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THE BECKER–DÖRING MODEL WITH DIFFUSION.

I. BASIC PROPERTIES OF SOLUTIONS

BY

PHILIPPE LAUREN ÇOT (NANCY)

AND DARIUSZ WRZOSEK (WARSZAWA)

1. Introduction. In this paper, we study the Becker–Döring model
with diffusion. This model is a particular case of the discrete coagulation-
fragmentation model with diffusion, which describes the evolution of a sys-
tem of clusters when both coagulation and fragmentation of clusters are
taken into account, together with spatial diffusion. In this model, each clus-
ter consists of identical elementary units, and for i ≥ 1, the concentration of
i-clusters (i.e. clusters made of i units) is denoted by ci. The Becker–Döring

model with diffusion then reads

(1.1)

∂c1

∂t
− d1∆c1 = −W1(c) −

∞
∑

j=1

Wj(c),

∂ci

∂t
− di∆ci = Wi−1(c) − Wi(c), i ≥ 2,

in Ω × (0,∞),

(1.2)

(1.3)

∂ci

∂ν
= 0, i ≥ 1, on ∂Ω × (0,∞),

ci(0) = c0
i , i ≥ 1, in Ω,

where c = (ci)i≥1, and

(1.4) Wi(c) = aic1ci − bi+1ci+1, i ≥ 1.

Here Ω denotes a bounded domain in R
n (n ≥ 1) with smooth boundary, ν

the outward unit normal vector field to ∂Ω and

di > 0, i ≥ 1.

The coagulation coefficient ai and the fragmentation coefficient bi are
nonnegative real numbers for each i ≥ 1. The reaction part of (1.1) is
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246 PH. LAURENÇOT AND D. WRZOSEK

a special case of the discrete coagulation-fragmentation equations (see [2],
[16]). Indeed setting a1,i = ai, b1,i = bi+1 for i ≥ 2, ai,j = bi,j = 0 for
i ≥ 2 and j ≥ 2 and a1,1 = 2a1, b1,1 = 2b2 in the general coagulation-
fragmentation model one obtains (1.1).

The Becker–Döring equations are thus viewed as describing situations
in which the evolution is dominated by clusters gaining or losing just one
particle. For a more precise description of the model we refer the reader
to the fundamental work [4] where existence of solutions and their various
properties are studied in the absence of diffusion. Here we mention that this
model was used in [12] to describe the phase transition in a binary alloy.
Similar models also appear in the theory of nucleation in chemical physics
([17]).

In recent years, several papers have been devoted to the analysis of the
Becker–Döring model with or without diffusion. In the absence of diffusion
(di = 0, i ≥ 1), existence of solutions is proved in [15] and [4]. Results on
the long time behaviour of solutions have subsequently been obtained in [4],
[3] and [14].

Fewer results seem to be available for the Becker–Döring model with
diffusion. When di = D > 0 for each i ≥ 1, existence and uniqueness of
strong solutions in L2 is obtained in [7], while the case of different diffusion
coefficients is considered in [16] where existence of weak solutions in L1

is proved under a different set of assumptions on the kinetic coefficients
than those in [7]. However, both papers [7] and [16] actually investigate
existence of solutions to the general coagulation-fragmentation model with
diffusion, which is more complicated, and thus require strong assumptions
on the kinetic coefficients (ai) and (bi). It is our purpose in this work to
prove existence of solutions to the Becker–Döring model with diffusion in
the case of different diffusion coefficients under rather general assumptions
on the kinetic coefficients, extending thereby the results of [7] and [16] for
(1.1)–(1.3). Let us also mention at this point the related papers [6] and [9]
where the pure coagulation and pure fragmentation models with diffusion
are respectively studied.

We assume the same notion of solution as in the previous paper [9]. More
precisely, let us define the Banach space

X =
{

u = (ui)i≥1 : ui ∈ L1(Ω),

∞
∑

i=1

i|ui|L1 < ∞
}

,

endowed with the norm

‖u‖X =

∞
∑

i=1

i|ui|L1 , u ∈ X.
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We also denote by X+ the positive cone of X, i.e.

X+ = {u = (ui)i≥1 ∈ X : ui ≥ 0 a.e. in Ω}.

Notice that from the physical point of view a solution to (1.1)–(1.3) is ex-
pected to satisfy the mass conservation law which reads

(1.5)

∞
∑

i=1

i|ci(t)|L1 =

∞
∑

i=1

i|ci(0)|L1 , t ≥ 0.

