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THE IMAGINARY CYCLIC SEXTIC FIELDS WITH
CLASS NUMBERS EQUAL TO THEIR GENUS CLASS NUMBERS

BY

STÉPHANE LOUBOUT IN (CAEN)

It is known that there are only finitely many imaginary abelian number
fields with class numbers equal to their genus class numbers. Here, we
determine all the imaginary cyclic sextic fields with class numbers equal to
their genus class numbers.

Introduction. Let K be an abelian number field of degree nK =[K : Q].
The narrow genus field GK of K is the maximal abelian number field con-
taining K and unramified above K at all the finite places. According to
class field theory, GK is a subfield of the narrow Hilbert class field H+

K of
K and the degree gK = [GK : K] divides the narrow class number h+

K of K.
When the group XK of Dirichlet characters associated with an abelian num-
ber field K is given we can easily compute the degree of GK and the genus
class number gK of K: we have

gK =
1

nK

∏
p

ep

where this product ranges over all the rational primes p which are ramified
in K and where ep denotes the index of ramification of p in the extension
K/Q (see Chapter 3 in [Wa]). Note that if K is imaginary then GK is an
imaginary abelian number field and GK/K is unramified at all the places.
In particular, if K is imaginary then gK divides hK , the class number of K.
In [Lou 4] we proved that there are only finitely many imaginary abelian
number fields such that their class numbers hN are equal to their genus
class numbers gN and proved that apart from the quadratic and bicyclic
quadratic ones, one can find an effective upper bound on their conductors.
The aim of the present paper is to determine all the imaginary cyclic sextic
fields with class numbers equal to their genus class numbers:
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Theorem 1. There are 32 imaginary cyclic sextic fields with class num-
bers equal to their genus class numbers. Their conductors are less than or
equal to 247 and their class numbers are less than or equal to 6. They are
listed in Table 1 of Section 3.

To prove this theorem we first use lower bounds on relative class num-
bers of imaginary cyclic sextic fields (see Theorem 5). Second, according
to Proposition 3, relative class numbers of imaginary cyclic sextic fields
with class numbers equal to their genus class numbers cannot be that large.
Hence, we will thirdly get upper bounds on the conductors of the imaginary
cyclic sextic fields with class numbers equal to their genus class numbers
(see Theorems 5 and 6). Fourth, we will compute the relative class num-
bers of all the possible imaginary cyclic sextic fields of conductors less than
or equal to these upper bounds. This will provide us with a short list of
imaginary cyclic sextic fields of conductors less than or equal to this bound
and with relative class numbers satisfying the necessary condition of Propo-
sition 3. Finally, we will determine all the fields of this small list which are
such that their class numbers are equal to their genus class numbers, which
will complete the proof of Theorem 1.

Lemma 2. Let N be an imaginary abelian number field with maximal
real subfield N+. Let t denote the number of rational primes p such that
all the ideals of N+ above p are ramified in the quadratic extension N/N+

If hN = gN then

h−
N = 2t−1+ε,

where ε = 0 or 1 according as GN+ , the narrow genus field of N+, is real
or imaginary.

P r o o f. Since hN = gN , we have HN = GN . Let H+
N+ denote the

narrow Hilbert class field of N+. Since H+
N+/N+ is an abelian extension

unramified at all the finite places and since N is imaginary, it follows that
H+

N+N/N is an abelian extension unramified at all the places. Therefore, we
have H+

N+N ⊆ HN = GN and H+
N+ is an abelian field. Hence, H+

N+ = GN+ .
Now, if GN+ is real we have HN+ = GN+ and we get

hN+ = [HN+ : N+] = [GN+ : N+] =
1
n

∏
p

e+
p ,

which together with hN = gN = 1
2n

∏
p ep yields

h−
N =

1
2

∏
p

(ep/e+
p )

and the desired result.
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In the same way, if GN+ is imaginary and if we let G+
N+ denote its

maximal real subfield then HN+ = G+
N+ and we get

hN+ = [HN+ : N+] = [G+
N+ : N+] =

1
2
[GN+ : N+] =

1
2n

∏
p

e+
p ,

which together with hN = gN = 1
2n

∏
p ep yields

h−
N =

∏
p

(ep/e+
p )

and the desired result.

