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ON THE WITT RING OF A RELATIVE PROJECTIVE LINE

BY

M. SZYJEWSKI (KATOWICE)

1. Introduction. After Witt the classical algebraic theory of quadratic
forms deals with the Witt ring of Witt classes of symmetric bilinear spaces.
A symmetric bilinear space is a pair (V, β), where V is a finite-dimensional
vector space over a field K of characteristic different from 2 and β : V → V ∧

is a self-dual (β = β∧, or, equivalently, β(u)(v) = β(v)(u) for arbitrary
u, v ∈ V ) isomorphism of V with its dual space V ∧. Factoring out by trivial
in some sense (e.g. for the problem of representability of elements of K by
the quadratic form v 7→ q(v) = β(v)(v)) hyperbolic spaces

(

M ⊕M∧,

[

0 1M

1M∧ 0

])

yields the Witt ring W (K) of the field K, consisting of classes of symmetric
bilinear forms up to hyperbolic direct summands. Addition in it is induced
by the direct sum and multiplication is induced by the tensor product.

This theory has numerous applications in algebraic number theory, the-
ory of algebras, field theory, Galois theory, cohomology theory, algebraic
K-theory and algebraic geometry, and conversely. Extensive bibliography
may be found in [10].

There are several generalizations obtained by changing the main objects:
skew-symmetric bilinear forms, hermitian forms, algebras with involution
and Ranicki formations. On the other hand, there is a natural way to gen-
eralize the notion of a Witt ring: take a ring in place of a field and finitely
generated projective (i.e. locally free) modules in place of vector spaces.
For local rings with 2 invertible the theory is similar to the classical one. In
general, a difficult theory for fields becomes more difficult for, say, hermi-
tian forms over group rings. The Witt ring of a group ring has significant
applications in geometry and topology (e.g. for the group ring Z[π(X)] of
the fundamental group in surgery theory).
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The next step is due to Knebusch [6], [7]: consider schemes in place
of (spectra of) rings and vector bundles (locally free coherent sheaves of
OX -modules) in place of projective modules. Let (X,OX ) be a scheme and
let L be a line bundle over X. From here on we write ± to indicate two pos-
sibilities: “+-symmetric” means simply “symmetric”, while “−-symmetric”
should be read as “skew-symmetric”.

A ±-symmetric L-valued space (V, β) consists of a vector bundle V and
an isomorphism β : V → HomOX

(V,L) = V ∧ ⊗ L such that β∧L = (β∧ ⊗
1L)◦(1⊗µ−1) = ±β, where µ : L∧⊗L → OX is the evaluation isomorphism.

For a subbundle ι : W ֌ V its orthogonal complement W⊥ is a subbun-
dle of V defined as W⊥ = Ker(i∧L ◦ β).

A subbundle W of a bilinear space is said to be totally isotropic or
sublagrangian iff W ⊂ W⊥, and is lagrangian if W = W⊥. Equivalently, a
lagrangian subbundle of a bundle (V, β) is a totally isotropic subbundle of
rank equal to half the rank of V .

A bilinear space (V, β) is metabolic iff it possesses a lagrangian subbundle,
i.e. if there exists an exact sequence

0→W
ι
→ V

ι′◦β
−→W∧L → 0

of vector bundles, where ι′ = ι∧L : HomOX
(V,L) → HomOX

(W,L) is the
restriction to W .

Two ±-symmetric L-valued bilinear spaces (V, β) and (W,γ) areWitt

equivalent iff there exist metabolic ±-symmetric L-valued bilinear spaces
(M,µ) and (N, ν) such that

(V, β)⊕ (M,µ) ∼= (W,γ) ⊕ (N, ν).

The Witt group W±(X,L) of ±-symmetric L-valued bilinear spaces con-
sists of the classes of Witt equivalence of ±- symmetric L-valued bilinear
spaces with direct sum as addition. In the case of the trivial line bundle
L = OX and symmetric forms we write

W (X) = W+(X,OX).

The tensor product induces multiplication on W (X), so W (X) is a ring,
theWitt ring of the scheme X. The Witt ring is a (co)functor: for a mor-
phism f : X → Y of schemes the inverse image functor f∗ induces a ring
homomorphism f∗ : W (Y )→ W (X).

The theory of quadratic forms over schemes is the theory of the functor
W . There are two separate theories, in fact. The global theory relates in
general the properties of Witt rings to the geometry of schemes, e.g. for
divisorial schemes X,
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• there exists a surjective ring homomorphism W (X)→ Z if and only if
there exists a closed point x ∈ X with formally real local ring OX,x,

• otherwise there exists an integer n such that 2n ·W (X) = 0.

([7, Chapt. III.2, Theorems 2 and 3].) Moreover, the global theory describes
W (X) as an abstract ring and as a W (S)-module for various classes of
schemes X/S. For example,

• if 2 is an invertible element in a ring R, then W (An
R) = W (R) (Karoubi

theorem),

• if 2 is an invertible element in a ring R, then W (Pn
R) = W (R) ⊕ I,

where 2n+1In+1 = 0; if in addition R is a regular ring, then In+1 = 0
([7, Chapt. III.7, Theorem 2]),

• if F is a field of characteristic different from 2, then W (Pn
F ) = W (F )

([1, Satz]),

• if X is an elliptic curve over a field F of characteristic different from
2, then W (X) is a W (F )-module with generators corresponding to
elements of order ≤ 2 in Pic(X) ([2]),

• if X is a split projective quadric of even dimension ([12]), or a Grass-
mann variety Gr(2, n) of planes ([13]) over a field F of characteristic
different from 2, then W (X) = W (F )⊕ I with a nonzero ideal I.

The global theory is difficult, and a major part of research is devoted
to the local theory. So we give neither a review of known results from the
Minkowski–Hasse local-global principle to the newest results, nor a complete
list of references. F. Fernández-Carmena paper [3] and Jaworski’s recent
paper [4] are examples of this branch of the theory. In the local theory
various generalizations of the localization sequence

0→W (X)→W (K(X))→
∐

x

W (k(x))

are studied. Such a sequence is exact for regular curves X, and if X is the
spectrum of a Dedekind ring. Limitation of local methods consists in the
fact that complexes with the Witt ring of a scheme as a member, constructed
by means of localization, are exact only for schemes of dimension 1, 2 and
possibly 3. Probably localization complexes fit into a spectral sequence—
Sansuc and Barge constructed such a spectral sequence for affine schemes,
but these results are still unpublished.

Arason proved in 1980 that for a field K with char K 6= 2, the canonical
map W (K) → W (Pn

K) induced by the structure map P
n
K → Spec K is an

isomorphism. The proof depends on a result of Horrocks on representing
bundles as direct sums of line bundles and on properties of the bundles Ωr

of differential forms. In 1991 M. Ojanguren asked if Arason’s theorem may
be generalized to the case of a projective space over a ring. Now there are
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tools to construct an infinite sequence of regular rings R with dim R ≡ 6
(mod 8) such that the canonical map W (R)→W (P1

R) is not surjective.

