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ON THE INTERSECTION MULTIPLICITY
OF IMAGES UNDER AN ETALE MORPHISM

BY

KRZYSZTOF JAN NOWAK (KRAKOW)

We present a formula for the intersection multiplicity of the images of two
subvarieties under an etale morphism between smooth varieties over a field
k. It is a generalization of Fulton’s Example 8.2.5 from [3], where a strong
additional assumption has been imposed. In a special case where the base
field k is algebraically closed and a proper component of the intersection is
a closed point, intersection multiplicity is an invariant of etale morphisms.
This corresponds with analytic geometry where intersection multiplicity is
an invariant of local biholomorphisms.

1. Introduction. We present the following theorem on the intersection
multiplicity of two images under an etale morphism:

MAIN THEOREM. Let f : X' — X be a finite dominant morphism
between smooth varieties over a field k of characteristic zero, V' and W'
be two subvarieties of X', V = f(V'), W = f(W'), and let Z be a proper
component of the intersection V.0 W. Denote by Z!, i = 1,...,m, the
irreducible components of the intersection V' N W' which lie over Z; all the
Z! are, of course, proper components. If the morphism f is etale at the
generic point ¢! of each subvariety Z!, then

V' VW W2,V W X) =) 2] Z)-i( 2V WX,
i
REMARK. Generally, a morphism f is etale if it is unramified and flat.
However, if f is a dominant morphism between regular varieties, f is flat iff it
is equidimensional (cf. [8]); in particular, f is flat whenever it is quasi-finite.
Such a dominant quasi-finite morphism f is therefore an open mapping.
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The above theorem is a generalization of Fulton’s example ([3], Ex-
ample 8.2.5), where a strong additional assumption has been imposed;
namely, it is required that there should exist only one irreducible component
of f~1(Z) contained either in V’ or W’. In particular, when Z = {P} is a
closed point, a unique point P’ on V’ or W’ should lie over P. This means
that not only does Fulton assume that a unique irreducible component of
V' N W' lies over Z, but moreover, that a unique subvariety of V' or W’
lies over Z. His geometric apparatus of intersection theory seems to have
too global character to get rid of this additional assumption, at least in a
direct fashion—which is related in a sense to the fact that the two diagrams
from Section 2 do not globally coincide. What enables us to achieve full
generality is algebraic localization by means of the passage to quotient rings
as well as the expression of intersection multiplicity directly in terms of local
rings.

Besides, we wish to emphasize that Fulton’s proof is essentially based
on his Theorem 6.2 (op. cit.), and thus involves the whole heavy machinery
developed in the first six fundamental chapters of his book. Instead, we make
use of Samuel’s formula, which is far more elementary and works exactly in
the case of finite morphisms. Some structural affinity between his and our
proofs consists in that both Theorem 6.2 (points a) and c) together) and
Samuel’s formula may be interpreted as a kind of projection formula.

A classical case of the weak (Fulton’s) version of the main theorem, where
the base field is algebraically closed, the component Z = {P} is a closed
point and f is a general projection, was treated by Severi [12], §11. This
makes it possible to reduce intersection theory on a smooth variety to that
in a projective space (also cf. [3], Example 8.2.6). Chevalley too used the
weak version in his algebraic intersection theory over an algebraically closed
field [2] (in Part III devoted to algebraic varieties). After proving the main
theorem in Section 2, we shall show a local version in a special case where
the base field k is algebraically closed and the component Z = {P} is a
closed point:

PROPOSITION. The intersection multiplicities at points P and P’ of the
proper intersections of V. with W and of V' with W', respectively, coincide
regardless of the other intersection points lying over P.

In other words, intersection multiplicity is an invariant of etale mor-
phisms. This corresponds with analytic geometry where intersection mul-
tiplicity is an invariant of local biholomorphisms (cf. [2], Part II devoted
to algebroid varieties). Such a localization of the problem does not need
Samuel’s formula, and is attained merely by the same analysis of canonical
diagrams as in the proof of the main theorem, but applied to the completions
of the local rings.
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2. Proof of the Main Theorem. We first set up necessary notation
and terminology. All schemes which occur throughout the paper are tac-
itly assumed to be algebraic over a fixed field. An irreducible and reduced
scheme X is called a variety; the field of rational functions on X is denoted
by k(X). We say that a scheme X is equidimensional (or of pure dimen-
sion) if all its irreducible components are of the same dimension; then, of
course, X has no embedded components. If X is of pure dimension r, we
often write X".