Within our setting, the conservation of mass is just the conservation of the
X-norm of a solution to (1.1)–(1.3).

Definition 1.1. A solution c = (ci)i≥1 to (1.1)–(1.3) is a mapping from
[0,∞) to X+ such that, for each T > 0,

1. ci ∈ C([0, T ];L1(Ω)) for each i ≥ 1,

2.
∑∞

j=1 ajc1cj ∈ L1(Ω × (0, T )),
∑∞

j=1 bj+1cj+1 ∈ L1(Ω × (0, T )),

3. ci is a mild solution to the ith equation of (1.1), i.e. for each t ∈ [0, T ],

c1(t) = ed1L1tc1(0) −
t\
0

ed1L1(t−s)
(

W1(c(s)) +

∞
∑

j=1

Wj(c(s))
)

ds,

ci(t) = ediL1tci(0) +

t\
0

ediL1(t−s)(Wi−1(c(s)) − Wi(c(s))) ds, i ≥ 2,

where L1 is the closure in L1(Ω) of the operator L given by

D(L) = {w ∈ H2(Ω) : ∂w/∂ν = 0 on ∂Ω}, Lw = ∆w,

and ediL1t denotes the linear C0-semigroup in L1(Ω) generated by diL1.

Notice that L is closable and accretive in L1(Ω) and L1 generates a
compact positive and analytic semigroup in L1(Ω) (see [1]). Throughout
the paper, a solution to (1.1)–(1.3) in the sense of Definition 1.1 is called
simply a solution.

We can now describe our main results. Similarly to the case without
diffusion any solution to (1.1)–(1.3) conserves the initial mass, which is
proved in Proposition 3.1. Existence of solutions is proved in Theorem 2.4
under the following hypotheses:

(H1) There exist κ > 0 and γ > 0 such that

(i) 0 < ai ≤ κi, i ≥ 1,

(ii) 0 < bi ≤ γai, i ≥ 1.

(H2) c0
1 ∈ L∞(Ω), c0 = (c0

i )i≥1 ∈ X+.
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As in the case of the general coagulation-fragmentation system a solution
is constructed as a limit of solutions to suitably chosen truncated systems.
It is worth mentioning that we cannot apply here any result from the quoted
papers to prove existence of solutions under sufficiently general assumptions
covering the case of linear growth of coagulation coefficients. We use the
method of proof from [4], [2] and an idea similar to that used in [16] which
enables us to show L∞-bounds for c1.

In Section 3 we study various properties of solutions, starting with the
mass conservation (1.5) (Proposition 3.1). Proposition 3.2 shows that any
solution c to (1.1)–(1.3) satisfies ci ∈ L∞(Ω × (0, T )), i ≥ 1, provided c0

i ∈
L∞(Ω) for each i ≥ 1 and c1 ∈ L∞(Ω×(0, T )). Under the latter assumption
it is proved in Proposition 3.4 that any solution with non-zero initial mass
has positive components: ci > 0 on Ω × [δ, T ) for any δ > 0 and i ≥ 2. The
last result of this section (Proposition 3.5) identifies subsets of X+ which
are invariant through time evolution. Notice that both propositions may be
applied to the solutions constructed in Theorem 2.4.

We then devote Section 4 to the question of uniqueness. We are not
able to extend the uniqueness result from [4] to our case. Nevertheless, in
Proposition 4.1 we provide a posteriori conditions under which solutions are
uniquely determined. It is worth pointing out that under some additional
assumptions (still physically relevant) these conditions are satisfied and a
uniqueness result is provided in Theorem 4.2. We refer the reader to our
paper [10] for a study of the long time behaviour of the solutions to (1.1)–
(1.3) we construct in Theorem 2.4.

We use the following notations. The norm in the space Lp(Ω) is denoted
by | · |Lp ; otherwise the norm of a Banach space is | · |B . For T > 0, we will
use the symbol ΩT to denote the set Ω × (0, T ).