The idea consists in studying a group E+(X), a subfactor of K0(X),
closely related to W (X) and much easier to compute. The group E+(X)
together with the homomorphism e0 : W (X) → E+(X) and its general-
izations E±(X,L) are introduced in Section 2. The general Theorem 3.1
in Section 3 describes the E-groups of a projective bundle. This descrip-
tion shows the way to construct an element of E+(Pn

R) which is outside the
image of the map E+(Spec R) → E+(Pn

R) and exhibits special properties
of (projective modules over) R that provide the construction. Rings with
the required property are coordinate rings of affine split quadrics (Section
5), and computations are possible in the framework of Swan’s K-theory of
quadrics (Section 4). Thus commutativity of the diagram

W (X) E(X)

W (Y ) E(Y )

e0 //

e0 //

f∗

OO

f∗

OO

for every map f : X → Y shows that it is enough to find a bilinear space
(M, β) with a prescribed value of e0(M, β) to give a negative answer to
Ojanguren’s question. This is done for the projective line in Section 6 by
means of the theory of Ranicki formations developed by W. Pardon for
rings [8] and by F. Fernández-Carmena for schemes [3]. A theorem due to
Fernández-Carmena provides a construction of a symmetric bilinear form
over a scheme for a given formation over a closed subscheme of codimension
one.

2. E-groups and the invariant e0. Any line bundle L on a scheme
X defines an exact involutive contravariant functor ∧L on the category of
vector bundles on X,

M 7→M∧L = M∧ ⊗ L, ϕ∧L = ϕ∧ ⊗ 1L for ϕ : M → N.

This involution induces the analogous involution on the Q-construction.
Since its geometric realization interchanges paths 0 և 0 ֌ A and 0 և

A ֌ A which form a loop corresponding to the object A, there is an in-
duced involutive automorphism ∧L of K-groups (homotopy groups of the
Q-construction) which acts on K0(X) as [M ] 7→ −[M∧L]. Nevertheless, we
define

[M ]∧L = [M∧L].

We are interested in the Tate cohomology of the two-element group {1,∧L }
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with values in K0(X). Denote by C(X,L) the complete resolution

(2.1) C(X,L) : . . .
1−∧L

−→ K0(X)
1+∧L

−→ K0(X)
1−∧L

−→ K0(X)
1−∧L

−→ . . .

Definition 2.1.

E+(X,L) = Ker(1− ∧L)/ Im(1 + ∧L),

E−(X,L) = Ker(1 + ∧L)/ Im(1− ∧L).

We will refer to E-groups meaning the collection of E+(X,L) and
E−(X,L) for all line bundles L. Types of E-groups of a scheme X cor-
respond to elements of the factor group Pic(X)/2Pic(X).

Proposition 2.1. For every line bundle K there are isomorphisms

E+(X,L ⊗K⊗2) ∼= E+(X,L),

E−(X,L ⊗K⊗2) ∼= E−(X,L).

P r o o f. Tensoring with K induces an isomorphism of complexes C(X,L)
[K]·
−→ C(X,L ⊗K⊗2):

. . . K0(X) K0(X) . . .

. . . K0(X) K0(X) . . .

1−α // 1+α // 1−α //

1−β // 1+β //

[K]·

OO

1−β //

[K]·

OO

where α(P) = L ⊗K⊗2 ⊗ P∧ and β(P) = L ⊗ P∧.

Definition 2.2. The forgetful functor induces a group homomorphism

e0
L : W+(X,L) ⊕W−(X,L)→ E+(X,L),

e0
L(P, β) = [P] (mod Im(1 + ∧L)).

The inverse image functor f∗ for a morphism f : Y → X of schemes
induces a homomorphism f∗ : E(X,L) → E(Y, f∗L). As an example we
prove the homotopy property of E-groups.

Proposition 2.2 (Homotopy property). If f : X → Y is a flat mor-

phism of regular noetherian separated schemes whose fibres are affine spaces,
then

E+(Y,L) ∼= E+(X, f∗L) and E−(Y,L) ∼= E−(X, f∗L).

P r o o f. By the homotopy property of K-groups the map f∗ : K0(Y )→
K0(X) induced by the inverse image functor f∗ provides an isomorphism of



58 M. SZYJEWSKI

complexes

. . . K0(X) K0(X) . . .

. . . K0(Y ) K0(Y ) . . .

1−α // 1+α // 1−α //

1−β // 1+β //

f∗

OO

1−β //

f∗

OO

where α = ∧f∗
L and β = ∧L.

3. E-groups of a projective bundle

Theorem 3.1 (Projective bundle theorem). Let E be a vector bundle

on a scheme S, rank E = n, and X = P(E) = Proj(S(E∧)) be the associated

projective bundle. Let OX(−1) be the tautological line bundle on X and

f : X → S the structure map. Let L be an arbitrary line bundle on S.

(i) If n = 2k + 2 is even, then there is an exact hexagon

E+(X, f∗L)

E+(S,L) E−(S,
∧n E∧ ⊗ L)

E+(S,
∧n E∧ ⊗ L) E−(S,L)

E+(X, f∗L)

RRRRRRRRRRRR((

f∗llllllllllll 66

[
∧k+1

E]·

��
[
∧k+1

E]·

OO

f∗

vvllllllllllllhhRRRRRRRRRRRR
and E±(X, f∗L ⊗OX(−1)) = 0.

(ii) If n = 2k + 1 is odd , then E±(X, f∗L) ∼= E±(S,L), and

E±(X, f∗L⊗OX(−1)) ∼= E±(S,L ⊗
∧n E∧).

P r o o f. We have

K0(X) ∼= (K0(S))[t]
/

(

n
∑

i=0

(−1)i[
∧i E ]ti

)

where t corresponds to ξ = OX(−1) (see [9], Sect. 8, 1.5) and ξ∧ = ξ−1.
Now K0(X) is a free K0(S)-module with a free base OX(i) = ξ−i for i =
[n/2]− 1, . . . , [n/2] − n, where [ ] means integer part. There is an identity

n−k
∑

i=−k

(−1)i+k[f∗
∧i+k E ]ξi = 0
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in K0(X) for every integer k. We shall alter the base of K0(X) to obtain a
triangular matrix of the involution under consideration.
• In the case of even n = 2k +2 and forms with values in the line bundle

f∗L ⊗ OX(−1), the initial base ξi, i = −k, 1 − k, . . . ,−1, 0, 1, . . . , k, k + 1,
may be transformed into ξi+1 + ξ−i, ξ−i for i = 0, 1, . . . , k. If A denotes the
span (with coefficients in K0(S)) of all ξi+1 + ξ−i for i = 0, 1, . . . , k, then
the exact sequence

0→ A
ǫ
→ K0(X)

κ
→ K0(X)/A→ 0,

in view of the formulas

(f∗(α)(ξi+1 + ξ−i))∧ · [f∗L] · ξ = f∗(α∧ · [L])(ξi+1 + ξ−i),

(f∗(α)ξ−i)∧ · [f∗L] · ξ = f∗(α∧ · [L])(ξi+1 + ξ−i)− f∗(α∧ · [L])ξ−i,

for all α ∈ K0(S), yields an exact Tate cohomology sequence

. . .
∧L
→ E+(S,L)k+1 ε

→ E+(X, f∗L ⊗OX(−1))
κ
→ E−(S,L)k+1

∧L
→ E−(S,L)k+1 ε

→ E−(X, f∗L ⊗OX(−1))
κ
→ E+(S,L)k+1 ∧L

→ E+(S,L)k+1 ε
→ . . .

