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ON AXIAL MAPS OF THE DIRECT PRODUCT OF FINITE SETS

BY

MARCIN SZYSZKOWSK I (GDAŃSK)

We show that every function f : A × B → A × B, where A and B are
finite sets, is a composition of 5 axial functions.

A function f : A×B → A×B is called vertical if there exists g : A×B →
A such that f(a, b) = (g(a, b), b), and is called horizontal if f = (a, g(a, b))
for some g : A×B → B. Both types of functions are called axial . A function
which is one-to-one and onto is called a permutation. By #A we denote the
number of elements of the set A.

Ehrenfeucht and Grzegorek in [EG] (Th. iv) proved the following

Theorem 1. If A and B are finite sets then every function f : A×B →
A × B can be represented as a composition f = f1 ◦ . . . ◦ f6, where fi are
axial functions and f1 is horizontal.

In that paper the following problem was stated (P910): Is it possible to
decrease the number 6 in the theorem above? The aim of this paper is to
show that we can put 5 in place of 6.

For other results concerning axial functions see [G] and the references
there.

We shall use the following fact from [EG] (Th. iii):

Theorem 2. If #B < ℵ0 (while A may be of arbitrary finite or infinite
cardinality), then every permutation p of A × B can be represented as a
composition p = p1 ◦ p2 ◦ p3, where all pi are axial permutations of A × B
and p1 is horizontal.

Our main result is

Theorem. If A, B are finite sets and f : A× B → A× B is arbitrary ,
then there exist axial functions fi : A×B → A×B (i = 1, . . . , 5) such that
f = f1 ◦ . . . ◦ f5 and f1 is horizontal.
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Lemma 1. If A, B are finite sets and f : A × B → A × B, then there
exist axial functions fi : A×B → A×B (i = 1, 2, 3) such that

∀(a,b)∈A×B #(f1f2f3)
−1(a, b) = #f−1(a, b)

and f1 is a horizontal permutation.

We can rewrite Lemma 1 in another form.

Lemma 2. Let {nab} be a set of natural numbers indexed by pairs from
A×B such that ∑

(a,b)∈A×B

nab = #A ·#B.

Then there exist axial functions fi : A×B → A×B (i = 1, 2, 3) such that

∀(a,b)∈A×B #(f1f2f3)−1(a, b) = nab

and f1 is a horizontal permutation.

We start with a few definitions. If M = [mab] is a matrix with elements
indexed by pairs (a, b) ∈ A×B and f : A×B → A×B then f [M ] = [m′

ab]
where m′

ab = mf(a,b). With that approach it does not matter what are the
elements of the matrix, we are dealing only with coordinates. Note that if
f, g : A×B → A×B then f [g[M ]] = (g ◦ f)[M ].

Let X = [(a, b)](a,b)∈A×B (i.e. the element (a, b) stands at the place (a, b))
and let ra = {(a, b) : b ∈ B} be the “ath” row in the matrix X. The matrix
f [X] determines the function f completely, and to prove the lemma we show
that the number of occurrences of the element (a, b) in f3[f2[f1[X]]] is nab

for every (a, b) ∈ A×B.

P r o o f o f L e m m a 2 (induction on #A). For #A = 1 the lemma is
trivial, since in this case every function is axial (horizontal). Assume that

(∗) ∀A,B(#A=n)∀{nab},
∑

nab=#A·#B∃f1,f2,f3 axial functions ∀(a,b)∈A×B

#(f1f2f3)−1(a, b) = nab and f1 is a horizontal permutation.

Let now #A = n + 1. For a ∈ A let wa =
∑

b∈B nab. Clearly
∑

a∈A wa =
#A ·#B = (n + 1)#B. There are a1, a2 ∈ A(a1 6= a2) such that wa1 ≤ #B
and wa2 ≥ #B. Let {b1, . . . , b#B} = B be an ordering such that the
numbers na2bi decrease (weakly).

Let

k = min
{

m :
m∑

i=1

na2bi
+ wa1 ≥ #B

}
, s =

k∑
i=1

na2bi
+ wa1 −#B

(if wa1 = #B then k = 0; note that na2bi > 0 for i ≤ k).
In the row ra1 there exist at least k “null elements”, i.e. elements (a1, b)

such that na1b = 0 (indeed, if there were fewer than k null elements (a1, b)
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then wa1 ≥ #B − (k − 1) and
k−1∑
i=1

na2bi
+ wa1 ≥ k − 1 + #B − (k − 1) ≥ #B,

so k would not be minimal).
Let A′ = A \ {a1}. We define numbers n′ab for (a, b) ∈ A′ ×B by

n′ab =

{ 0 for (a, b) = (a2, bi), 1 ≤ i < k,
s for (a, b) = (a2, bk),
nab otherwise.

It is easy to check that
∑

(a,b)∈A′×B n′ab = #A′ ·#B.
Let us assign to each element (a2, bi) (1 ≤ i ≤ k), in a one-to-one way, a

null element (a1, bli) and define

n′a1b =

 na2bi
for (a1, b) = (a1, bli),

na2bk
− s for (a1, b) = (a1, blk),

na1b for (a1, b) 6= (a1, bli).