2. Existence. The solutions to (1.1)–(1.3) are constructed as a limit
of solutions to suitable finite systems. We consider two different truncated
systems called (PN )̺ for ̺ = 0 or ̺ = 1, N = 2, 3, . . . , such that (PN )1
and (PN )0 consist of N + 1 and N equations respectively. Solutions to
(PN )1 are mass-preserving for N fixed in contrast to solutions to (PN )0.
The particular form of (PN )0 is used in [10] in the derivation of a Lyapunov
identity which is a crucial point in the study of the long time behaviour of
solutions. The systems (PN )̺ for ̺ = 1 or ̺ = 0 read as follows:

(2.1)
∂cN

1

∂t
− d1∆cN

1 = −W1(c
N ) −

N−1
∑

j=1

Wj(c
N ) − aNcN

1 cN
N ,

∂cN
i

∂t
− di∆cN

i = Wi−1(c
N ) − Wi(c

N ), 2 ≤ i ≤ N − 1,
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∂cN
N

∂t
− dN∆cN

N = WN−1(c
N ) − ̺aNcN

1 cN
N ,

∂cN
N+1

∂t
− dN+1∆cN

N+1 = ̺aNcN
1 cN

N ,

with homogeneous Neumann boundary conditions and initial data

(2.2) cN
i (0) = min(c0

i , N) + εi/N, 1 ≤ i ≤ N + 1,

where (εi)i≥1 is an arbitrary sequence of positive real numbers satisfying
∑

i≥1 iεi = Υ < ∞.

Notice that both truncated systems for ̺ = 0 and ̺ = 1 are different from
the one used in [4]. The latter may be obtained from (PN )̺ by removing
the terms aNcN

1 cN
N from the first and the last two equations. For such

a system, however, we are not able to show uniform L∞-bounds for the
sequence (cN

1 )N≥2.

Proposition 2.1. Assume that (H1)(ii) holds. The system (PN )̺ (̺ = 0
or ̺ = 1) has a unique solution cN such that for each T > 0 and i ∈
{1 , . . . , N + 1},

cN
i ∈ C([0, T ];L2(Ω)) ∩ C1((0, T ];L2(Ω)) ∩ L∞(ΩT ) ∩ L∞

loc(0, T ;D(L)),

(2.3) cN
i > 0 in ΩT ,

and each equation (in (PN )̺) is satisfied pointwise almost everywhere in

ΩT . Moreover ,

(2.4)

N
∑

i=1

i|cN
i (t)|L1 ≤

N
∑

i=1

i|cN
i (0)|L1 , t > 0, for ̺ = 0,

N+1
∑

i=1

i|cN
i (t)|L1 =

N+1
∑

i=1

i|cN
i (0)|L1 , t > 0, for ̺ = 1,

and

(2.5) cN
1 ≤ k1 = max(|c0

1|L∞(Ω) + ε1/N, 2γ) in Ω × (0,∞).

P r o o f. Denote by fN
i the right-hand side of the ith equation of (PN )̺.

The local-in-time solvability follows by classical arguments since fN
i are

locally Lipschitz continuous functions. Since we have fN
i (ξ) ≥ 0 for each

ξ ∈ [0,∞)N such that ξi = 0, (fN
i )1≤i≤N+1 is quasi-positive and hence

uN
i ≥ 0 on Ω × (0 , T N

max) (see e.g. [11]).

We shall prove that T N
max = ∞. To this end we multiply (2.1) by

(cN
1 − k1)+ where k1 is defined in (2.5). We then obtain
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1

2

d

dt
|(cN

1 − k1)+|
2
L2 ≤

\
Ω

(2b2c
N
2 − a2c

N
1 cN

2 )(cN
1 − k1)+

+
\
Ω

N
∑

j=3

(bjc
N
j − ajc

N
1 cN

j )(cN
1 − k1)+

≤
\
Ω

(2b2 − 2γa2)c
N
2 +

\
Ω

N
∑

j=3

(bj − 2γaj)c
N
j ≤ 0,

which implies (2.5). Now, proceeding as in the proof of Proposition 3.2
below, we deduce that for arbitrary T > 0,

max
1≤i≤N+1

|cN
i |L∞(ΩT ) ≤ C(N,T ).

Thus, the solutions to (PN )̺ are global in time.
Using the maximum principle one can show that

cN
i (x, t) ≥

εi

N
e−tαi in ΩT

where αi = aik1 + bi if i ≥ 2 and α1 = |
∑N

i=1 aic
N
i |L∞(ΩT ).

It remains to check (2.4). It will follow from the next lemma which
contains a basic identity which will frequently be used in the sequel.

Lemma 2.2. Let N ≥ 2 and cN be a solution to (PN )̺. For any (gi) ∈
[0,∞)N+1,

N+1
∑

i=1

gi
∂cN

i

∂t
−

N+1
∑

i=1

gidi∆cN
i =

N−1
∑

i=1

(gi+1 − gi − g1)Wi(c
N )(2.6)

+ (̺gN+1 − ̺gN − g1)aNcN
1 cN

N .