The connecting homomorphisms are induced by the involution ∧L acting
componentwise, and are isomorphisms. Hence E±(X, f∗L ⊗OX(−1)) = 0.
• In the case of odd n = 2k + 1 and a line bundle of the form f∗L, the

elements 1 = ξ0, ξi + ξ−i, ξi for i = 1, . . . , k form another base of K0(X). If
we let

A := span (with coefficients in K0(S)) of ξi + ξ−i for i = 1, . . . , k,

B := span of ξi for i = 1, . . . , k,

C := span of 1,

then K0(X) = A⊕B ⊕ C, and for any α in K0(S) we have the formulas

(f∗(α)(ξi + ξ−i))∧ · [f∗L] = (f∗(α∧ · [L])(ξi + ξ−i),

(f∗(α)ξi)∧ · [f∗L] = −f∗(α∧ · [L])ξi + f∗(α∧ · [L])(ξi + ξ−i).

Therefore regarding A ⊂ A ⊕ B ⊂ A ⊕ B ⊕ C as a filtration of the com-
plex C(X,L) shows that f∗ induces an isomorphism on Tate cohomology:
E±(X, f∗L) ∼= E±(S,L).
• In the case of odd n = 2k + 1 and a line bundle of the form f∗L ⊗

OX(−1), the elements ξ−k, ξi + ξ1−i, ξi for i = 1, . . . , k form another base
of K0(X). If we let

A := span (with coefficients in K0(S)) of ξi + ξ1−i for i = 1, . . . , k,

B := span of ξi for i = 1, . . . , k,

C := span of ξ−k,
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then K0(X) = A⊕B ⊕ C, and for any α in K0(S) we have the formulas

(f∗(α)(ξi + ξ1−i))∧ · [f∗L]ξ = (f∗(α∧ · [L])(ξi + ξ1−i),

(f∗(α)ξi)∧ · [f∗L]ξ = −f∗(α∧ · [L])ξi + f∗(α∧ · [L])(ξi + ξ1−i),

(f∗(α)ξ−k)∧ · [f∗L] · ξ = f∗(α∧ · [L])ξk+1

= f∗(a∧ · [L])

k
∑

i=−k

(−1)i+k[f∗
∧k+1−i E∧] · ξi

= f∗(a∧ · [L])
(

[f∗
∧n E∧] · ξ−k +

k
∑

i=1−k

(−1)i+k[f∗
∧k+1−i E∧] · ξi

)

= f∗(a∧ · [L])
(

[f∗
∧n E∧] · ξ−k +

0
∑

i=1−k

(−1)i+k[f∗
∧k+1−i E∧] · ξi

)

+ f∗(a∧ · [L])
(

k
∑

i=1

(−1)i+k[f∗
∧k+1−i E∧] · ξi

)

= f∗(a∧ · [L])
(

[f∗
∧n E∧] · ξ−k +

k−1
∑

i=0

(−1)k−i[f∗
∧k+1+i E∧] · ξ−i

)

+ f∗(a∧ · [L])
(

k
∑

i=1

(−1)i+k[f∗
∧k+1−i E∧] · ξi

)

= f∗(a∧ · [L])
(

[f∗
∧n E∧] · ξ−k +

k
∑

i=1

(−1)k−i−1[f∗
∧k+i E∧] · (ξ1−i + ξi)

)

+ f∗(a∧ · [L])
(

k
∑

i=1

(−1)i+k([f∗
∧k+1−i E∧] + [f∗

∧k+i E∧]) · ξi
)

.

Thus in the E2 part of the spectral sequence associated with the filtration
A ⊂ A ⊕ B ⊂ A ⊕ B ⊕ C = K0(X) of the complex C(X, f∗L ⊗ OX(−1))
the differentials d : Ep,1

2 = (E(−1)p

(S,L))k → (E(−1)p

(S,L))k = Ep+2,0
2

are isomorphisms induced by ∧L. Therefore E(−1)p

(X, f∗L ⊗ OX(−1)) =
Ep−2,2

2
∼= E(−1)p

(S,L ⊗
∧n E∧).

• In the most complicated case n = 2k + 2 and a line bundle of the
type f∗L, the initial base ξi, i = −k, . . . , k + 1, should be replaced by
1, ξk+1, ξi + ξ−i, ξi for i = 1, . . . , k.

The formulas

(f∗α(ξi + ξ−i))∧ · [f∗L] = (f∗α∧L)(ξi + ξ−i),

(f∗αξi)∧ · [f∗L] = (f∗α∧L)ξ−i = −(f∗α∧L)ξi + (f∗α∧L)(ξi + ξ−i),
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(f∗αξk+1)∧ · [f∗L]

= (f∗α∧L)ξ−k−1 = f∗α∧L

k+1
∑

i=−k

(−1)k+i[f∗
∧k+1+i E ] · ξi

= f∗α∧L
(

− [f∗
∧n E ] · ξk+1 +

k
∑

i=1

(−1)k−i[f∗
∧k+1−i E ] · ξ−i

)

+ f∗α∧L
(

k
∑

i=1

(−1)k+i[f∗
∧k+1+i E ] · ξi + (−1)k[f∗

∧k+1 E ]
)

= − f∗α∧L[f∗
∧n E ] · ξk+1

+ f∗α∧L

k
∑

i=1

(−1)k−i[f∗
∧k+1−i E ] · (ξi + ξ−i)

+ f∗α∧L

k
∑

i=1

(−1)k+i([f∗
∧k+1+i E ]− [f∗

∧k+1−i E ]) · ξi

+ (−1)kf∗α∧L[f∗
∧k+1 E ]

allow us to define a filtration A ⊂ A⊕B ⊂ A⊕B ⊕C ⊂ A⊕B ⊕C ⊕D =
K0(X) of the complex C(X, f∗L) where

A := span of ξi + ξ−i for i = 1, . . . , k,

B := span of ξi for i = 1, . . . , k,

C := f∗K0(S) · 1,

D := f∗K0(S) · ξk+1.

In the E2-term of the associated spectral sequence the differentials d·,12 :
E·,1

2 = (E±(S,L))k → (E±(S,L))k = E·+2,0
2 are the isomorphisms induced

by ∧L, while the differentials d·,32 : E·,3
2 = E±(S,L ⊗

∧n E) → E±(S,L) =

E·+2,2
2 are induced by multiplication by [

∧k+1 E ], hence the theorem fol-
lows.

If the bundle E in the theorem is trivial, then [
∧k+1 E ] is in the image of

1 + ∧L, so the maps [
∧k+1 E ]· in the hexagon of the theorem are zero maps.

In this case a more detailed description of the E-groups of a projective space
may be given.

Proposition 3.2. For every scheme S let X = P
d
S and let p1 : X → P

d

and p2 : X → S be the projections. Then for every line bundle L on S and

every line bundle M on P
d,
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E+(X,M⊠ L) = E+(Pd,M) ⊠ E+(S,L)⊕ E−(Pd,M) ⊠ E−(S,L),

E−(X,M⊠ L) = E+(Pd,M) ⊠ E−(S,L)⊕ E−(Pd,M) ⊠ E+(S,L),

where ⊠ is induced by the operation F ⊠ G = p∗1(F) ⊗ p∗2(G).

P r o o f. By the projective bundle theorem for K-theory the maps p∗1, p∗2
yield an identification K0(X) = K0(P

d)⊗K0(S). Define

A = Ker(K0(P
d)

1−∧M

−→ K0(P
d)),

B = (1− ∧M)K0(P
d),

K = p∗1M⊗ p∗2L.

