆h : h ∈ C∞

c (G)}
is dense in L2(G). For these facts, see for instance [7, Sect. 3.3].

Lemma 4.1. (i) The operator ∆−1 is given on V by convolution with the

kernel N =
T∞
0
ht dt, where (ht)t>0 are the kernels of the heat semigroup

e−t∆.
(ii) The kernel N is a fundamental solution for ∆.

P r o o f. (i) We first verify that
T∞
0
ht dt converges locally in L1(G). In

view of [4, T7, p. 54], the solvable group G has no recurrent random walk, so
that

∑∞
k=1 hk converges locally in L1. Harnack’s inequality ([10, Theorem

III.2.1, p. 29]) then implies that the above integral also converges in L1
loc.

For f ∈ V and g ∈ C∞
c (G), it follows that

〈∆−1f, g〉 =

∞\
0

〈ht ∗ f, g〉 dt = 〈N ∗ f, g〉.

(ii) We wish to show that 〈∆N, f〉 = δe in the sense of distributions, i.e.,
〈N,∆f〉 = f(e) for any f ∈ C∞

c (G). With f ∈ C∞
c (G) fixed, we have

〈N,∆f〉 =
〈∞\

0

ht dt,∆f
〉
.

As verified above,
T∞
0
ht dt converges in L1

loc. Fubini’s theorem then implies
that

〈∞\
0

ht dt,∆f
〉

=

∞\
0

\
G

ht(x)∆f(x) dx dt(8)

=

∞\
0

〈ht,∆f〉 dt =

∞\
0

〈
−∂ht

∂t
, f

〉
dt.



140 G. GAUDRY AND P. SJÖGREN

An elementary argument shows that
〈
−∂ht

∂t
, f

〉
= − ∂

∂t
〈ht, f〉,

and so from (8),

〈N,∆f〉 =

∞\
0

− ∂

∂t
〈ht, f〉 dt = lim

ε→0
k→∞

k\
ε

− ∂

∂t
〈ht, f〉 dt

= lim
ε→0

〈hε, f〉 − lim
k→∞

〈hk, f〉 = f(e),

since 〈hε, f〉 → f(e) as ε→ 0 and 〈hk, f〉 → 0 as k → ∞, because
∑∞

k=1 hk

converges in L1
loc. Finally then, we see that

〈∆N, f〉 = 〈N,∆f〉 = f(e).

R e m a r k. An alternative, and more general, approach to the proof of
Lemma 4.1 is possible. It applies whenever G satisfies the (NC )-condition
of Varopoulos [9]. Cf. the argument in [7, §§3.2–3.3].

5. Riemannian structure and heat kernels. The group G can be
realised as a two-stage semidirect product G = (C ⋊ R+) ⋊ T if we write
w = ̺eiφ and (z,w) as (z, ̺, eiφ). It is therefore the semidirect product
G′

⋊ T, where G′ = C ⋊ R+ is identifiable with real hyperbolic 3-space. We
shall assume that φ ∈ R/2πZ ∼= [−π, π). The left-invariant distance on G′

is given by

dG′((z, ̺), (0, 1)) = arcosh

( |z|2 + 1 + ̺2

2̺

)
,

and is derived from the hyperbolic metric

ds′2 =
dx2 + dy2 + d̺2

̺2
.

This is invariant under the action of T on G′. It follows that the left-invariant
metric on G is given by

ds2 = ds′2 + dφ2 =
dx2 + dy2 + d̺2

̺2
+ dφ2.

So

dG((z,w), (0, 1))2 = dG′((z, |w|), (0, 1))2 + φ2(9)

=

(
arcosh

|z|2 + 1 + |w|2
2|w|

)2

+ φ2.

Lemma 5.1. Let ∆ and ∆′ be the canonical right-invariant Laplacians

on G and G′ respectively. Then

∆(f1f2) = (∆′f1)f2 − f1
∂2f2
∂φ2
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if f1 depends on r = |z| and ̺ = |w| only , and f2 depends only on φ.