1. Imaginary cyclic sextic fields. Let N denote a cyclic sextic field,
wN its number of roots of unity, fN its conductor, χN any of the two prim-
itive Dirichlet characters of order 6 associated with N , hN its class number,
N+ its cyclic cubic subfield, fN+ the conductor and hN+ the class number
of its cyclic cubic subfield, k its quadratic subfield, fk the conductor and
hk the class number of its quadratic subfield. Then N is real or imaginary
according as χN (−1) = +1 or χN (−1) = −1. From now on, we assume N
is imaginary. Then k is imaginary, hN+ divides hN and h−

N = hN/hN+ is
the relative class number of N . Theorem 4.17 of [Wa] yields

(1) h−
N = hk

wN

wk
|τχ|2 with τχ =

1
2fN

fN−1∑
x=1

xχN (x).

Note that hk always divides h−
N and that N 6= Q(ζ7), Q(ζ9) implies wN = wk

(see [Lou 1]), whereas N = Q(ζ7), Q(ζ9) yields hN = gN = 1.

Proposition 3. Let N be an imaginary cyclic sextic field , let k be its
imaginary quadratic subfield and let rk be the number of prime divisors of
fk, the conductor of k. If hN = gN then

h−
N = 2rk−1 = gk = hk.

In particular , if N 6= Q(ζ7), Q(ζ9) then |τχ|2 is a positive integer and hN =
gN implies

|τχ|2 = 1.

P r o o f. If hN = gN then hk = gk. However, gk = 2rk−1, and we get the
desired results.

Now we explain in detail how we determine all the imaginary cyclic sextic
fields with conductors less than or equal to a precribed upper bound, and
how we compute their relative class numbers, i.e., how we compute the values
of their associated sextic characters. Using the factorization χ =

∏
p|fN

χp

corresponding to the decomposition f =
∏

p|f pνp(fN ) and noticing that a
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primitive cubic character of conductor a p-power has conductor 9 or and
odd prime p ≡ 1 (mod 6), we get:

Proposition 4. Let fN be the conductor and χN be any of the two
conjugate primitive sextic characters associated with an imaginary cyclic
sextic field N . Then fN = f2f3 where

f2 =
r∏

i=1

pi

with r ≥ 1 and pi = 4, 8 or pi ≡ 1 (mod 2) a prime,

f3 =
s∏

j=1

qj

with s ≥ 1 and qj = 9 or qj ≡ 1 (mod 6) a prime; further ,

χN = χ−
2 χ+

3

where χ−
2 is an odd primitive quadratic character modulo f2 and χ+

3 is an
even primitive cubic character modulo f3. Moreover , fk = f2 and fN+ = f3.
Finally , we have

(2) gN = 2r−13s−1.

Now, we explain how to compute the values taken on by χ+
3 .

For any prime q ≡ 1 (mod 6) let χ
(3)
q denote any one of the two con-

jugated characters of order 3 and conductor q. Note that χ
(3)
q (−1) =

+1. For numerical computation, whenever q ≡ 1 (mod 6) is prime we chose
for χ

(3)
q the cubic character of conductor q defined by means of χ

(3)
q (aq) =

j = exp(2πi/3) where

aq = min{a ≥ 1 : a(q−1)/3 6≡ 1 (mod q)}.
Setting

bq = a(q−1)/3
q

we can easily compute χ
(3)
q (n) for we have

χ(3)
q (n) = jk ⇔ k = min{k ∈ {0, 1, 2} : n(q−1)/3 ≡ bk

q (mod q)}.

Now, we let χ
(3)
9 be the even cubic character of conductor 9 defined by

χ
(3)
9 (2) = j = exp(2πi/3) (note that 2 generate the multiplicative cyclic

group (Z/9Z)∗). We have the following table of values of χ
(3)
9 :

n 1 2 4 5 7 8

χ
(3)
9 (n) 1 j j2 j2 j 1
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Since χ
(3)
9 and χ

(3)
9 are the only even primitive cubic characters of

3-power conductors and since χ = χ2χ3 and χ = χ2χ3 are associated with
the same cyclic sextic field, we may assume that

χ+
3 =

∏
q|f3

(χ(3)
q )ep

with eq ∈ {1, 2}, and e9 = 1 if 9 divides f2, and any one of the eq’s is equal
to one if 9 does not divide f3.