The complex (2.1)

. . .→ K0(X)
1+∧K

→ K0(X)
1−∧K

→ K0(X)
1+∧K

−→ K0(X)→ . . .

for X = P
d × S fits into the short exact sequence of complexes

...
...

...

A⊗K0(S) K0(X) B ⊗K0(S)

A⊗K0(S) K0(X) B ⊗K0(S)

A⊗K0(S) K0(X) B ⊗K0(S)

...
...

...

// //

OO

(1−∧M)⊗1// //

OO

1−∧K

OO

// //

1−∧K

OO

(1−∧M)⊗1// //

1−∧K

OO

1−∧K

OO

// //

1−∧K

OO

(1−∧M)⊗1// //

1−∧K

OO

1−∧K

OO

OO OO OO

Note that 1±∧K restricted to A ⊗ K0(S) coincides with 1 ⊗ (1±∧L) and
induces 1⊗(1∓∧L) on B⊗K0(S). Therefore the exact hexagon in homology
breaks into short split exact sequences

0→ E+(Pd,M)⊗ E−(S,L)→ E−(X,K)

→ E−(Pd,M)⊗ E+(S,L)→ 0,

0→ E+(Pd,M)⊗ E+(S,L)→ E+(X,K)

→ E−(Pd,M)⊗ E−(S,L)→ 0.

To identify explicit generators of groups under consideration, for the
absolute projective space Y = P

d, we define
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(3.1)
1 = [OY ], the unit element in K0(Y ),

H = 1− [OY (−1)], the class of a hyperplane section in K0(Y ).

We summarize some technicalities as follows:

Lemma 3.3. If Y = Pd, then

(i) Hd+1 = 0;

(ii) [OY (1)] = (1−H)−1 =

d
∑

i=0

Hi in K0(Y ) (here H0 = 1);

(iii) H∧ =
−H

1−H
= −

d
∑

i=1

Hi;

(iv) (Hk)∧ =

(

−H

1−H

)k

= (−1)kHk
d−k
∑

i=0

(

k + i− 1

i

)

Hi;

(v) (Hd)∧ = (−1)dHd is the class of a rational point.

P r o o f. H = 1− [OY (−1)], so [OY (−1)] = 1−H, [OY (1)] = (1−H)−1,
H being nilpotent. Thus H∧ = 1 − [OY (1)] = ([OY (−1)] − 1)[OY (1)] =
−H(1−H)−1 and (Hk)∧ = (1−H)−k(−H)k.

Corollary 3.4. If Y = P
d, the projective space, then

E+(Y ) = E+(Y,OY ) = Z/2Z[OY ],

E−(Y ) = E−(Y,OY ) =

{

0 for even d,
Z/2Z[Hd] for odd d,

E+(Y,OY (−1)) =

{

Z/2Z[Hd] for even d,
0 for odd d,

E−(Y,OY (−1)) = 0.

4. Swan K-theory of projective quadrics. To compute the E-groups
of affine quadrics we need some facts on dualization of vector bundles on
projective quadrics. All the information needed is known, since indecom-
posable components of the Swan sheaf correspond to spinor representations.
Nevertheless, we give here complete proofs of the facts needed. We shall
apply results of [11] in the simplest possible case of a split quadric: X is
a projective quadric hypersurface over a field F , char F 6= 2, defined by
the quadratic form of maximal index. Consider a vector space V with base
v0, v1, . . . , vd+1 over a field F with char F 6= 2. Let z0, z1, . . . , zd+1 be the
dual base of V ∧ and let q be the quadratic form

q =

d+1
∑

i=0

(−1)iz2
i .
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Moreover, let ei = 1
2 (v2i − v2i+1) and fi = 1

2 (v2i + v2i+1) for all possible
values of i. Thus if d is even, d = 2m, then e0, f0, e1, f1, . . . , em, fm form a
base of V with the dual base x0, y0, x1, y1, . . . , xm, ym and

q =

m
∑

i=0

xiyi.

If d is odd, d = 2m + 1, then e0, f0, e1, f1, . . . , em, fm, vd+1 form a base of V
with the dual base x0, y0, x1, y1, . . . , xm, ym, zd+1 and

q =
m

∑

i=0

xiyi + z2
d+1.

We shall prove several properties of the dualization functor on the cat-
egory of vector bundles on the d-dimensional projective quadric X defined
by the equation q = 0 in P

d+1
F , i.e. for

X = Proj S(V ∧)/(q) ∼= ProjF [z0, z1, . . . , zd+1]/(q),

to compute the E-groups of an affine part of this quadric in the next section.
In the case of odd d = 2m + 1 the even part C0 = C0(q) of the Clifford

algebra C(q) is isomorphic to the matrix algebra M2N (F ), where N = 2m.
In particular, Kp(C0) ∼= Kp(F ). In the case of even d = 2m, the algebra
C0 has the centre F ⊕ Fδ, where d = v0 · v1 · . . . · vd+1 and δ2 = 1. Thus
1
2 (1 + δ) and 1

2 (1− δ) are orthogonal central idempotents of C0, so

C0 = 1
2 (1 + δ)C0 ⊕

1
2 (1− δ)C0,

where each direct summand is isomorphic to the matrix algebra MN (F ). In
fact, in this case there exists an isomorphism C(q) ∼= M2N (F ) of algebras

which identifies C0 with the subalgebra of block-diagonal matrices
[

∗ 0

0 ∗

]

and

maps 1
2 (1+ δ)C0 onto the set of matrices of the form

[

∗ 0

0 0

]

, and 1
2 (1− δ)C0

onto the set of matrices of the form
[

0 0

0 ∗

]

. This observation provides some

motivation for what follows. Such a matrix representation of a Clifford
algebra may be found in [11], Lemma 4.3. A more “classical” construction,
based upon minimal orthogonal idempotents, may be easily deduced from
the proof of Proposition 5.6 below.

For even d = 2m consider the principal antiautomorphism ℑ : C0 → C0

given by

ℑ(w1 · w2 · . . . · wk) = (−1)kwk · wk−1 · . . . · w1

for w1, w2, . . . , wk ∈ V . Note that

ℑ(δ) = (−1)m+1δ.

Moreover, for every anisotropic vector w ∈ V the reflection α 7→ −wαw−1

in V induces an automorphism ̺w of C0, which interchanges the δ with its
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opposite for even d:

̺w(δ) = (−1)d−1δ.

Regarding subscripts i mod 2 define

Pi = (1 + (−1)iδ)C0 for even d.

Lemma 4.1. For even d = 2m,

(i) the involution ℑ of the algebra C0 provides an identification of the

left C0-module P∧
i = HomF (Pi, F ) with the right C0-module Pi+m+1;

(ii) for any anisotropic vector w ∈ V the reflection ̺w interchanges Pi’s:
̺w(Pi) = Pi+1.

Note that as left C0-modules P0 and P1 are not isomorphic.
Recall the basic facts and notation of [11]. Denote by C1 the odd part of

the Clifford algebra C(q). We shall use mod2 subscripts in Ci. Recall the

definition of the Swan bundle U . Put ϕ =
∑d+1

i=0 zivi ∈ Γ (X,OX ⊗ V ). The
complex

(4.1) . . .
ϕ·
→ OX(−n)⊗Cn+d+1

ϕ·
→ OX(1− n)⊗Cn+d

ϕ·
→ OX(2− n)⊗ Cn+d−1

ϕ·
→ . . .

is exact and locally splits ([11], Prop. 8.2(a)).