P r o o f (of Lemma 2.2). We multiply the ith equation of (PN )̺ by gi

and sum up the resulting equalities. This gives (2.6).

Inserting in (2.6) gi = i for i ∈ {1, . . . ,N + 1} if ̺ = 1, and for i ∈
{1, . . . , N} if ̺ = 0, and integrating over Ω× (0, t) for t > 0 we obtain (2.4),
which completes the proof of Proposition 2.1.

Remark 2.3. In the sequel we will not use the positivity of solutions to
(PN )̺. However, this property is necessary in order to derive the Lyapunov
identity which we demonstrate in [10].

We now state and prove the main result of this section.

Theorem 2.4. Assume that (H1)–(H2) hold. Then there exists a mass-

preserving solution c = (ci)i≥1 to (1.1)–(1.3) with c1 ∈ L∞(ΩT ) for each

T > 0, i.e. a solution to (1.1)–(1.3) in the sense of Definition 1.1 with a

bounded first component and satisfying (1.5) as well.
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P r o o f. We shall use the method introduced in [4] and [2] with suit-
able modifications. The proof concerns only the case of nonconservative
approximation (̺ = 0). The proof for ̺ = 1 is very similar and we omit it.

For each N ≥ 2, we denote by cN the solution to (PN )0. We shall first
find a bound on the tail of the series in the first equation of (1.1). Let
1 < m ≤ (N − 1)/2 and put

XN
m =

N
∑

j=m

jcN
j , QN

m =

2m
∑

j=m

jcN
j + 2m

N
∑

j=2m+1

cN
j .

We first show that

(2.7) |XN
m (t)|L1 ≤ |XN

m (0)|L1 + |QN
m(t)|L1 + k1κ

t\
0

|XN
m (s)|L1 ds.

Indeed, taking in (2.6) gj = 0 for 1 ≤ j ≤ m− 1, gj = j for m ≤ j ≤ N and
gN+1 = 0 we obtain

N
∑

i=m

i

(

∂cN
i

∂t
− di∆cN

i

)

= mWm−1(c
N ) +

N−1
∑

j=m

Wj(c
N ).

Integrating over Ω × (0, t) yields

(2.8) |XN
m (t)|L1 = |XN

m (0)|L1 +

t\
0

\
Ω

(

mWm−1(c
N ) +

N−1
∑

j=m

Wj(c
N )

)

dx ds.

Next setting in (2.6),

gj =

{

0 for 1 ≤ j ≤ m − 1 and j = N + 1,
j for m ≤ j ≤ 2m,
2m for 2m + 1 ≤ j ≤ N,

and integrating over Ω × (0, t) we find

(2.9) |QN
m(t)|L1 = |QN

m(0)|L1 +

t\
0

\
Ω

(

mWm−1(c
N ) +

2m−1
∑

j=m

Wj(c
N )

)

dx ds.

Subtracting (2.9) from (2.8) we obtain

|XN
m (t)|L1 = |XN

m (0)|L1 + |QN
m(t)|L1 − |QN

m(0)|L1

+

t\
0

\
Ω

N−1
∑

j=2m

Wj(c
N ) dx ds

≤ |XN
m (0)|L1 + |QN

m(t)|L1 +

t\
0

\
Ω

N
∑

j=2m

ajc
N
1 cN

j dx ds.

Now using (H1)(i) and (2.5) we arrive at (2.7).
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From (H1)(i), (2.2) and (2.4) we also obtain for t > 0,\
Ω

N
∑

j=1

ajc
N
1 (t)cN

j (t) dx ≤ κk1

N
∑

j=1

\
Ω

jcN
j (t) dx ≤ κk1

(

‖c(0)‖X +
Υ |Ω|

N

)

,\
Ω

N−1
∑

j=1

bj+1c
N
j+1(t) dx ≤ γκ

N
∑

j=1

\
Ω

jcN
j (t)dx ≤ γκ

(

‖c(0)‖X +
Υ |Ω|

N

)

.

Hence, the right-hand side of the ith equation of (PN )0 is uniformly bounded
in the space L∞(0, T ;L1(Ω)) for any T > 0. Using compactness results from
[5] we can extract a subsequence Nk such that for each i ≥ 1 and T > 0,

(2.10)
cNk

i → ci in C([0, T ];L1(Ω)) and a.e. in ΩT ,

ci(0) = c0
i in Ω.