P r o o f. A simple calculation shows that

∆ = −
(
X2 + Y 2 + r2

∂2

∂r2
+ ̺2 ∂

2

∂̺2

+ 2r̺
∂2

∂r∂̺
+ r

∂

∂r
+ ̺

∂

∂̺
+

∂2

∂θ2
+ 2

∂2

∂θ∂φ
+

∂2

∂φ2

)
.

Hence

∆(f1f2) = −
(
X2 + Y 2 + r2

∂2

∂r2
+ ̺2 ∂

2

∂̺2

+ 2r̺
∂2

∂r∂̺
+ r

∂

∂r
+ ̺

∂

∂̺
+

∂2

∂φ2

)
(f1f2)

= (∆′f1)f2 − f1
∂2f2
∂φ2

.

Theorem 3. Let A = arcosh((|z|2 +1+ |w|2)/2|w|). The heat semigroup

kernels on G are the functions

(10) ht =
1

16π2t2
· |w|A
sinhA

∑

k∈Z

exp

[
− A2 + (φ− 2kπ)2

4t

]
,

in the sense that e−t∆f = ht ∗ f , t > 0, for all f ∈ L2(G).

P r o o f. The heat kernels for the group G′ can be derived from those
for the Laplace–Beltrami operator in the real hyperbolic space H3 (cf. [5,
p. 178, (5.7.3)]). To do so, one uses the relationship between the heat
kernels on H3 and G′ given in [3, Theorem 5.3]. The heat kernels are also
essentially given in [1, Prop. 2.3.2]: one needs to adjust for the factor of 1/2
in Bougerol’s definition of the Laplacian, and for the fact that he does not
use left Haar measure. The kernels are

qt =
1

8π3/2t3/2
· |w|A
sinhA

e−A2/(4t) (t > 0).

The functions ht in (10) are the tensor products of the functions qt and the
heat kernels

1

2
√
πt

∑

k∈Z

e−(φ−2πk)2/(4t) (t > 0)

on the circle group T for the Laplacian d2/dt2. From Lemma 5.1, the func-
tions (ht)t>0 satisfy the heat equation on G, and also the other characteristic
properties of the heat semigroup. This gives the theorem.



142 G. GAUDRY AND P. SJÖGREN

It is now a simple matter to identify the kernel N =
T∞
0
ht dt. Indeed,

∞\
0

ht dt =
1

4π2

∑

k∈Z

|w|A
A2 + (φ+ 2kπ)2

· 1

sinhA

=
1

8π2
· (1 − e−2A)|w|
|1 − e−Aeiφ|2 · 1

sinhA
=

1

4π2
· |w|e−A

|1 − e−Aeiφ|2

=
1

4π2
· |w|2
|z|2 + |1 − w|2

since |1 − w|2 + |z|2 = |w|eA|1 − e−Aeiφ|2. In the calculations just given,
we have used Poisson summation and the standard formula for the Fourier
transform of the Poisson kernel. Note that the formula just derived agrees
with (6).

6. Kernels of the operators. It follows from Lemmas 2.1, 2.2 and 4.1
that the kernels of the Riesz operators are computable by applying right-
invariant fields and their transposes to the kernel N .

6.1. Local parts of the kernels. Each of the operators in question is
defined by convolution with a distribution k, at least on a suitable dense
subset of L2(G). The distributional kernel may be written as the sum of
two kernels, k = k1 + k2, where k1 = ψk, and the cut-off function ψ is C∞,
supported in a relatively compact set, and equal to 1 on a neighbourhood of
the identity. The kernel k2, the “part at infinity”, is zero on a neighbourhood
of e.

The results in [7] show that, on any Lie group, the local part k1 defines
an operator which is bounded on Lp(G) whenever 1 < p <∞, and is of weak
type (1, 1). This approach relies on pseudodifferential operators. Another
possibility is to verify that the kernel k1 is of Calderón–Zygmund type, and
then to use the simple and well-known Lemma 11 of [5] to add the local
results obtained. The proofs of Theorems 1 and 2 thus rest on an analysis
of the parts at infinity of the respective kernels.

