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ON AXIAL MAPS OF THE DIRECT PRODUCT OF FINITE SETS

BY

MARCIN SZYSZKOWSKI (GDANSK)

We show that every function f: A x B — A x B, where A and B are
finite sets, is a composition of 5 axial functions.

A function f : Ax B — Ax B is called vertical if there exists g : Ax B —
A such that f(a,b) = (g(a,b),b), and is called horizontal if f = (a,g(a,b))
for some g : Ax B — B. Both types of functions are called axial. A function
which is one-to-one and onto is called a permutation. By #A we denote the
number of elements of the set A.

Ehrenfeucht and Grzegorek in [EG] (Th. iv) proved the following

THEOREM 1. If A and B are finite sets then every function f: Ax B —
A X B can be represented as a composition f = f1o...0 fg, where f; are
azial functions and f1 is horizontal.

In that paper the following problem was stated (P910): Is it possible to
decrease the number 6 in the theorem above? The aim of this paper is to
show that we can put 5 in place of 6.

For other results concerning axial functions see [G] and the references
there.

We shall use the following fact from [EG] (Th. iii):

THEOREM 2. If #B < X (while A may be of arbitrary finite or infinite
cardinality), then every permutation p of A x B can be represented as a
composition p = p1 o pa © p3, where all p; are axial permutations of A x B
and p1 is horizontal.

Our main result is

THEOREM. If A, B are finite sets and f: A x B — A x B is arbitrary,
then there exist axial functions f;: AXx B— Ax B (i=1,...,5) such that
f=/fio...0fs and f1 is horizontal.
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LEMMA 1. If A, B are finite sets and f : A x B — A x B, then there
exist azial functions f; : Ax B— Ax B (i =1,2,3) such that

Vianeaxs #(fifafs)" (a,b) = #f7 (a,b)
and f1 is a horizontal permutation.
We can rewrite Lemma 1 in another form.

LEMMA 2. Let {nq} be a set of natural numbers indexed by pairs from
A x B such that

Y. na=#A#B.
(a,b)cAxB
Then there exist azxial functions f; : Ax B — A x B (i =1,2,3) such that

Yiameaxn #([if2f3) " (a,b) = nge
and f1 is a horizontal permutation.

We start with a few definitions. If M = [mg;] is a matrix with elements
indexed by pairs (a,b) € Ax B and f: Ax B — A x B then f[M] = [m,]
where m/; = mj(q). With that approach it does not matter what are the
elements of the matrix, we are dealing only with coordinates. Note that if
fig: Ax B — Ax B then flg[M]] = (go f)[M].

Let X = [(a,D)](a,p)cax B (i-e. the element (a,b) stands at the place (a, b))
and let 7, = {(a,b) : b € B} be the “ath” row in the matrix X. The matrix
f[X] determines the function f completely, and to prove the lemma we show
that the number of occurrences of the element (a,b) in f3[f2[f1[X]]] is nap
for every (a,b) € A x B.

Proof of Lemma 2 (induction on #A4). For #A = 1 the lemma is
trivial, since in this case every function is axial (horizontal). Assume that

(*) VA,B(#A:n)v{nab},Z nab=#A~#BE|f17f27f3 axial functions V(a,b)eAxB
#(flfgfg)*l(a, b) = ngp and fy is a horizontal permutation.

Let now #A =n+1. Fora € Alet wy = ) ;.5 nap. Clearly > 4w, =
#A-#B = (n+ 1)#B. There are a1,as € A(a; # az) such that w,, < #B
and wq, > #B. Let {b1,...,bup} = B be an ordering such that the
numbers n,,p, decrease (weakly).

Let

m k
k:min{m:anbi—i—walz#B}, S:Z"azbi+wa1—#3
=1 =1
(if we, = #B then k = 0; note that ng,p, > 0 for i < k).

In the row r,, there exist at least k£ “null elements”, i.e. elements (aq,b)
such that n4,, = 0 (indeed, if there were fewer than k null elements (aq,b)
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then w,, > #B — (k—1) and
k—1
> Nasp, +Wa, =k —1+#B— (k—1) > #B,
i=1
so k would not be minimal).
Let A" = A\ {a1}. We define numbers n/, for (a,b) € A’ x B by
0 for (a,b) = (az,b;), 1 <i <k,
nhp = {S for (a,b) = (a2, by),
ne, Otherwise.
It is easy to check that Z(a,b)eA/xB n., =#A" - #B.
Let us assign to each element (az,b;) (1 < i < k), in a one-to-one way, a
null element (aq,b;,) and define

Masb, for (a1,b) = (a1,bi,),
néblb = Nayb, — S for (alab) = (alvblk)v
Naqb for (a17 b) 7é (alv blz)
Note that ), g n,, , = #B.

