C OLLOQUIUM MATHEMATICUM
 VOL. 75

ON AXIAL MAPS OF THE DIRECT PRODUCT OF FINITE SETS

BY
MARCIN SZYSZK O W S KI (GDAŃSK)

We show that every function $f: A \times B \rightarrow A \times B$, where A and B are finite sets, is a composition of 5 axial functions.

A function $f: A \times B \rightarrow A \times B$ is called vertical if there exists $g: A \times B \rightarrow$ A such that $f(a, b)=(g(a, b), b)$, and is called horizontal if $f=(a, g(a, b))$ for some $g: A \times B \rightarrow B$. Both types of functions are called axial. A function which is one-to-one and onto is called a permutation. By $\# A$ we denote the number of elements of the set A.

Ehrenfeucht and Grzegorek in [EG] (Th. iv) proved the following
Theorem 1. If A and B are finite sets then every function $f: A \times B \rightarrow$ $A \times B$ can be represented as a composition $f=f_{1} \circ \ldots \circ f_{6}$, where f_{i} are axial functions and f_{1} is horizontal.

In that paper the following problem was stated (P910): Is it possible to decrease the number 6 in the theorem above? The aim of this paper is to show that we can put 5 in place of 6 .

For other results concerning axial functions see [G] and the references there.

We shall use the following fact from [EG] (Th. iii):
Theorem 2. If $\# B<\aleph_{0}$ (while A may be of arbitrary finite or infinite cardinality), then every permutation p of $A \times B$ can be represented as a composition $p=p_{1} \circ p_{2} \circ p_{3}$, where all p_{i} are axial permutations of $A \times B$ and p_{1} is horizontal.

Our main result is
Theorem. If A, B are finite sets and $f: A \times B \rightarrow A \times B$ is arbitrary, then there exist axial functions $f_{i}: A \times B \rightarrow A \times B(i=1, \ldots, 5)$ such that $f=f_{1} \circ \ldots \circ f_{5}$ and f_{1} is horizontal.

[^0]Research supported by UG grant BW 5100-5-0042-5.

Lemma 1. If A, B are finite sets and $f: A \times B \rightarrow A \times B$, then there exist axial functions $f_{i}: A \times B \rightarrow A \times B(i=1,2,3)$ such that

$$
\forall_{(a, b) \in A \times B} \quad \#\left(f_{1} f_{2} f_{3}\right)^{-1}(a, b)=\# f^{-1}(a, b)
$$

and f_{1} is a horizontal permutation.
We can rewrite Lemma 1 in another form.
Lemma 2. Let $\left\{n_{a b}\right\}$ be a set of natural numbers indexed by pairs from $A \times B$ such that

$$
\sum_{(a, b) \in A \times B} n_{a b}=\# A \cdot \# B
$$

Then there exist axial functions $f_{i}: A \times B \rightarrow A \times B(i=1,2,3)$ such that

$$
\forall_{(a, b) \in A \times B} \quad \#\left(f_{1} f_{2} f_{3}\right)^{-1}(a, b)=n_{a b}
$$

and f_{1} is a horizontal permutation.
We start with a few definitions. If $M=\left[m_{a b}\right]$ is a matrix with elements indexed by pairs $(a, b) \in A \times B$ and $f: A \times B \rightarrow A \times B$ then $f[M]=\left[m_{a b}^{\prime}\right]$ where $m_{a b}^{\prime}=m_{f(a, b)}$. With that approach it does not matter what are the elements of the matrix, we are dealing only with coordinates. Note that if $f, g: A \times B \rightarrow A \times B$ then $f[g[M]]=(g \circ f)[M]$.

Let $X=[(a, b)]_{(a, b) \in A \times B}$ (i.e. the element (a, b) stands at the place $\left.(a, b)\right)$ and let $r_{a}=\{(a, b): b \in B\}$ be the " a th" row in the matrix X. The matrix $f[X]$ determines the function f completely, and to prove the lemma we show that the number of occurrences of the element (a, b) in $f_{3}\left[f_{2}\left[f_{1}[X]\right]\right]$ is $n_{a b}$ for every $(a, b) \in A \times B$.