Note that
∑

b∈B n′a1b = #B.
From (∗) there exist axial functions f ′1, f ′2, f ′3 from A′×B to A′×B such

that the assertion of the lemma holds and f ′1 is a horizontal permutation.
We now construct functions f1, f2 and f3.
We define f1 as an extension of the permutation f ′1 to A×B. Namely, f1

acts on ra1 so that in f1[X] each element (a1, bli) is in the same column as
(a2, bi), 1 ≤ i ≤ k, and the other elements (a1, b) have arbitrary positions.

f2 is an extension of f ′2 to A×B. In the row ra1 of f1[X] we replace every
null element (a1, bl1) by the element (a2, bi) (they are in the same column).

f2 is defined to act on f1[X] so that the elements (a2, bi), 1 ≤ i ≤ k, are
“copied” to the places where the elements (a1, bli) stand, more precisely: if
the element (a2, bi), 1 ≤ i ≤ k, in the matrix f1[X] stands at place (a2, y)
(and so (a1, bli) stands at place (a1, y)) then f2(a1, y) = (a2, y), f2(a1, y) =
(a1, y) for other elements.

Although in the matrix f ′2[f
′
1[X

′]] there may be no elements (a2, bi),
i ≤ k (n′a2bi

= 0 for i < k), in f2[f1[X]] they have been “saved” by moving
them to the row ra1 .

Finally, we extend f ′3 to the set A × B obtaining f3 as follows: f3 first
permutes the row f1f2[ra1 ] so that (a1, b) stands at place (a1, b) and (a2, bi)
stands at place (a1, bli). Then f3 puts each element standing at place (a1, b)
at n′a1b places (

∑
b∈B n′a1b = #B).

In the matrix f3[f2[f1[X]]] the elements (a2, bi), i < k, are only in the row
ra1 , and they appear at n′a1bli

= na2bi places. The element (a2, bk) appears
at s+(na2bk

−s) places and other elements (a, b) appear at n′ab = nab places.
So the lemma is proved.
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P r o o f o f t h e T h e o r e m. There exists a permutation p such that
p[f3[f2[f1[X]]]] = f [X]. By Theorem 2 we can represent p as p1 ◦ p2 ◦ p3,
where all pi are axial permutations and p1 is horizontal. Thus the function
F3 = f3 ◦ p1 is axial (horizontal) and f1 ◦ f2 ◦ F3 ◦ p2 ◦ p3[X] = f [X].

R e m a r k. We still do not know whether 5 is a minimal number. We
know, however, that number 3 is not enough (a joint result with E. Grze-
gorek). To see this we note an observation:

(A) Let M , N be matrices of the same size. The existence of functions
f1, f2 : A × B → A × B, with f1 vertical and f2 horizontal , such that
f2[f1[M ]] = N is equivalent to the fact that for each row W of N there
exists a selector S from the columns of M such that W ∗ ⊆ S, where W ∗ is
the set of all elements of the row W .

Obviously, we also have:

(B) Let M , N be matrices of the same size. The existence of functions
f1, f2 : A × B → A × B, with f1 horizontal and f2 vertical , such that
f2[f1[M ]] = N is equivalent to the fact that for each column W of N there
exists a selector S from the rows of M such that W ∗ ⊆ S, where W ∗ is the
set of all elements of the column W .

Thus, the 3× 2 matrixA B
A D
A C

 cannot be obtained from

 A B
C D
E F


using three axial functions f1, f2, f3, where f1 is horizontal.

Analogously, the 2× 3 matrix[
A A A
B C D

]
cannot be obtained from

[
A C E
B D F

]
using three axial functions f1, f2, f3, where f1 is vertical.

The m× n matrix (where (m ≥ 5 and n ≥ 4) or (m ≥ 4 and n ≥ 5))

X =



b11 b12 . . . b1,n−2 b1,n−1 b1n

b21 b22 . . . b2,n−2 b2,n−1 b2n

b31 b32 . . . b3,n−2 b3,n−1 b3n

· · · · ·
· · · · ·
· · · · ·

bm1 bm2 . . . bm,n−2 bm,n−1 bmn


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cannot be transformed into

X ′ =



b11 b12 . . . b1,n−2 b1,n−1 b1n

b11 b22 . . . b2,n−2 b2,n−1 b2n

b11 b21 ? ? ? ? b3,n−1 b3n

? ? ? ? ? ? · ·
? ? ? ? ? ? · ·
? ? ? ? ? ? · ·
? ? ? ? ? bm,n−1 bm−1,n−1 bm−1,n

? ? ? ? ? bm,n bm,n bm,n


(where the dots stand for the corresponding entries of X and the stars are
arbitrary) by a function which is a composition of three axial functions.

This is visible if we look at the first three rows of X ′ (it is impossible
to find a horizontal function f such that f [X] would satisfy the condition
from observation (A)), and at the last three columns of X ′ (it is impossible
to find a vertical function f such that f [X] would satisfy the condition from
observation (B)). So neither starting with a horizontal nor with a vertical
function can we obtain the matrix X ′ from the matrix X, using only three
axial functions.

I would like to thank Prof. E. Grzegorek for fruitful discussions.
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