Let f: X’ — X be a proper morphism of schemes, W’ a subvariety of
X" and W = f(W’). One can define a number [W’ : W] of global character,
called the degree of W' over W, by putting

k(W) : k(W) if dim W' = dim W

’. —
L '_{O if dim W’ > dim W,

where [k(W’) : kE(W)] denotes the degree of the finite field extension.
Consider a morphism f : Y” — X" between two schemes of pure di-
mension r, and suppose f is quasi-finite at a point y € Y. Let B := O,
and A := O, be the local rings of the pomts y and z := f(y) on Y and
X, respectively. The completions B and A of the local rings B and A are
unrmxed (cf. [7], Chap. V, §34). By virtue of the preparation theorem, B
is a finite A-module. It follows from the last two facts that whenever the
scheme X is analytlcally 1rredu(:1ble at x (i.e. if Aisa domam) 1O NON-Zero
element of A is a zero divisor in B. Then, in particular, Ais a subring of
B. Under these assumptions, one can define a number m, f of local char-
acter, called the multiplicity of f at y, by means of Weil’s formula (see
g. [13] or [6], App. to Chap. VI; The Weil-Samuel algebraic theory of
multiplicity):

my f = [B\ : A\L
where [B : A] denotes the dimension of the S~!A-vector space S—'B with
S:= A\ {0}.
Let o = {p1,..., .} C A:= O, be a system of parameters at a point =

on a scheme X. One can define the multiplicity e(p) of ¢ as the multiplicity
of the ideal generated by the system ¢:

e() :==e((¥1,---,0r)).

The key result we shall use in the sequel is the following

SAMUEL’S FORMULA (cf. [14], Chap. VIII, §10). Let A be a local ring
with mazimal ideal m, q an m-primary ideal of A, and A’ a finite overring
of A. Then A’ is a semi-local ring, and qA’ is an open ideal in A’; let {m}}
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be the set of mazximal ideals in A’. If no non-zero element of A is a zero
divisor in A" and if the local rings Al , have the same dimension as A, then

(A" : A]-eq) = ST[A/m) s Afm] - e(qAL).
(2

REMARKS. (1) The hypothesis that all the local rings A/ , have the same
dimension as A is satisfied if the ring A is unmixed (cf. [7],lChap. V, §34),
and thus whenever A is any equidimensional ring which occurs in algebraic
geometry.

(2) We may interpret Samuel’s formula as a special version of the pro-
jection formula from algebraic topology and algebraic geometry; namely, we
must construe Spec A and Spec A’ as cycles, and systems of parameters as
cocycles.

(3) If the ring A is analytically irreducible, then the assumption on zero
divisors for the ring extension A C A’ implies the same for the extension
of the completions A C A’, and the local rings Ay, always have the same
dimension as A. Furthermore, we have

-~

[AT: A =[A': 4], E:HZ@, e(qd) = e(q)

and
e(@d’) = e(ad’) = Y e(aAl,).

(4) When A is an analytically irreducible local ring and A C A’ is a
quasi-finite extension of local rings, we obtain a local version of Samuel’s
formula

[A7: A] - e(q) = [A/m’ : A/m] - e(qA").
In other words,

M f - e(q) = marg - e(qA"),
where f : Spec(A’) — Spec(A), g : Spec(A’/m’) — Spec(A/m) are the
induced morphisms, and 2’ is the closed point corresponding to the maximal
ideal m’.

Important consequences of Samuel’s formula are the general projection
formula and associativity formula; these two together with the formula for
product varieties form three basic theorems from which all properties of
proper intersections can be derived (this was first noticed by Weil, cf. [13]).
We shall need a special case of the

ASsSOCIATIVITY FORMULA (cf. [10], Chap. III, §4). Consider an unmized
local Nagata ring A with mazimal ideal m, and a system of parameters
Z1,...,Ty (n = dimA) in A. Denote by q and v the ideals of A gener-
ated by 1,...,2, and x1,...,T, for some m € {1,...,n}. If p;, are the
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minimal primes of v (obviously, dim A,, = m), then

e(a) =Y e((a+pi)/pi) - e(t4p,).
i
We make use of the above in the case v = 0. The multiplicity m; of a
component X; of a scheme X is the length of the Artinian local ring Ok,
where &; is a generic point of Xj:

m; = length O¢, = e(O,);

of course, m; = 1 whenever the scheme X is reduced. If ¢ is a system of
parameters of a scheme X at a point z at which X is equidimensional, then
the associativity formula implies that

e(p) =D elpOu/p) - m,
i
where p; are the minimal primes in the local ring O, which correspond to
the components X; of X passing through z, and m; are the multiplicities of
X;. In particular, if X is a reduced scheme, we obtain the formula

elp) =Y elpOu/pi).

(2

Consider two equidimensional subschemes V" and W* of a smooth va-
riety X™ over a field k£ which intersect properly along a subvariety Z (i.e.
dimZ = r + s —n). When one of the subschemes, say V, is a complete
intersection in the vicinity of Z in X, the ideal of V in the local ring of
the generic point ¢ of Z on X is generated by n — r elements 1, ..., @n_r.
The canonical images of these elements in the local ring of ( on W form a
system of parameters . The multiplicity e() of this system of parameters
is called the intersection multiplicity of W and V along Z, and it is denoted
by i(Z,V - W; X).