Proposition 4, formula (1) and the previous description of χ3 make it
easy to determine all the imaginary cyclic sextic fields of conductors fN less
than or equal to a prescribed upper bound, and to compute their relative
class numbers.

The aim of the next section is to get a reasonable upper bound on the
conductors of the imaginary cyclic sextic fields whose class numbers hN are
equal to their genus numbers gN .

2. Lower bounds on relative class numbers of imaginary cyclic
sextic fields

Theorem 5. Let N be an imaginary cyclic sextic field of conductor fN

and imaginary quadratic subfield k. Assume fN > 5 · 105. We have

(3) h−
N ≥ hk

fN

7300 log2(fN/π)
.

In particular , if hN = gN then fN ≤ 1.3 · 106.

P r o o f. The lower bound (3) follows from [Lou 1]. Now, according to
Proposition 3, if hN = gN then h−

N = hk and using (3) we get 7300 ≥
fN/ log2(fN/π), which yields the desired bound fN ≤ 1.3 · 106.

Now, when using formula (1), the time required to compute on a micro-
computer the relative class numbers of all the imaginary cyclic sextic fields
of conductors less than or equal to a prescribed upper bound B goes to
infinity at least quadratically with B. Therefore, we will now explain how
we can get a much better bound on the conductors of the imaginary cyclic
sextic fields N such that hN = gN . Assume then that hN = gN . First, we
have hk = gk (Proposition 3) and fk ≤ fN ≤ 1.3 · 106 (Theorem 5). Now,
since hk = gk, the ideal class group of k has exponent ≤ 2 and if p is any
prime which splits in k, say (p) = PP ′, then P2 is principal and there exists
an algebraic integer α = (x + y

√
−fk )/2 ∈ k such that (α) = P2. More-

over, one can easily see that y is not equal to zero. Taking norms, we get
p2 =(x2 + fky2)/4≥fk/4. Therefore, if hN = gN then fk≤1.3 · 106 and all
the rational primes p less than

√
fk/4 do not split in k. Now, one can easily

check that there are only 65 imaginary quadratic fields k = Q(
√
−fk ) with
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conductors fk ≤ 1.3 · 106 such that p ≤
√

fk/4 implies (−fp/p) 6= +1 (Kro-
necker’s symbol), the largest one being fk = 5460. We note that all these 65
imaginary quadratic fields are such that hk = gk = 2rk−1. Second, accord-
ing to [Low] the Dedekind zeta functions of these 65 imaginary quadratic
fields satisfy ζk(s) < 0, 0 < s < 1. Since

ζN (s) = ζk(s)L(s, χN )L(s, χ5
N )L(s, χN+)L(s, χ2

N+),

we see that 0 < s < 1 yields

ζN (s) = ζk(s)|L(s, χN )|2|L(s, χN+)|2.
In particular, if hN = gN then ζN (s) < 0, 0 < s < 1, and according
to [Lou 2] and [Lou 3], we get

(4) h−
N ≥ εN

wN

eπ3
· fN

√
fk

(log fN+ + 0.05)2 log dN
≥ ηN

wk

√
fk

5eπ3
· fN

(log fN + 0.05)3
.

where

εN = 1− (6πe1/3/d
1/6
N ) and ηN = 1− (6πe1/3/

√
fN )

(note that f3
N ≤ dN ≤ f5

N ). Since h−
N = hk = 2rk−1 and since we clearly

have
21−rkwk

√
fk ≥

√
15

(and equality holds if fk = 15), we get

(5) 1 ≥ ηN

√
15

5eπ3
· fN

(log fN + 0.05)3
,

which yields:

Theorem 6. Let N be an imaginary cyclic sextic field of conductor fN .
If hN = gN then fN ≤ 220000 and the imaginary quadratic subfield k of N
is one of the 65 imaginary quadratic fields k of conductor fk ≤ 5460 such
that hk = gk.