6.2. Simplification of the kernels for large w. The following lemma helps
to avoid complications due to the term |w− 1|2 in the expression for N . We
replace it by the simpler |w|2, and let

(11) N∞ =
1

4π2
· |w|2
|z|2 + |w|2 .

Lemma 6.1. The functions N − N∞, Zt
2(N − N∞), Zt

1Z
t
2(N − N∞),

Z2(N −N∞) and Z1Z2(N −N∞) are integrable in the region where |w| > 2,
for all Z1, Z2 ∈ g.
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P r o o f. Write |(z,w)|2 = |z|2 + |w|2. Then

N =
|w|2

4π2|(z,w) − (0, 1)|2 and N∞ =
|w|2

4π2|(z,w)|2 .

Hence

N −N∞ =
1

4π2
|w|2 2u− 1

|(z,w)|2|(z,w) − (0, 1)|2 = |w|2 P
Q
,

where degP = 1 and degQ = 4. It follows from the expressions for the
transpose operators in Lemma 2.2 that for any Z ∈ g and any function f ,

(12) Zt(|w|2f) = |w|2Z lf.

This implies that all of the functions in the lemma that involve transposed
operators will be of the form |w|2P1/Q1, where P1 and Q1 are polynomials
with degQ1 − degP1 ≥ 3, and Q1 behaves like a power of |(z,w)| for large
w. Such functions are integrable for |w| > 2, since\

|w|>2

dw

|w|4
\
|w|2

∣∣∣∣
P1

Q1

∣∣∣∣ dz ≤ C
\

|w|>2

dw

|w|2
\ dz

|z|3 + |w|3 <∞.

The argument for the nontransposed operators is similar.

6.3. Simplification of the kernels for small w. The formula (9) shows
that points for which w is small, as well as those for which w is large, lie
near infinity in the group G. To treat the former, we consider the modified
kernel

N0 =
1

4π2
· |w|2
|z|2 + 1

.

Lemma 6.2. The functions N−N0, Z
t
2(N−N0), Z

t
1Z

t
2(N−N0), Z2(N−

N0) and Z1Z2(N −N0) are integrable in the region where |w| < 1/2, for all

Z1, Z2 ∈ g.

P r o o f. We have

N −N0 =
1

4π2
· |w|2(2u− |w|2)
(|z|2 + 1)(|z|2 + |w − 1|2) .

Differentiating, one sees that

Z2(N −N0) =
O(|w|3)

(1 + |z|2)2
uniformly in z, as w → 0. A similar statement applies to Z1Z2 and to the
transposed operators.

7. Proof of Theorem 1. Recall from §6.1 that the local part of the
kernel of Z1∆

−1Z2 defines a bounded operator. The real issue is therefore
to examine the behaviour of the kernel away from the origin.
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Lemma 7.1. For every Z ∈ g,

ZN =
|w|2P1(z,w)

(|z|2 + |w − 1|2)2

where P1(z,w) is of degree at most 1.

P r o o f. This is a simple direct calculation.

Lemma 7.2. For Z1, Z2 ∈ g, the kernel Zt
2Z1N of the operator Z1∆

−1Z2

satisfies

(13) Zt
2Z1N =

|w|2P3(z,w)

(|z|2 + |w − 1|2)3 ,

where P3 is a polynomial of degree at most 3 satisfying P3 = O(|w|(1+ |z|2))
as w → 0, uniformly in z.

P r o o f. This is a consequence of Lemma 7.1, the equality (12) and the
expressions in Lemma 2.2.

Corollary 7.3. The kernels of the operators Z1∆
−1Z2 are all integrable

at infinity.

8. Proof of Theorem 2(b). We break this up into a set of lemmas.

Lemma 8.1. Any linear combination P t of the set of operators XtV t,
Y tV t, U tV t = V tU t, V tV t, V t and ∆ gives rise to an operator P t∆−1 that

is bounded on Lp(G) for all p ∈ (1,∞) and of weak type (1, 1).

P r o o f. This follows from §6.1 and Lemmas 6.1 and 6.2 and the obser-
vation that V tN∞ = V tN0 = 0.