In order to define intersection multiplicity in general, one must apply
the diagonal procedure. Denote by

A X - XxX

the diagonal morphism (which is a closed immersion). Each subvariety Z
of X corresponds via the diagonal morphism to a unique subvariety Z4 of
A C X x X. Since the diagonal is a complete intersection in the vicinity of
Z4 in X x X (cf. [1], Chap. VII, §5), one can put

i(Z,V -W;X):=i(Z2A-(VxW); X x X).

Whenever V' is a complete intersection, both the above definitions of inter-
section multiplicity coincide (Reduction Theorem; cf. [11], Chap. II, §5.7—
the proof is based on the associativity formula, or cf. [3], Chap. VIII).
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Now we can readily pass to the proof of the main theorem. The problem
being local, we may assume that the varieties X and X’ are affine. We
introduce the following notation:

e (# is a generic point of Z2 on X x X;

e p is the prime ideal of the point (2 in the coordinate ring k[X x X];

e S :=Fk[X x X]\p;

e R and A denote the local rings of the point (2 on X x X and on V x W
(being the localizations of the coordinate rings k[X x X] and k[V x W] with
respect to the multiplicative set S);

e R’ and A’ denote the localizations of the coordinate rings k[X' x X']
and k[V’' x W'] with respect to S.

Clearly, R C R’ and A C A’ are finite ring extensions. Thus R’ and A’
are semilocal rings; let m} be the maximal ideals of A’, i =1,...,k (k > m).
Observe that there is a one-to-one correspondence between the components
Z; and those ideals m; that lie on the diagonal A" := Ax//;, of the product
X’ x X’'. We now consider the Cartesian square

X' xx X' =2 X' %, X!

cani ifxf

XT/k>X XkX

(cf. [4], Chap. 0, Proposition 1.4.5), and the canonical commutative diagram

Axi/k

X —= X" xp X’

1 ]

XT>X XkX
X/k

(loc. cit., Proposition 1.4.8). Since the morphism f is unramified at each
point ¢!, the diagonal morphism

AX’/X X S X Xx X’

is an isomorphism of a neighbourhood U of the set {(1,...,(},} onto an open
subset of X’ x x X’ (cf. [1], Chap. VI, Proposition 3.3). Thus, identifying U
both with a subset of X’ and of X’ x X’, the above two diagrams coincide
over U. This implies that the ideal Q' of the diagonal A’ := Ax//;, in the
ring R is the extension of the ideal 9 of the diagonal A := Ay, in the
ring R. Consequently, the ideal g’ of A’ in A’ is the extension of the ideal
qof Ain A: q' = qA’, so that Samuel’s formula is applicable.



INTERSECTION MULTIPLICITY 173

Let p; be the minimal primes of the ring A. As the ring A’ is flat over
A, we have finite ring embeddings A/p; C A’/p;A’. Only at this stage do
we use the assumption that k is a field of characteristic zero: then A and
A’ are reduced rings; moreover, the rings A’/p;A’ are also reduced because
A’ is etale over A (cf. [5], Chap. VIII, §21). Therefore, we can easily deduce
that

[AJp; AT Afp) = [V V] W W]

for all j (this is, in fact, a problem from the theory of finite separable field
extensions). Hence, by Samuel’s formula,

V' V] W W e((a+p5)/p5) = Z[Z£ 1 Z) - e((a+pj) A /P Afy)-

From the associativity formula we obtain

> el(a+py)/p;) =e(a)
J
and
Z e((q+ pj)Ain;/ijiné) = e(inn;)‘
J
Combining the last three equalities, we conclude that
V' V] W W] -e(q) = Y [Zi: Z) - e(aAn),

(2

which completes the proof of the main theorem.

Whenever the base field &k is algebraically closed and the irreducible
component Z = {P} has dimension zero, we can repeat the analysis of the
canonical diagrams applied, however, to the completions of the local rings.
In this manner, even without making use of Samuel’s formula, we obtain
the following local version of the theorem under consideration:

PROPOSITION. Let f : X' — X be a dominant morphism between smooth
varieties over an algebraically closed field k, V' and W' be two subvarieties
of X' that intersect properly at a closed point P’, and let V := f(V'), W :=
fW"), P:= f(P'). If the morphism f is etale at P’, then

WPV Wi X' =i(P,V-W;X).
In other words, intersection multiplicity is an invariant of etale morphisms.
Indeed, let A and A’ be the local rings of the point P on V x W and of

the point P’ on V' x W’. Since the base field k is algebraically closed, the
schemes X x X, V x W, X' x X" and V' x W' are (irreducible) varieties, as
well as the rings A and A’ (and even their completions A and J— [10],
Chap. VI, §1 and [7], Chap. VII, §47) are local domains with common residue
field k. As before, the ideal g’ of the diagonal A’ in A’ is the extension of the
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ideal q of the diagonal A in A: g = qA’._But the ring embedding A C A’
is etale, and thus the completions A and A’ are canonically isomorphic (cf.
[1], Chap. VI, Corollary 4.5). Hence

i(PL VW X') = e(qA') = e(a ) = e(q) = e(q ) = i(P,V - W; X),

as asserted.

=

=

7]
(8]

(9]
[10]
[11]
[12]
[13]
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