For fixed M ≤ Nk, it follows from (2.2) and (2.4) that

(2.11)
M
∑

i=1

i|cNk

i |L1 ≤ ‖c0‖X +
Υ |Ω|

Nk
.

Hence, letting Nk → ∞ and then M → ∞ yields

(2.12) ‖c(t)‖X ≤ ‖c0‖X , t ≥ 0.

Let T > 0 and Qm =
∑2m

j=m jcj + 2m
∑∞

j=2m+1 cj . We shall show that
for m ≥ 2,

(2.13) lim
Nk→∞

|QNk
m (t) − Qm(t)|L1 = 0, 0 ≤ t ≤ T.

Indeed, by (2.11) and (2.12), for 0 ≤ t ≤ T ,

(2.14)
∣

∣

∣

∞
∑

j=L

cj(t) −
Nk+1
∑

j=L

cNk

j (t)
∣

∣

∣

L1

≤
2

L
‖c0‖X , Nk ≥ L.

Let ε > 0 and L ≥ 4(m + ‖c0‖X)/ε. Then by (2.14), for Nk ≥ L,

|QNk
m (t) − Qm(t)|L1 ≤

2m
∑

j=m

j|cNk

j (t) − cj(t)|L1

+ 2m
L−1
∑

j=2m+1

|cNk

j (t) − cj(t)|L1 + ε.

Letting k → ∞ yields

lim sup
Nk→∞

|QNk
m (t) − Qm(t)|L1 ≤ ε
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for any ε > 0, hence (2.13). Moreover,

(2.15) |Qm(t)|L1 ≤
∞
∑

j=m

j|cj(t)|L1 → 0 for t ∈ [0, T ] as m → ∞.

From (2.7) and the Gronwall lemma we find

(2.16) |XN
m (t)|L1 ≤ GN

m(t) + k1κek1κt
t\
0

GN
m(s) ds

with GN
m(s) = |XN

m (0)|L1 + |QN
m(s)|L1 . Using the Lebesgue dominated con-

vergence theorem and (2.15), (2.12) we obtain

lim
m→∞

T\
0

|Qm(s)|L1 ds = 0.

Now we shall show that for t ∈ [0, T ],

(2.17)

Nk
∑

j=1

jcNk

j (t) →
∞
∑

j=1

jcj(t) in L1(Ω) as Nk → ∞.

Fix t ∈ [0, T ]. It follows from (2.12), (H2) and (2.2) that for every ε > 0
there exists M ≥ 1 such that

∞
∑

j=M

j|cj(t)|L1 ≤ ε,

∞
∑

j=M

(j|c0
j |L1 + jεj) ≤ ε,

T\
0

|QM (s)|L1 ds ≤ ε, |QM (t)|L1 ≤ ε.

It follows from (2.13) and the Lebesgue dominated convergence theorem
that there exists k0 such that for k ≥ k0 and Nk ≥ M ,

|QNk

M (t)|L1 ≤ 2ε,

T\
0

|QNk

M (s)|L1 ds ≤ 2ε.

Hence, for k ≥ k0,

GNk

M (t) ≤ 3ε,

T\
0

GNk

M (t) dt ≤ (T + 2)ε,

which yields, thanks to (2.16),

(2.18) |XNk

M (t)|L1 ≤ (3 + k1κek1κT (T + 2))ε.

Consequently, for k ≥ k0,
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∣

∣

∣

∞
∑

j=1

jcj(t) −
Nk
∑

j=1

jcNk

j (t)
∣

∣

∣

L1

≤
M−1
∑

j=1

j|cj(t) − cNk

j (t)|L1 +

∞
∑

j=M

j|cj(t)|L1 + |XNk

M (t)|L1

≤
M−1
∑

j=1

j|cj(t) − cNk

j (t)|L1 + (4 + k1κek1κT (2 + T ))ε

This implies (2.17) after letting Nk → ∞.

Setting in (2.6) gi = i for 1 ≤ i ≤ Nk and gNk+1 = 0 and integrating
over Ω × (0, t), t ∈ [0, T ], we obtain

(2.19)
\
Ω

Nk
∑

i=1

icNk

i (t) dx +

t\
0

\
Ω

aNk
cNk

1 cNk

Nk
dx ds =

\
Ω

Nk
∑

i=1

icNk

i (x, 0) dx.