Definition 4.1.

Un = Coker(OX(−n− 2)⊗ Cn+d+3
ϕ·
→ OX(−n− 1)⊗ Cn+d+2),

U = Ud−1.

Since the complex (4.1) is (up to twist) periodic with period two, it
follows that

Un+2 = Un(−2).

Consider the exact sequences OX(−n − 2) ⊗ Cn+d+3
ϕ·
→ OX(−n − 1) ⊗

Cn+d+2 → Un → 0 for two consecutive values of n; twist the first one
by 1. For any anisotropic vector w ∈ V the isomorphism given by right
multiplication by 1⊗ w fits into the commutative diagram

OX(a)⊗ Cn+d+4 OX(a + 1)⊗ Cn+d+3 Un+1(1) 0

OX(a)⊗ Cn+d+3 OX(a + 1)⊗ Cn+d+2 Un 0

ϕ· //

·1⊗w

��

//

·1⊗w

��

//

ϕ· // // //

where a = −n− 2. Thus we have proved the following lemma:

Lemma 4.2. Un+1
∼= Un(−1) and Un

∼= U0(−n) for every integer n.

There is an exact sequence

(4.2) 0→ U0
ϕ·
→ OX ⊗C0 → U−1 → 0
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where the isomorphism ·1⊗w was used to replace OX ⊗C1 by OX ⊗C0 for
even d.

Lemma 4.3. EndX(Un) ∼= C0 acts on Un from the right.

P r o o f. [11], Lemma 8.7.

The main Theorem 9.1 of [11] states that for every regular ring R and
every generalized Azumaya algebra A over R and for each projective quadric
X of dimension d over R, defined by a nonsingular quadratic form q, the
family of functors

ui(M) = M ⊗OX(−i) for i = 0, 1, . . . , d− 1,

u(M) = U ⊗C0(q) M

defines an isomorphism

(u0, u1, . . . , ud−1, u) : K∗(A)d ⊕K∗(A⊗ C0(q))→ K∗(X).

An important argument is that for a large enough class of sheaves (namely
regular sheaves) F there exists a truncated canonical resolution

TCan.(F) : 0→ U ⊗C0(q) T (F)→ OX(1− d)⊗ Td−1(F)→ . . .

. . .→ OX ⊗ T0(F)→ F → 0

([11], Section 6). In the special case when R = A is a field F with char F 6=
2, Ti(F) are vector spaces over F , so OX(−i) ⊗ Ti(F) is a direct sum of
dim Ti(F) copies of OX(−i). Thus in K0(X) we have the equality

[F ] = dimT0(F)[OX ]− dim T1(F)[OX (−1)] + . . .

+ (−1)d−1 dim Td−1(F)[OX (1− d)] + (−1)d[U ⊗C0(q) T (F)].

We are now ready to compute U∧
n .

Lemma 4.4. U∧
n
∼= Un(2n + 1), in particular U∧ ∼= U(2d− 1).

P r o o f. We have chosen a base v0, v1, . . . , vd+1 of V above. The set of
naturally ordered products of an even number of vi’s forms a base of C0.
Define a quadratic form Q on C0 as follows: let distinct base products be
orthogonal to each other and

Q(vi1 · . . . · vik
) = q(vi1) · . . . · q(vik

).

The form Q is nonsingular and defines (by scalar extension) a nonsingular
symmetric bilinear form on OX ⊗ C0. Since (q(vi))

2 = 1, so that

Q(vi1 · . . . · vil
· . . . · vik

) = Q(vi1 · . . . · vil
)Q(vil+1

· . . . · vik
),

direct computation shows that Im(OX(−1)⊗ C0
ϕ·
→ OX ⊗ C0) = ϕU0

∼= U0

is a totally isotropic subspace of OX ⊗ C0. Therefore

U0
∼= ϕU0 = (ϕU0)

⊥ ∼= ((OX ⊗ C0)/(ϕU0))
∧ ∼= U∧

−1.
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Thus

U∧
0
∼= U−1

∼= U0(1)

and, in general

U∧
n
∼= (U0(−n))∧ ∼= U∧

0 (n) ∼= U0(n + 1) ∼= Un(2n + 1).

Corollary 4.5. (i) [U∧] = [U(2d − 1)] and [U(d − 1)] + [U(d − 1)]∧ =
2d + 1 in K0(X);

(ii) rankU = 1
2 dim C0 = 2d.

In the case of even d = 2m the algebra EndX(U) = C0 splits into the
direct product of the algebras Pi defined above: C0 = P0 × P1.

Definition 4.2. For even d, set

U ′
n = Un ⊗C0

P0, U ′ = U ⊗C0
P0,

U ′′
n = Un ⊗C0

P1, U ′′ = U ⊗C0
P1.

Note that Un = U ′
n ⊕ U

′′
n and U = U ′ ⊕ U ′′. U ′

0 and U ′′
0 correspond to

spinor representations and we shall reproduce here a standard dualization
argument (compare [5], Sect. 4.3). In the case of even d = 2m another
property of ϕ and the quadratic form Q introduced in the proof of Lemma 4.4
may be verified by direct computation:

Lemma 4.6. For even d = 2m,

(i) if m is even, then Pi = (1 ± δ)C0 are orthogonal to each other ,
hence self-dual ;

(ii) if m is odd , then Pi = (1± δ)C0 are totally isotropic, hence dual to

each other ;
(iii) ϕ(1 ± δ) = (1∓ δ)ϕ.

Corollary 4.7. For even d = 2m,

(i) U ′∧ ∼= U ′(2d − 1) and U ′′∧ ∼= U ′′(2d− 1) for even m;
(ii) U ′∧ ∼= U ′′(2d − 1) and U ′′∧ ∼= U ′(2d− 1) for odd m;
(iii) EndX(U ′) ∼= EndX(U ′′) ∼= M2m(F );
(iv) the exact sequence (4.2) splits into two exact parts

0→ U ′
0

ϕ·
→ OX ⊗ P0 → U

′′
0 (1)→ 0,

0→ U ′′
0

ϕ·
→ OX ⊗ P1 → U

′
0(1)→ 0.

The standard way to determine indecomposable components is tensoring
with a simple left module over an appropriate endomorphism algebra. We
will use superscripts as a notation for direct sums of identical objects.

Definition 4.3. (i) For odd d = 2m + 1, set

V = U ⊗C0
F 2N .
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(ii) For even d = 2m, set

V0 = U ′ ⊗MN (F ) FN , V1 = U ′′ ⊗MN (F ) FN

where N = 2m.

For convenience we will use mod2 subscripts in Vi. Since MN (F ) =
(FN )N as left MN (F )-modules, indecomposable components inherit the
properties of the Swan bundle. We have

Proposition 4.8. (a) For odd d = 2m + 1 we have:

(i) U = V2N , where N = 2m;
(ii) V∧ = V(2d − 1);
(iii) EndX(V) ∼= F and rankV = 2m.

(b) For even d = 2m we have:

(i) U ′ = VN
0 and U ′′ = V N

1 , where N = 2m;
(ii) V∧

i = Vi+m(2d− 1);
(iii) EndX(Vi) ∼= F and rank Vi = 2m−1,
(iv) [Vi(d− 1)] + [Vi+1(d)] = 2m in K0(X).