From (x) there exist axial functions fi, f3, f5 from A’ x B to A’ x B such
that the assertion of the lemma holds and f] is a horizontal permutation.

We now construct functions fi, fo and f3.

We define f; as an extension of the permutation f{ to A x B. Namely, f;
acts on 14, so that in f1[X] each element (a1,b;,) is in the same column as
(az2,b;), 1 <i <k, and the other elements (a1, b) have arbitrary positions.

f2 is an extension of fJ to Ax B. In the row r,, of f1[X] we replace every
null element (a1,b;,) by the element (ag,b;) (they are in the same column).

f2 is defined to act on f1][X] so that the elements (asz,b;), 1 < i < k, are
“copied” to the places where the elements (a1, b;,) stand, more precisely: if
the element (ag,b;),1 < i < k, in the matrix f1[X] stands at place (az,y)
(and so (a1, b;;) stands at place (a1,y)) then fao(ai,y) = (az2,y), f2(a1,y) =
(a1,y) for other elements.

Although in the matrix f5[f;[X’]] there may be no elements (as,b;),
i <k (ng,, =0fori<k), in fo[f1[X]] they have been “saved” by moving
them to the row rg, .

Finally, we extend f} to the set A x B obtaining f3 as follows: fs3 first
permutes the row f; fa[ra,] so that (a1, b) stands at place (a1,b) and (az, b;)
stands at place (a1,b;;). Then f3 puts each element standing at place (a1,b)
at n,, , places (3 ,cp Ny, = #B).

In the matrix f3[f2[f1[X]]] the elements (a2, b;),? < k, are only in the row
Ta,, and they appear at ) by, = Tasb; places. The element (as,by) appears
at 5+ (Nayp, — ) places and other elements (a, b) appear at n’,, = ngp places.
So the lemma is proved. =



36 M. SZYSZKOWSKI

Proof of the Theorem. There exists a permutation p such that
plfs[f2[f1[X]]]] = f[X]. By Theorem 2 we can represent p as pj o pa o ps,
where all p; are axial permutations and p; is horizontal. Thus the function
F3 = f30p; is axial (horizontal) and fi o fo 0 F30pgop3[X] = f[X]. =

Remark. We still do not know whether 5 is a minimal number. We
know, however, that number 3 is not enough (a joint result with E. Grze-
gorek). To see this we note an observation:

(A) Let M, N be matrices of the same size. The existence of functions
fi,fo : Ax B — A x B, with fi vertical and fo horizontal, such that
f2lfi[M]] = N is equivalent to the fact that for each row W of N there
exists a selector S from the columns of M such that W* C S, where W* is
the set of all elements of the row W.

Obviously, we also have:

(B) Let M, N be matrices of the same size. The ezistence of functions
fi,fo : Ax B — A x B, with fi horizontal and fo vertical, such that
f2[f1[M]] = N is equivalent to the fact that for each column W of N there
exists a selector S from the rows of M such that W* C S, where W* is the
set of all elements of the column W.

Thus, the 3 x 2 matrix

A B A B
A D | cannot be obtained from | C D
A C E F

using three axial functions f1, fa, f3, where fi is horizontal.

Analogously, the 2 x 3 matrix

B C D B D F

[A A A} cannot be obtained from {A ¢ E]

using three axial functions f1, fo, f3, where f; is vertical.
The m x n matrix (where (m >5 and n > 4) or (m >4 and n > 5))

b1 biz ... bin—2 bin-1 bin]
bor  bao ... bap—2 banp—1 b2y

b31 b32 cee b3,n—2 b3,n—1 b3n

L bml bm2 e bm,n—2 bm,n—l bmn -
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cannot be transformed into

rbir bz ... bin—2  bin— bin 7
bir b2 ... b2 b1 bap,
bir bar xxx * b3,n—1 bsn
, * *  Kkokk *
X = * *  kkKk *
* *  Kkokk *
* * * Kk bm,n—l bm—l,n—l bm—l,n
L % *  kxk by b b

(where the dots stand for the corresponding entries of X and the stars are
arbitrary) by a function which is a composition of three axial functions.

This is visible if we look at the first three rows of X’ (it is impossible
to find a horizontal function f such that f[X] would satisfy the condition
from observation (A)), and at the last three columns of X’ (it is impossible
to find a vertical function f such that f[X] would satisfy the condition from
observation (B)). So neither starting with a horizontal nor with a vertical
function can we obtain the matrix X’ from the matrix X, using only three
axial functions.

I would like to thank Prof. E. Grzegorek for fruitful discussions.
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