In view of (2.5) and (2.18),

lim
Nk→∞

t\
0

|aNk
cNk

1 cNk

Nk
|L1 ds = 0.

Now passing to the limit in (2.19) and using (2.17) and (2.2) we arrive at

(2.20) ‖c(t)‖X = ‖c0‖X for t ∈ [0, T ].

To complete the proof it is sufficient to show that the terms on the
right-hand side of (PN )0 converge in L1(ΩT ) to the appropriate limits. To
this end notice that due to (2.5) and (2.10),

Wj(c
Nk) → Wj(c) in L1(ΩT ) as Nk → ∞.

We shall show that for each t ∈ [0, T ],

(2.21)

Nk
∑

j=1

ajc
Nk

j (t) →
∞
∑

j=1

ajcj(t) in L1(Ω) as Nk → ∞.

Indeed, let M ≥ 2. For k large enough, we have Nk > M and by (H1)(i),

∣

∣

∣

Nk
∑

j=1

ajc
Nk

j (t) −
∞
∑

j=1

ajcj(t)
∣

∣

∣

L1

≤ κ |XNk

M (t)|L1 + κ

∞
∑

j=M

j|cj(t)|L1

+ κ
M−1
∑

j=1

j|cNk

j (t) − cj(t)|L1 .
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We then let k → ∞ and use (2.10) and (2.17) to obtain

lim sup
k→∞

∣

∣

∣

Nk
∑

j=1

ajc
Nk

j (t) −
∞
∑

j=1

ajcj(t)
∣

∣

∣

L1

≤ 2κ

∞
∑

j=M

j|cj(t)|L1 .

Letting M → ∞ and using (2.20) then yield (2.21).

We now infer from (2.21), (2.20), (2.2), (2.4) and the Lebesgue dominated
convergence theorem that

Nk
∑

i=1

ajc
Nk

j →
∞
∑

i=1

ajcj in L1(ΩT ).

Similarly one shows that

Nk
∑

j=1

bjc
Nk

j →
∞
∑

j=1

bjcj in L1(ΩT ).

We conclude from (2.5), (2.10) and (2.21) that

cNk

1

Nk
∑

j=1

ajc
Nk

j → c1

∞
∑

j=1

ajcj in L1(ΩT ).

Notice that (2.3) and (2.20) imply that the solution constructed above be-
longs to X+, which completes the proof.

3. Conservation of mass, L∞-bounds, positivity and higher

moments. In this section, we investigate various properties of solutions
to (1.1)–(1.3). The following proposition shows that similarly to the case
without diffusion, each solution to (1.1)–(1.3) satisfies the conservation of
mass (1.5). It is worth pointing out that this is not true for the general
coagulation-fragmentation system (see e.g. [2]).

Proposition 3.1. If c = (ci)i≥1 is a solution to (1.1)–(1.3) then for each

t ∈ [0,∞) and M ≥ 1,

‖c(t)‖X = ‖c0‖X ,(3.1)
∞
∑

i=M+1

|ci(t)|L1 =

∞
∑

i=M+1

|c0
i |L1 +

t\
0

\
Ω

WM (c(s)) dx ds.(3.2)

P r o o f. Let N > M ≥ 1 and t ∈ (0,∞). Since ci is a nonnegative mild
solution to a linear heat equation with right-hand side in L1(ΩT ), initial
data in L1(Ω) and homogeneous Neumann boundary conditions, we have
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N
∑

i=M+1

gi|ci(t)|L1 −
N

∑

i=M+1

gi|c
0
i |L1 =

t\
0

\
Ω

N
∑

i=M+1

(gi+1 − gi)Wi(c) dx ds(3.3)

−
t\
0

\
Ω

gN+1WN (c) dx ds

+

t\
0

\
Ω

gM+1WM (c) dx ds,

for any gi ≥ 0, M + 1 ≤ i ≤ N + 1. Now the proof runs very similarly to [4,
Corollary 2.6]. By Definition 1.1 we have

lim
N→∞

t\
0

\
Ω

WN (c) dx ds = 0.

Setting gi = 1 in (3.3) and letting N → ∞ we obtain (3.2) (recall that
c(s) ∈ X+ for each s ∈ [0,∞)).

We next show that

(3.4) lim
N→∞

(N + 1)

t\
0

\
Ω

WN (c) dx ds = 0.