In particular, there is no global morphism Vi → Vi+1, since

EndX(U) = EndX(VN
0 ⊕ V

N
1 ) = MN (EndX(V0))×MN (EndX(V1)).

Example 4.8.1. The split projective quadric X = ProjS,

S = F [x0, y0, x1, y1, . . . , xm, ym]
/

(

m
∑

i=0

xiyi

)

,

of dimension d = 2m contains two projective spaces of dimension m:

• Y = ProjF [y0, y1, . . . , ym] defined by x0 = x1 = . . . = xm = 0,

and

• Z = ProjF [x0, y1, . . . , ym] defined by y0 = x1 = . . . = xm = 0.

These subvarieties are not rationally equivalent. It may be shown that their
structural sheaves define two distinct elements of K ′

0(X) = K0(X):

d−1
∑

i=0

( m
∑

p=0

(

m

p

))

(−1)i[OX(−i)] + [V0]

and
d−1
∑

i=0

( m
∑

p=0

(

m

p

))

(−1)i[OX(−i)] + [V1]

(see [12], Theorem 4.1). If, in particular, d = 2, then X is isomorphic to the
product of two projective lines, and Y and Z are generatrices.
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5. E-groups of affine quadrics. The following theorem due to Swan
[11] (Theorem 10.5, Corollary 10.7) describes the K-theory of a (relative)
affine quadric.

Theorem 5.1. Let R be a regular ring , q ∼= 〈−1〉 ⊕ q′ a nonsingular

quadratic form over R defined on the projective R-module M = M ′ ⊕ R, S
the coordinate ring of the affine quadric q′ = 1 over R, S = S(M∧)/(q′−1),
and A a generalized Azumaya algebra over R. Let , moreover ,

• g : K∗(A⊗R C0(q
′))→ K∗(A) be the norm map,

• h : K∗(A⊗R C0(q
′))→ K∗(A⊗R C0(q)) be the scalar extension map,

• r : K∗(A)→ K∗(A⊗R S) be the scalar extension map, and

• s : K∗(A ⊗R C0(q)) → K∗(A ⊗R S) be the map induced by the exact

functor U(SpecS)⊗C0(q) −.

Then the sequence

. . .→ Ki+1(A⊗R S)
∂
→ Ki(A⊗R C0(q

′))

α
→ Ki(A)⊕Ki(A⊗R C0(q))

[r,s]
→ Ki(A⊗R S)

∂
→ . . . ,

where α =
[

−g
h

]

, is exact.

Let X be the affine quadric SpecS.

Proposition 5.2. Under the assumptions of Theorem 5.1, if in addition

A = R = F is a field of characteristic different from 2, d = 2m is even and

q =
∑d+1

i=0 (−1)iz2
i , q′ =

∑d
i=0(−1)iz2

i , then

• g : K0(C0(q
′))→ K0(F ) is the map 2m· : Z→ Z,

• h : K0(C0(q
′)) → K0(C0(q)) = K0(P0) ⊕K0(P1) is the diagonal map

Z→ Z⊕ Z,
• r : K0(F )→ K0(S) maps the generator [F 1] onto the generator [S1],
• s : K0(C0(q)) = K0(P0) ⊕K0(P1) → K0(S) maps the generators

[

1
0

]

,
[

0
1

]

onto [V0], [V1] respectively , where Vi = Vi(SpecS) for i = 0, 1.

P r o o f. This is a direct computation on the level of functors. The (re-
duced) norm map g is induced by the forgetful functor from C0(q

′)-modules
to F -modules, which maps the generator of K0(C0(q

′)) (the class of the sim-
ple C0(q

′)-module) onto the class of the same module. The scalar extension
map h is induced by the scalar extension functor, which in turn produces
identity if composed with projections onto Pi’s. The map r is induced by the
scalar extension functor S ⊗F −. The definition of s is in fact the definition
of V0, V1.

Proposition 5.3. Under the assumptions of Proposition 5.2, K0(S) ∼=
Z⊕Z has generators 1 = [S1], [V0], [V1] subject to the defining identity [V0]+
[V1] = 2m[S1].
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P r o o f. This is an immediate consequence of Proposition 5.2.

Proposition 5.4. Under the assumptions of Proposition 5.2,

(i) if m is even, then

E+(X) = E+(S) = Z/2Z[S1]⊕ Z/2Z(2m−1[S1]− [V0]),

E−(X) = E−(S) = 0;

(ii) if m is odd , then

E+(X) = E+(S) = Z/2Z[S1],

E−(X) = E−(S) = Z/2Z(2m−1[S1]− [V0]).

P r o o f. By Proposition 4.8(b)(ii),(iv), the involution ∧ on K0(X) has
the matrix

[

1 0
0 (−1)m

]

with respect to the base [S1], 2m−1[S1]− [V0] of the group K0(X).

Example 5.4.1. For d = 4 we consider the affine quadric defined by the
equation x0y0 + x1y1 + z2 = 1. The sequence

0← F [y0, y1]← S
α
← S3 β

← S4 γ
← S4 ← V0 ← 0,

where

α = [1− z,−x1, x0],

β =





1 + z x1 −x0 0
y1 1− z 0 x0

−y0 0 1− z x1



 ,

γ =
1

2







1− z −x1 x0 0
−y1 1 + z 0 −x0

y0 0 1 + z −x1

0 −y0 −y1 1− z






,

is exact and is the sequence of sections over the complement to a hyperplane
section of the truncated canonical resolution for the structural sheaf of Y
from Example 4.8.1. The map γ is chosen to be a projection of S4 onto a
direct summand. Hence V0 is a submodule of S4 generated by columns of
the matrix

1− γ =
1

2







1 + z x1 −x0 0
y1 1− z 0 x0

−y0 0 1− z x1

0 y0 y1 1 + z






.
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Note that m = 2, so E−(S) is trivial. In fact, rankV0 = 2, so the module
V0 carries the canonical nonsingular skew-symmetric bilinear form, defined
by the exterior multiplication V0 × V0 →

∧2
V0
∼= S1.

Proposition 5.5. Under the assumptions of Proposition 5.2, in the

ring K0(S) = Z[S1]⊕ Z(2m−1[S1]− [V0]) we have the equality

(2m−1[S1]− [V0])
2 = 0.

P r o o f. The rank map K0(S)→ Z is a ring homomorphism with kernel
Z(2m−1[S1]− [V0]). Moreover, (2m−1[S1]− [V0])

∧ = −(2m−1[S1]− [V0]), so
(2m−1[S1]− [V0])

2 is a fixed point of ∧, hence it is a multiple of [S1], and it
is an element of rank zero, hence it is a multiple of 2m−1[S1]− [V0].

It will be crucial for the construction in the next section that the iden-
tity [V0] + [V1] = 2m[S1] arises from a direct decomposition with special
properties.

Proposition 5.6. Under the assumptions of Proposition 5.2,

(a) SN ∼= V0 ⊕ V1;

(b) if m ≡ 2 mod 4, then there exists a direct decomposition SN = SN/2⊕
SN/2∧ such that for the associated symmetric hyperbolic form χ on SN the

direct summands V0, V1 are totally isotropic.

P r o o f. In the ring S the last variable zd+1 is set to be 1:

zd+1 = 1.