Proof of Lemma 2 (induction on $\# A$). For $\# A=1$ the lemma is trivial, since in this case every function is axial (horizontal). Assume that

$$
\begin{align*}
& \forall_{A, B(\# A=n)} \forall_{\left\{n_{a b}\right\}, \sum n_{a b}=\# A \cdot \# B} \exists_{f_{1}, f_{2}, f_{3}} \text { axial functions } \forall_{(a, b) \in A \times B} \tag{*}\\
& \#\left(f_{1} f_{2} f_{3}\right)^{-1}(a, b)=n_{a b} \text { and } f_{1} \text { is a horizontal permutation. }
\end{align*}
$$

Let now $\# A=n+1$. For $a \in A$ let $w_{a}=\sum_{b \in B} n_{a b}$. Clearly $\sum_{a \in A} w_{a}=$ $\# A \cdot \# B=(n+1) \# B$. There are $a_{1}, a_{2} \in A\left(a_{1} \neq a_{2}\right)$ such that $w_{a_{1}} \leq \# B$ and $w_{a_{2}} \geq \# B$. Let $\left\{b_{1}, \ldots, b_{\# B}\right\}=B$ be an ordering such that the numbers $n_{a_{2} b_{i}}$ decrease (weakly).

Let

$$
k=\min \left\{m: \sum_{i=1}^{m} n_{a_{2} b_{i}}+w_{a_{1}} \geq \# B\right\}, \quad s=\sum_{i=1}^{k} n_{a_{2} b_{i}}+w_{a_{1}}-\# B
$$

(if $w_{a_{1}}=\# B$ then $k=0$; note that $n_{a_{2} b_{i}}>0$ for $i \leq k$).
In the row $r_{a_{1}}$ there exist at least k "null elements", i.e. elements $\left(a_{1}, b\right)$ such that $n_{a_{1} b}=0$ (indeed, if there were fewer than k null elements $\left(a_{1}, b\right)$
then $w_{a_{1}} \geq \# B-(k-1)$ and

$$
\sum_{i=1}^{k-1} n_{a_{2} b_{i}}+w_{a_{1}} \geq k-1+\# B-(k-1) \geq \# B
$$

so k would not be minimal).
Let $A^{\prime}=A \backslash\left\{a_{1}\right\}$. We define numbers $n_{a b}^{\prime}$ for $(a, b) \in A^{\prime} \times B$ by

$$
n_{a b}^{\prime}= \begin{cases}0 & \text { for }(a, b)=\left(a_{2}, b_{i}\right), 1 \leq i<k, \\ s & \text { for }(a, b)=\left(a_{2}, b_{k}\right), \\ n_{a b} & \text { otherwise } .\end{cases}
$$

It is easy to check that $\sum_{(a, b) \in A^{\prime} \times B} n_{a b}^{\prime}=\# A^{\prime} \cdot \# B$.
Let us assign to each element $\left(a_{2}, b_{i}\right)(1 \leq i \leq k)$, in a one-to-one way, a null element ($a_{1}, b_{l_{i}}$) and define

$$
n_{a_{1} b}^{\prime}= \begin{cases}n_{a_{2} b_{i}} & \text { for }\left(a_{1}, b\right)=\left(a_{1}, b_{l_{i}}\right), \\ n_{a_{2} b_{k}}-s & \text { for }\left(a_{1}, b\right)=\left(a_{1}, b_{l_{k}}\right), \\ n_{a_{1} b} & \text { for }\left(a_{1}, b\right) \neq\left(a_{1}, b_{l_{i}}\right)\end{cases}
$$

Note that $\sum_{b \in B} n_{a_{1} b}^{\prime}=\# B$.
From ($*$) there exist axial functions $f_{1}^{\prime}, f_{2}^{\prime}, f_{3}^{\prime}$ from $A^{\prime} \times B$ to $A^{\prime} \times B$ such that the assertion of the lemma holds and f_{1}^{\prime} is a horizontal permutation.