To this end notice that by Definition 1.1, c(t) ∈ X and

(3.5) lim
N→∞

(N + 1)
∞
∑

i=N+1

|ci(t)|L1 ≤ lim
N→∞

∞
∑

i=N+1

i|ci(t)|L1 = 0.

We then deduce from (3.2) that

∣

∣

∣
(N + 1)

t\
0

\
Ω

WN (c) dx ds
∣

∣

∣
≤ (N + 1)

∞
∑

i=N+1

|ci(t)|L1 + (N + 1)

∞
∑

i=N+1

|c0
i |L1 ,

and (3.4) follows from (3.5) and the above inequality.
We now set gi = i for M + 1 ≤ i ≤ N + 1 in (3.3) and let N → ∞ in the

resulting identity. Using Definition 1.1 and (3.4), we obtain

∞
∑

i=M+1

i|ci(t)|L1 −
∞
∑

i=M+1

i|c0
i |L1 =

t\
0

\
Ω

∞
∑

i=M+1

Wi(c) dx ds(3.6)

+ (M + 1)

t\
0

\
Ω

WM (c) dx ds.

Taking M = 1 in (3.6) and adding the first equation of (1.1) integrated over
Ω × (0, t) yield (3.1).

Our next result states further regularity properties with respect to space
and time variables of solutions to (1.1)–(1.3).
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Proposition 3.2. Let c = (ci)i≥1 be a solution to (1.1)–(1.3) such that

c0
i ∈ L∞(Ω) for each i ≥ 1 and c1 ∈ L∞(ΩT ) for some T > 0. Then also

ci ∈ L∞(ΩT ) for i ≥ 2.

The starting point for the proof of Proposition 3.2 is the following lemma.

Lemma 3.3. Let T > 0, f ∈ L1(ΩT ) and consider a mild solution u to

ut − D∆u + u = f in ΩT ,

∂u

∂ν
= 0 on ∂Ω × (0, T ),

u(0) = u0 in Ω,

where D > 0 and u0 ∈ L1(Ω). Then u ∈ Lp(ΩT ) for any p ∈ [1, (n + 2)/n)
and there is C(n,D, p) depending only on Ω, n, D and p such that

|u|Lp(ΩT ) ≤ C(n,D, p)(|u0|L1(Ω) + |f |L1(ΩT )), p ∈ [1, (n + 2)/n).

P r o o f. We denote by S(t) the C0-semigroup in L1(Ω) generated by
the operator −D∆ + Id with homogeneous Neumann boundary conditions.
Smoothing effects are available for S(t) and read (see e.g. [13, p. 25])

|S(t)z|Lp(Ω) ≤ C(n, p)t−(n/2)(1−1/p)|z|L1(Ω)

for z ∈ L1(Ω) and p ∈ [1,∞]. Using the integral representation of u, we
deduce that for t ∈ (0, T ) and p ∈ [1, (n + 2)/n),

|u(t)|Lp(Ω) ≤ |S(t)u0|Lp(Ω) +

t\
0

|S(t − s)f(s)|Lp(Ω) ds

≤ C(n, p)
(

t−(n/2)(1−1/p) +

t\
0

(t − s)−(n/2)(1−1/p) |f(s)|L1(Ω) ds
)

.

Since t 7→ t−(n/2)(1−1/p) belongs to Lp(0, T ) if p ∈ [1, (n + 2)/n) and f ∈
L1(ΩT ), the above estimate and Young inequality for time convolution yield
Lemma 3.3.

Proof of Proposition 3.2. We consider each equation separately. Let
T > 0 and i ≥ 2. Since ci is a mild solution to

∂ci

∂t
− di∆ci + ci ∈ L1(ΩT ), ci(0) ∈ L∞(Ω),

with homogeneous Neumann boundary conditions, we infer from Lemma 3.3
that

(3.7) ci ∈ Lp(ΩT ) for each p ∈ [1, (n + 2)/n).

Since (3.7) is valid for each i ≥ 2 and c1 ∈ L1(ΩT ), ci is in fact a mild
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solution to

∂ci

∂t
− di∆ci ∈ Lθ(n+2)/n(ΩT ),

n

n + 2
≤ θ < 1,

for each i ≥ 2. Classical Lp regularity theory for linear parabolic equations
([8]) then yields

ci ∈ W 2,1
θ(n+2)/n(ΩT ),

n

n + 2
≤ θ < 1.