More precisely, the affine coordinates zi are obtained as zi/zd+1 from the
homogoneous coordinates zi. Therefore the multiplier ϕ ∈ S ⊗F V is equal

to
∑d

i=0 zi⊗vi+vd+1. The exact sequence (4.1) restricted to SpecS reduces
to the following exact sequence of free S-modules:

. . .
ϕ·
→ S ⊗F Cn+d+1

ϕ·
→ S ⊗F Cn+d

ϕ·
→ S ⊗F Cn+d−1

ϕ·
→ . . .

There is one projective S-module U = Γ (SpecS,U−1) such that

U ∼= Coker(S ⊗F C0
ϕ·
→ S ⊗F C1) ∼= Coker(S ⊗F C1

ϕ·
→ S ⊗F C0)

instead of the sequence Un. Moreover, U ′ = Γ (SpecS,U ′
−1) = U ⊗C0

P0 and
U ′′ = Γ (SpecS,U ′′

−1) = U ⊗C0
P1. In addition to the central idempotents

1
2 (1 ± δ), consider a family of minimal orthogonal idempotents of the even
Clifford algebra C0 defined for sequences I = (i0, i1, . . . , im) of ±1’s as
follows:

eI =
1

2m+1
(1 + i0v0v1) · . . . · (1 + imv2mv2m+1).
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It follows that

δεI = v0 · v1 · . . . · v2m · v2m+1 ·
1

2m+1
(1 + i0v0v1) · . . . · (1 + imv2mv2m+1)

=
1

2m+1
v0 · v1 · (1 + i0v0v1) · . . . · v2m · v2m+1 · (1 + imv2mv2m+1)

=
1

2m+1
(v0v1 + i0) · . . . · (v2mv2m+1 + im)

= i0i1 . . . im
1

2m+1
(1 + i0v0v1) · . . . · (1 + imv2mv2m+1).

Thus

• 1
2 (1 + δ)εI = εI and 1

2 (1 − δ)εI = 0 if the number of −1’s in the
sequence I is even,

• 1
2 (1 + δ)εI = 0 and 1

2 (1 − δ)εI = εI if the number of −1’s in the
sequence I is odd.

Each left ideal C0 · εI is a minimal left ideal of C0, and it is isomorphic
to FN as a C0-module. Moreover, P0 is a direct sum of half of these ideals,
while P1 is the direct sum of the other half. Write for short ε0 = ε(1,1,...,1),
ε1 = ε(1,1,...,−1), ε−1 = ε(−1,−1,...,−1). Then

SN = S ⊗F FN ∼= S ⊗F C0ε0
∼= S ⊗F C0 ⊗C0

P0 ⊗P0
FN .

The identity a =
(

1 + 1
2ϕ · vd+1

)

a− 1
2ϕ · vd+1 · a yields a direct sum decom-

position

SN ∼= S ⊗F C0ε0 =
(

1 + 1
2ϕ · vd+1

)

· (S ⊗F C0ε0)⊕ ϕ · (S ⊗F C1ε0)

since vd+1C0 = C1. Therefore

V0 = Coker(S ⊗F C1
ϕ·
→ S ⊗F C0)⊗F C0 ⊗C0

P0 ⊗P0
FN

∼= (1 + 1
2ϕ · vd+1) · (S ⊗F C0ε0),

so

SN ∼= V0 ⊕ ϕ · (S ⊗F C1ε0).

Analogously,

SN ∼= S ⊗F C0ε1 =
(

1 + 1
2
ϕ · vd+1

)

· (S ⊗F C0ε1)⊕ ϕ · (S ⊗F C1ε1)

where
(

1 + 1
2
ϕ · vd+1

)

· (S ⊗F C0ε1) ∼= V1, and

SN = S ⊗F FN ∼= S ⊗F C0ε1
∼= S ⊗F C0 ⊗C0

P1 ⊗P1
FN .

Left multiplication by ϕ and right multiplication by vd+1 yield

V1
∼= ϕV1vd+1

∼= ϕ
(

1 + 1
2ϕvd+1

)

· (S ⊗F C0ε1) · vd+1

= ϕ · (S ⊗F C0ε1) · vd+1

= ϕ · (S ⊗F C0vd+1ε0) = ϕ · (S ⊗F C1ε0),
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since vd+1ε0 = ε1vd+1. Thus

SN ∼= V0 ⊕ V1.

To prove claim (b) consider the principal antiautomorphism ℑ of S ⊗F

C0. First of all note that ℑ(ε0) = ε−1. Next, the set of all products
v2i1+1 · v2i2+1 · . . . · v2ik+1 with 0 ≤ i1 < i2 < . . . < ik ≤ m forms a base of
the minimal ideal Cε0 of the Clifford algebra C = C(q), and the set of such
products with an even number of factors forms a base of C0ε0. Moreover,

ℑ
((

∏

i∈A

v2i+1

)

· ε0

)

·
(

∏

i∈B

v2i+1

)

· ε0

=

{

0 if A ∩B 6= ∅ or A ∪B 6= {0, 1, . . . ,m},
±v1v3 · . . . · vd+1ε0 otherwise.

Thus for odd m the map (αε0, βε0) 7→ coefficient of v1 · v3 · . . . · vd+1ε0

in ℑ(αε0) · βε0 defines a nonsingular pairing on SN , whose adjoint is an
isomorphism of direct summands in a suitably chosen direct sum decompo-
sition SN = SN/2 ⊕ SN/2. This pairing is symmetric for m ≡ 3 mod 4, and
skew-symmetric for m ≡ 1 mod 4.

Finally,

ℑ(ϕ · (S ⊗F C1ε0)) · ϕ · (S ⊗F C1ε0) = (ε−1S ⊗F C1)ϕ
2(S ⊗F C1ε1) = 0,

ℑ
((

1 + 1
2ϕ · vd+1

)

· (S ⊗F C0ε0)
)

·
(

1 + 1
2ϕ · vd+1

)

· (S ⊗F C0ε0)

= (ε−1S ⊗F C0)
(

1 + 1
2vd+1 · ϕ

)(

1 + 1
2ϕ · vd+1

)

· (S ⊗F C0ε0)

= (ε−1S ⊗F C0)
(

1 + 1
2 (vd+1 · ϕ + ϕ · vd+1)

)

· (S ⊗F C0ε0) = 0

so V0 and V1 are totally isotropic.

Example 5.6.1. Consider the case d = 2. As in Example 5.4.1 there is
an exact sequence

0← F [y0]← S
α
← S2 β

← S2 γ
← S2 β

← . . .

where

S = F [x0, y0, z2]/(x0y0 + z2
2 − 1),

α = [z2 − 1, x0],

β =
1

2

[

1 + z2 x0

y0 1− z2

]

,

γ =
1

2

[

1− z2 −x0

−y0 1 + z2

]

.

Thus β + γ = 1, βγ = γβ = 0, hence β2 = β, γ2 = γ. Now V0 is the
submodule of S2 spanned by the columns of γ, V1 is the submodule of S2
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spanned by the columns of β and the form χ has the matrix
[

0 1

−1 0

]

:

[

1 + z2 x0

y0 1− z2

]T

·

[

0 1
−1 0

]

·

[

1 + z2 x0

y0 1− z2

]

=

[

0 −y0x0 − z2
2 + 1

y0x0 + z2
2 − 1 0

]

= 0.