In the next lemma, we use the notation

(14) XtXt
# −2(u2 + v2)(|z|2 + |w|2) + 8(ux+ vy)2

to mean that XtXtN∞ is the product of the function on the right of (14)
and (4π2)−1|w|2(|z|2 + |w|2)−3.

Lemma 8.2. The transposed operators that do not involve V t satisfy the

relations

(15)

XtXt
# −2|w|2(|z|2 + |w|2) + 8(ux+ vy)2,

XtY t = Y tXt
# 8(ux+ vy)(−vx + uy),

Y tY t
# −2|w|2(|z|2 + |w|2) + 8(−vx+ uy)2,

U t
# −2|w|2(|z|2 + |w|2),

I # (|z|2 + |w|2)2
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and

(16)

U tXt
# −2(ux+ vy)(|z|2 − 3|w|2),

U tY t
# −2(−vx+ uy)(|z|2 − 3|w|2),

XtU t
# 8|w|2(ux+ vy),

Y tU t
# 8|w|2(−vx+ uy).

The 9 homogeneous polynomials in (15) and (16) are linearly independent.

P r o o f. This is by direct calculation. For the second part of the state-
ment, note that the functions in (15), which are of even degree in (x, y), are
clearly independent of those in (16).

Lemma 8.3. Any nontrivial linear combination of the operators in Lemma

8.2 gives rise to an operator ∆−1P that is not of weak type (p, p) for any

p ∈ [1,∞).

P r o o f. The kernel of the operator ∆−1P is P tN ; and Lemma 6.1 shows
that we may consider the kernel K = P tN∞ instead, for large w. It is clear
from (15) and (16) that K(z,w) is a rational function of (x, y, u, v) that
is nonzero and homogeneous of degree 0. By multiplying K by a scalar if
necessary, we may choose ε > 0 and a nonempty open set U ⊂ G such that
K > ε on U . Let V be a relatively compact, symmetric neighbourhood of
e. Then

K ∗ χV (g) =
\
V

K(gg′) dµl(g
′).

Now choose a nonempty open subset U ′ of U and the neighbourhood V so
that gg′ ∈ U for all g ∈ U ′ and g′ ∈ V . The positive isotropic dilations
σr(g) = σr(z,w) = (rz, rw), r > 0, satisfy σr(gg

′) = σr(g)g
′. It follows that

the set

E = {g ∈ G : K(gg′) > ε for all g′ ∈ V }
is invariant under all σr, and it contains a nonempty open set U ′. So there
exist an open set A ⊂ C and a relatively open subset B ⊂ T ⊂ C such that
E ⊃ {σr(A×B) : r > 0} = {(z,w) : w/|w| ∈ B, z ∈ |w|A}. Hence\

E∩{w:|w|>1}

dz dw

|w|4 ≥
\

{w:|w|>1,w/|w|∈B}

dw

|w|4
\

z∈|w|A

dz

= |A|
\

{w:w/|w|∈B, |w|>1}

dw

|w|2 = ∞.

So K ∗ χV (g) is bounded away from 0 on a set of infinite measure. This
shows that the operator of convolution by K is not of weak type (p, p) for
any p > 0.
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We can now easily finish the proof of Theorem 2(b). It is clear from
the commutation relations (1) that the differential operators that are listed
in Lemmas 8.1 and 8.2 span the space G2. If P ∈ G2, then it follows from
Lemmas 8.1 and 8.3 that the operator ∆−1P is bounded if and only if
P ∈ Ir.

9. Proof of Theorem 2(a). It is clear from Lemmas 6.1 and 6.2 that
each of the operators P∆−1 with P ∈ Il is bounded, since V N0 = V N∞ = 0.

Assume next that the coefficient c0 of the identity operator in P is
nonzero. By Lemma 6.1, the kernel P (N − N∞) is integrable in the re-
gion where |w| > 2 for every P ∈ G2. Thus we can replace N by N∞.
Notice that UN∞ = V N∞ = 0, so

(P − c0I)N∞ = O

(
1

|z| + |w|

)
= o(1)

for |w| → ∞. On the other hand, N∞ ∼ 1 for |z| ∼ |w| large.
Let V be a small compact symmetric neighbourhood of e ∈ G, and

consider

(PN∞) ∗ χV (z,w) =
\
PN∞(z + wz′, ww′)χV (z′, w′)

dz′ dw′

|w′|4 .