We now construct functions f_{1}, f_{2} and f_{3}.
We define f_{1} as an extension of the permutation f_{1}^{\prime} to $A \times B$. Namely, f_{1} acts on $r_{a_{1}}$ so that in $f_{1}[X]$ each element $\left(a_{1}, b_{l_{i}}\right)$ is in the same column as $\left(a_{2}, b_{i}\right), 1 \leq i \leq k$, and the other elements $\left(a_{1}, b\right)$ have arbitrary positions.
f_{2} is an extension of f_{2}^{\prime} to $A \times B$. In the row $r_{a_{1}}$ of $f_{1}[X]$ we replace every null element $\left(a_{1}, b_{l_{1}}\right)$ by the element $\left(a_{2}, b_{i}\right)$ (they are in the same column).
f_{2} is defined to act on $f_{1}[X]$ so that the elements $\left(a_{2}, b_{i}\right), 1 \leq i \leq k$, are "copied" to the places where the elements $\left(a_{1}, b_{l_{i}}\right)$ stand, more precisely: if the element $\left(a_{2}, b_{i}\right), 1 \leq i \leq k$, in the matrix $f_{1}[X]$ stands at place $\left(a_{2}, y\right)$ (and so $\left(a_{1}, b_{l_{i}}\right)$ stands at place $\left.\left(a_{1}, y\right)\right)$ then $f_{2}\left(a_{1}, y\right)=\left(a_{2}, y\right), f_{2}\left(a_{1}, y\right)=$ $\left(a_{1}, y\right)$ for other elements.

Although in the matrix $f_{2}^{\prime}\left[f_{1}^{\prime}\left[X^{\prime}\right]\right]$ there may be no elements $\left(a_{2}, b_{i}\right)$, $i \leq k\left(n_{a_{2} b_{i}}^{\prime}=0\right.$ for $\left.i<k\right)$, in $f_{2}\left[f_{1}[X]\right]$ they have been "saved" by moving them to the row $r_{a_{1}}$.

Finally, we extend f_{3}^{\prime} to the set $A \times B$ obtaining f_{3} as follows: f_{3} first permutes the row $f_{1} f_{2}\left[r_{a_{1}}\right]$ so that $\left(a_{1}, b\right)$ stands at place $\left(a_{1}, b\right)$ and $\left(a_{2}, b_{i}\right)$ stands at place $\left(a_{1}, b_{l_{i}}\right)$. Then f_{3} puts each element standing at place (a_{1}, b) at $n_{a_{1} b}^{\prime}$ places $\left(\sum_{b \in B} n_{a_{1} b}^{\prime}=\# B\right)$.

In the matrix $f_{3}\left[f_{2}\left[f_{1}[X]\right]\right]$ the elements $\left(a_{2}, b_{i}\right), i<k$, are only in the row $r_{a_{1}}$, and they appear at $n_{a_{1} b_{l_{i}}}^{\prime}=n_{a_{2} b_{i}}$ places. The element $\left(a_{2}, b_{k}\right)$ appears at $s+\left(n_{a_{2} b_{k}}-s\right)$ places and other elements (a, b) appear at $n_{a b}^{\prime}=n_{a b}$ places. So the lemma is proved.

Proof of the Theorem. There exists a permutation p such that $p\left[f_{3}\left[f_{2}\left[f_{1}[X]\right]\right]\right]=f[X]$. By Theorem 2 we can represent p as $p_{1} \circ p_{2} \circ p_{3}$, where all p_{i} are axial permutations and p_{1} is horizontal. Thus the function $F_{3}=f_{3} \circ p_{1}$ is axial (horizontal) and $f_{1} \circ f_{2} \circ F_{3} \circ p_{2} \circ p_{3}[X]=f[X]$.

Remark. We still do not know whether 5 is a minimal number. We know, however, that number 3 is not enough (a joint result with E. Grzegorek). To see this we note an observation:
(A) Let M, N be matrices of the same size. The existence of functions $f_{1}, f_{2}: A \times B \rightarrow A \times B$, with f_{1} vertical and f_{2} horizontal, such that $f_{2}\left[f_{1}[M]\right]=N$ is equivalent to the fact that for each row W of N there exists a selector S from the columns of M such that $W^{*} \subseteq S$, where W^{*} is the set of all elements of the row W.