3. Conclusion and table. According to numerical computations based
on Proposition 4 and on the results of Section 1, there are 426451 imaginary
cyclic sextic fields N of conductors fN ≤ 220000. Moreover, only 94569 out
of them are such that their imaginary quadratic subfields k satisfy hk =
gk. Now, thanks to the computation of τχ for all these 94569 imaginary
sextic fields, we find that the necessary condition |τχ|2 = 1 for hN = gN

(see Proposition 3) is satisfied for only 32 out of them: those listed in
Table 1. These computations were done by using Pr. Y. Kida’s UBASIC
and (1). In particular, we did not use PARI and we do not have to assume
any Riemann hypothesis to warrant the results of these computations. For
all these 32 fields we used [Gra] to determine the class numbers hN+ of their
maximal real subfields N+ (note that N+ is a cyclic cubic field). Here again,
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we do not have to assume any Riemann hypothesis to warrant these class
number determinations. Since our table yields hN = gN for these 32 fields N
(use (2)), Theorem 1 is proved.

To conclude, we note that, thanks to very good lower bounds for relative
class numbers of non-quadratic imaginary cyclic fields of 2-power degree, we
were able to determine in [Lou 5] all the non-quadratic imaginary cyclic fields
of 2-power degree with class numbers equal to their genus class numbers.
Here, in Section 2, we had to be a little more clever to get a reasonable bound
on the conductors of the imaginary cyclic sextic fields with class numbers
equal to their genus class numbers.

Table 1

Case fN fk = f2 fN+ = f3 gN h
−
N PN+ (X) hN+ hN

1 19 19 191 1 1 X3 +X2 − 6X − 7 1 1
2 21 3 7 1 1 X3 +X2 − 2X − 1 1 1
3 28 4 7 1 1 X3 +X2 − 2X − 1 1 1
4 35 35 = 5 · 7 7 2 2 X3 +X2 − 2X − 1 1 2
5 36 4 9 1 1 X3 − 3X + 1 1 1
6 39 3 13 1 1 X3 +X2 − 4X + 1 1 1
7 43 43 43 1 1 X3 +X2 − 14X − 1 1 1
8 45 15 = 3 · 5 9 2 2 X3 − 3X + 1 1 2
9 52 52 = 4 · 13 13 2 2 X3 +X2 − 4X + 1 1 2
10 56 8 7 1 1 X3 +X2 − 2X − 1 1 1
11 63 3 63 = 9 · 7 3 1 X3 − 21X + 35 3 3
12 63 3 63 = 9 · 7 3 1 X3 − 21X − 28 3 3
13 63 7 9 1 1 X3 − 3X + 1 1 1
14 63 7 63 = 9 · 7 3 1 X3 − 21X + 35 3 3
15 67 67 67 1 1 X3 +X2 − 22X + 5 1 1
16 72 24 = 8 · 3 9 2 2 X3 − 3X + 1 1 2
17 76 4 19 1 1 X3 +X2 − 6X − 7 1 1
18 77 11 7 1 1 X3 +X2 − 2X − 1 1 1
19 84 84 = 4 · 3 · 7 7 4 4 X3 +X2 − 2X − 1 1 4
20 91 7 13 1 1 X3 +X2 − 4X + 1 1 1
21 91 7 91 = 7 · 13 3 1 X3 −X2 − 30X − 27 3 3
22 91 91 = 7 · 13 91 = 7 · 13 6 2 X3 −X2 − 30X − 27 3 6
23 91 91 = 7 · 13 91 = 7 · 13 6 2 X3 −X2 − 30X + 64 3 6
24 93 3 31 1 1 X3 +X2 − 10X − 8 1 1
25 104 8 13 1 1 X3 +X2 − 4X + 1 1 1
26 105 15 = 3 · 5 7 2 2 X3 +X2 − 2X − 1 1 2
27 117 3 117 = 9 · 13 3 1 X3 − 39X + 26 3 3
28 129 3 43 1 1 X3 +X2 − 14X − 1 1 1
29 133 7 133 = 7 · 19 3 1 X3 −X2 − 44X − 69 3 3
30 171 19 171 = 9 · 19 3 1 X3 − 57X + 152 3 3
31 217 7 217 = 7 · 31 3 1 X3 −X2 − 72X + 225 3 3
32 247 19 247 = 13 · 19 3 1 X3 −X2 − 82X + 64 3 3
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