If V is small enough, then |z + wz′| ∼ |w| ∼ |ww′| for (z′, w′) ∈ V
provided |z| ∼ |w|. So (PN∞) ∗ χV (z,w) ∼ 1. Since the measure of the set
where w is large and |z| ∼ |w| is infinite, we see that PN∞ ∗ χV is in no
weak Lp space.

The remainder of the proof deals with operators that contain no ∆−1

term. In the first lemma, we use the notation

(17) XX  p(z) = −2(1 − 3x2 + y2)

to mean that

XXN0 =
1

4π2
· |w|2p(z)
(1 + |z|2)3 .

Lemma 9.1. In the notation of (17), we have

XX  −2(1 − 3x2 + y2), Y U  −8y,

Y Y  −2(1 + x2 − 3y2), UX  −2x(3 − x2 − y2),

XY  8xy, UY  −2y(3 − x2 − y2),

XU  −8x, U  2(1 + x2 + y2).

These polynomials are linearly independent.

P r o o f. This follows from routine calculation.

The proof of Theorem 2(a) will be complete once the following lemma is
established.



SINGULAR INTEGRALS 147

Lemma 9.2. If p(z) is a nontrivial linear combination of the polynomials

in Lemma 9.1, and

W (z,w) =
|w|2p(z)

(1 + |z|2)3χ{w:|w|<1/2},

then the convolution operator f 7→ W ∗ f is not of weak type (p, p) for any

p ∈ [1,∞).

P r o o f. We follow the pattern of [6, Lemmas 13 and 14]. As in that
case, one finds that W ∗ f can be written as a convolution in the variable
z only. Indeed, suppose that f ∈ L1(G) has compact support in the set
{w : |w| > 2}; write

F (−z) =
\
f((z,w)−1)|w|−2 dw.

Let r(z) = p(z)/(1 + |z|2)3, and set rw(z) = |w|−2r(z/w). Then

(18) W ∗ f(z,w) = r1/w ∗C F (z/w)

for |w| < 1. In (18), the convolution on the right-hand side is taken over
the complex plane, with respect to Lebesgue measure.

To deal with the case p > 1, we simply let f = fT , where fT ((z,w)−1) =
h(z)ψT (w). Here 0 ≤ h ∈ Cc(C), ψT (w) = T−1φ(|w|1/T ) and 0 ≤ φ ∈
Cc(0, 1/2). With this choice, one finds that W ∗ fT does not depend on T
in the set where |w| < 1, whereas ‖fT ‖p → 0 as T → ∞.

In analogy with [6], the case p = 1 amounts to disproving the inequality

(19) µl({(z,w) : |w| < 1, |r1/w ∗ F (z/w)| > λ}) ≤ C

λ
‖F‖L1(C).

Introducing z/w and 1/w as new variables, we see that (19) is equivalent to
the inequality

(20) µr({(z,w) : |w| > 1, |rw ∗ F (z)| > λ}) ≤ C

λ
‖F‖L1(C).

As in [6], one finds that this inequality is self-improving, in the sense that
one can delete the condition |w| > 1.

To disprove (20), we consider two cases. If
T
C
r dz 6= 0, (which happens

precisely when P has a nonzero U -component), we choose as F the charac-
teristic function of the unit disc. For |z| < 1/2 and w small, it is then easy
to see that |rw ∗ F (z)| > 1

2
|
T
r dz|. The left-hand side of (20) is therefore

infinite.
If
T
r dz = 0, we can essentially follow the argument in [6, proof of Lemma

14]. A few details will need to be modified: for instance, the decay of r(z)
at infinity is like |z|−3; the summation index k = (k1, k2) (see [6, (27)]) will
now be a pair of natural numbers; and U will be a neighbourhood of (0, 1)
in C

2.
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