Obviously, we also have:
(B) Let M, N be matrices of the same size. The existence of functions $f_{1}, f_{2}: A \times B \rightarrow A \times B$, with f_{1} horizontal and f_{2} vertical, such that $f_{2}\left[f_{1}[M]\right]=N$ is equivalent to the fact that for each column W of N there exists a selector S from the rows of M such that $W^{*} \subseteq S$, where W^{*} is the set of all elements of the column W.

Thus, the 3×2 matrix

$$
\left[\begin{array}{ll}
A & B \\
A & D \\
A & C
\end{array}\right] \text { cannot be obtained from }\left[\begin{array}{cc}
A & B \\
C & D \\
E & F
\end{array}\right]
$$

using three axial functions f_{1}, f_{2}, f_{3}, where f_{1} is horizontal.
Analogously, the 2×3 matrix

$$
\left[\begin{array}{lll}
A & A & A \\
B & C & D
\end{array}\right] \text { cannot be obtained from }\left[\begin{array}{lll}
A & C & E \\
B & D & F
\end{array}\right]
$$

using three axial functions f_{1}, f_{2}, f_{3}, where f_{1} is vertical.
The $m \times n$ matrix (where ($m \geq 5$ and $n \geq 4$) or ($m \geq 4$ and $n \geq 5$))

$$
X=\left[\begin{array}{cccccc}
b_{11} & b_{12} & \ldots & b_{1, n-2} & b_{1, n-1} & b_{1 n} \\
b_{21} & b_{22} & \ldots & b_{2, n-2} & b_{2, n-1} & b_{2 n} \\
b_{31} & b_{32} & \ldots & b_{3, n-2} & b_{3, n-1} & b_{3 n} \\
\cdot & \cdot & & \cdot & \cdot & \cdot \\
\cdot & \cdot & & \cdot & \cdot & \cdot \\
\cdot & \cdot & & \cdot & \cdot & \cdot \\
b_{m 1} & b_{m 2} & \ldots & b_{m, n-2} & b_{m, n-1} & b_{m n}
\end{array}\right]
$$

cannot be transformed into

$$
X^{\prime}=\left[\begin{array}{cccccc}
b_{11} & b_{12} & \ldots & b_{1, n-2} & b_{1, n-1} & b_{1 n} \\
b_{11} & b_{22} & \ldots & b_{2, n-2} & b_{2, n-1} & b_{2 n} \\
b_{11} & b_{21} & \star \star \star & \star & b_{3, n-1} & b_{3 n} \\
\star & \star & \star \star \star & \star & \cdot & \cdot \\
\star & \star & \star \star \star & \star & \cdot & \cdot \\
\star & \star & \star \star \star & \star & \cdot & \cdot \\
\star & \star & \star \star \star & b_{m, n-1} & b_{m-1, n-1} & b_{m-1, n} \\
\star & \star & \star \star \star & b_{m, n} & b_{m, n} & b_{m, n}
\end{array}\right]
$$

(where the dots stand for the corresponding entries of X and the stars are arbitrary) by a function which is a composition of three axial functions.

This is visible if we look at the first three rows of X^{\prime} (it is impossible to find a horizontal function f such that $f[X]$ would satisfy the condition from observation (A)), and at the last three columns of X^{\prime} (it is impossible to find a vertical function f such that $f[X]$ would satisfy the condition from observation (B)). So neither starting with a horizontal nor with a vertical function can we obtain the matrix X^{\prime} from the matrix X, using only three axial functions.

I would like to thank Prof. E. Grzegorek for fruitful discussions.

REFERENCES

[EG] A. Ehrenfeucht and E. Grzegorek, On axial maps of direct products I, Colloq. Math. 32 (1974), 1-11.
[G] E. Grzegorek, On axial maps of direct products II, ibid. 34 (1976), 145-164.

Institute of Mathematics
Gdańsk University
Wita Stwosza 57
80-952 Gdańsk, Poland
E-mail: matmsz@halina.univ.gda.pl

[^0]: 1991 Mathematics Subject Classification: 04A05, 35A05.