Example 5.6.2. An interesting case of smallest dimension is the one for
d = 6. Then N = 2m = 8 and

S = F [x0, y0, x1, y1, x2, y2, z6]/(x0y0 + x1y1 + x2y2 + z2
6 − 1).

Now V0 and V1 are submodules of the free module S8 spanned by the columns
of the matrices

β =
1

2























1− z6 0 0 0 −y2 y1 −y0 0
0 1− z6 0 0 −x1 −x2 0 y0

0 0 1− z6 0 x0 0 −x2 y1

0 0 0 1− z6 0 x0 x1 y2

−x2 −y1 y0 0 1 + z6 0 0 0
x1 −y2 0 y0 0 1 + z6 0 0
−x0 0 −y2 y1 0 0 1 + z6 0
0 x0 x1 x2 0 0 0 1 + z6























and

γ =
1

2























1 + z6 0 0 0 y2 −y1 y0 0
0 1 + z6 0 0 x1 x2 0 −y0

0 0 1 + z6 0 −x0 0 x2 −y1

0 0 0 1 + z6 0 −x0 −x1 −y2

x2 y1 −y0 0 1− z6 0 0 0
−x1 y2 0 −y0 0 1− z6 0 0
x0 0 y2 −y1 0 0 1− z6 0
0 −x0 −x1 −x2 0 0 0 1− z6























,

which satisfy analogous conditions: β+γ = 1, βγ = γβ = 0. The symmetric
bilinear form on S8 which has totally isotropic submodules V0 and V1 has
the matrix























0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0























.
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6. Witt ring of the projective line. Consider the ring

S = F [z0, z1, . . . , zd]
/

(

d
∑

i=0

(−1)iz2
i − 1

)

and the projective line X = P
1
S = ProjS[t0, t1]. By Proposition 3.2, Corol-

lary 3.4 and Proposition 5.4 above, for d ≡ 2 mod 4 the group E+(X) has
four elements:

E+(X) = Z/2Z[OX ]⊕ Z/2Z(2m−1[S1]− [V0]) ⊠ H,

where ⊠ denotes the tensor product of inverse images by projections of X
onto SpecS and onto P

1. We need to find a self-dual locally free sheafM on
X which maps onto (2m−1[S1]−[V0])⊠H in E+(X) and a symmetric bilinear
form on M. One may translate every statement on finitely generated S-
modules into an analogous statement on sheaves of coherent OY -modules
by means of the canonical equivalence of categories of finitely generated S-
modules and of sheaves of coherent OY -modules, given by the exact functors
Γ (SpecS,−) and ,̃ for example OY = S .̃ So we will treat S-modules as
sheaves on SpecS. Note that in K0(X) the element (2m−1[S1]− [V0])⊠H is
the direct image of 2m−1[S1]− [V0] under the immersion ι of an S-rational
point Y into X since there is an exact sequence

0← ι∗OY ← OX
t0·← OX(−1)← 0

of sheaves. The twist does not change the sheaf ι∗OY , since for every integer
k the sequence

0← ι∗OY ← OX(k)
t0·← OX(k − 1)← 0

is exact.

Theorem 6.1. If d = 2m, m = 4k + 3 and

S = F [z0, z1, . . . , zd]
/

(

d
∑

i=0

(−1)iz2
i − 1

)

,

then there exists a vector bundle M on P
1
S and a symmetric bilinear form

φ :M→M∧ such that

e0(M, φ) = (2m−1[S1]− [V0]) ⊠ H.

In particular, the Witt ring W (P1
S) is larger than the Witt ring W (S).

P r o o f. Let, as in Proposition 5.6, N = 2m. Fix a direct sum decompo-
sition
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SN = SN/2 ⊕ SN/2∧ = V0 ⊕ V1

such that V0 is a totally isotropic subbundle of the hyperbolic space (SN , χ).

These data define a symmetric formation (ι∗O
N
Y , χ; ι∗O

N/2
Y , ι∗V0) in M1 in

the sense of [3]. This formation has a resolution (in the sense of Definition
15, p. 464 of [3])—we have the following commutative diagram with exact
rows and columns:

0 0 0

0 OX(−1)N/2 OX(−1)N/2 ⊕O
N/2
X O

N/2
X

0

0 O
N/2
X O

N/2
X ⊕OX(1)N/2 OX(1)N/2 0

0 ι∗O
N/2
Y ι∗O

N/2
Y ⊕ ι∗(O

N/2∧
Y ) ι∗(O

N/2∧
Y ) 0

0 0 0

�� �� ��
// //

��

//

h

��

//

��
// //

��

//

π

��

//

��
// //

��

//

��

//

��

such that each column is a direct sum of resolutions 0← ι∗OY ← OX(k)←
OX(k−1)← 0 for an appropriate integer k. Moreover, there is a nonsingular
OX(1)-valued symmetric bilinear form

O
N/2
X ⊕OX(1)N/2 χ

→ (O
N/2
X ⊕OX(1)N/2)∧ ⊗OX(1)

which reduces to χ on ι∗O
N
Y . To fit into the setup of Definition 15 of a

resolution of a formation in [3], only one accomodation is needed: let K
be the constant sheaf defined by the function field of X. There exists a
canonical map OX(1) → K given by the inclusion Γ (U,OX(1)) ֌ Γ (U,K)
over each affine open subset U , and composing with this map allows us to
change the OX(1)-valued form into the K-valued form

O
N/2
X ⊕OX(1)N/2 χ′

→ (O
N/2
X ⊕OX(1)N/2)∧ ⊗K

which reduces to χ on ι∗O
N
Y and which is nonsingular at the generic point.

The following is Lemma 16 of [3] with its proof (and adjusted notation):

Lemma 6.2. Let (r) be a resolution of a formation as above. Let M be

the subsheaf of O
N/2
X ⊕OX(1)N/2 defined by π−1(V0); this means thatM is

the pullback
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M O
N/2
X ⊕OX(1)N/2

ι∗V0 ι∗O
N/2
Y ⊕ ι∗(O

N/2∧
Y )

//

�� ��
//

Then M is a locally free sheaf , and the restriction φ of the form χ to M
defines a nonsingular symmetric bilinear form M×M→OX .

P r o o f. Since this is a local statement, the proof is the same as in [8]
7.3, p. 374.

It remains to compute e0(M, φ). AsM is a product of O
N/2
X ⊕OX(1)N/2

and ι∗V0 over ι∗O
N/2
Y ⊕ ι∗(O

N/2∧
Y ), in the group K0(X) we have

[M] = [O
N/2
X ⊕OX(1)N/2] + [ι∗V0]− [ι∗O

N/2
Y ⊕ ι∗(O

N/2∧
Y )]

= N/2[OX ] + N/2[OX (1)] + [V0]([OX ]− [OX(−1)])

−N/2([OX ]− [OX(−1)]) −N/2([OX (1)] − [OX ])

= [V0]([OX ]− [OX(−1)]) + N/2[OX (−1)] + N/2[OX ]

= N [OX ] + ([V0]−N/2[OX ])H.

Since N = 24k+3 is even, we get e0(M, φ) = ([V0]− 2m−1[S]) ⊠ H.
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[2] J. K. Arason, R. Elman and B. Jacob, On the Witt ring of elliptic curves, in:
K-theory and Algebraic Geometry: Connections with Quadratic Forms and Division
Algebras, Proc. Sympos. Pure Math. 58, Part 2, Amer. Math. Soc., 1995, 1–25.
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