From the imbedding theorem (see [8, Lemma II.3.3]) it follows that

(3.8)

{

ci ∈ L∞(ΩT ) for n = 1,
ci ∈ Lθ(n+2)/(n−2θ)(ΩT ) for n ≥ 2.

The latter result also reads, for n ≥ 2,

ci ∈ Lp(ΩT ) for 1 ≤ p <
n + 2

n − 2
and i ≥ 2.

To complete the proof we shall show that for each k ≥ 1 the following
statement (Ik) holds:

if n ≥ 2k then ci ∈ Lp(ΩT ) for 1 ≤ p <
n + 2

n − 2k
and i ≥ 2,

if 1 ≤ n < 2k then ci ∈ L∞(ΩT ) for i ≥ 2.

Notice that by (3.8), (I1) holds true. Now assume (Ik) for some k ≥ 1 and
consider n ≥ 2k. Since c1 ∈ L∞(ΩT ) we have

∂ci

∂t
− di∆ci ∈ Lθ(n+2)/(n−2k)(ΩT ),

n − 2k

n + 2
≤ θ < 1.

Hence, ci ∈ W 2,1
θ(n+2)/(n−2k)(ΩT ) and using again [8, Lemma II.3.3] we find

that

W 2,1
θ(n+2)/(n−2k)(ΩT ) →֒

{

L∞(ΩT ) if 2k ≤ n < 2k + 2,
Lθ(n+2)/(n−2(k+θ))(ΩT ) if n ≥ 2k + 2,

which yields (Ik+1).

We next turn to some positivity properties of solutions to (1.1)–(1.3).

Proposition 3.4. Assume that c = (ci)i≥1 is a solution to (1.1)–(1.3)
such that ‖c0‖X > 0 and c1 ∈ L∞(ΩT ) for some T > 0. Then for i ≥ 2,

ci(x, t) > 0 for (x, t) ∈ ΩT

after a possible modification on a set of measure zero.

P r o o f. Fix τ > 0 and set

E(τ) = {j ≥ 2 : cj(· , t) = 0 a.e. on Ω for t ∈ [0, τ ]}.
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We claim that E(τ) = ∅ for 0 < τ ≤ T . Assume that, on the contrary,
E(τ) 6= ∅ for some τ > 0, and put

i = min E(τ) ≥ 2.

By Definition 1.1 we have

ci(t) = ediL1tc0
i +

t\
0

ediL1(t−s)(ai−1c1ci−1 − bici − aic1ci + bi+1ci+1) ds.

Since i ∈ E(τ), for t = τ we obtain
τ\
0

ediL1(t−s)(ai−1c1ci−1 + bi+1ci+1) ds = 0.

However, ediL1t is a positive semigroup and using the definition of a solution
we conclude that for each t ∈ [0, τ ],

ai−1c1(· , t)ci−1(· , t) + bi+1ci+1(· , t) = 0 a.e. in Ω.

Thus, for each t ∈ [0, τ ],

c1(x, t)ci−1(x, t) = 0 for a.e. x ∈ Ω,(3.9)

ci+1(x, t) = 0 for a.e. x ∈ Ω.

Hence, proceeding by induction we may prove that in fact

E(τ) = {j ∈ N : j ≥ i}.

If i = 2 then (3.9) yields c1(· , t) = 0 a.e. in Ω for t ∈ [0 , τ ] , hence c(· , 0) = 0
a.e., which contradicts the assumption. Thus, i > 2.

Recall that ci−1 is a solution to

∂ci−1

∂t
− di−1∆ci−1 + bi−1ci−1 + ai−1c1ci−1 = ai−2c1ci−2 + bici.

Since ci = 0 on [0, τ ], for ε > 0 and t ∈ [0, τ ] we have

|(ci−1 − ε)+(t)|L1 ≤ |(ci−1 − ε)+(0)|L1(3.10)

+

t\
0

\
Ω

ai−2c1ci−2 sign((ci−1 − ε)+) dx ds,

where y+ = max(y, 0). It follows from (3.9) that for (x, s) ∈ Ω × (0, τ),

if ci−1(x, s) ≥ ε then c1(x , s) = 0,

if ci−1(x, s) < ε then (ci−1 − ε)+(x, s) = 0.

In both cases c1 sign((ci−1 − ε)+) = 0 a.e. and therefore from (3.10),

(3.11) |(ci−1 − ε)+(t)|L1 ≤ |(ci−1 − ε)+(0)|L1 for t ∈ [0, τ ].

Now we show that ci−1(0) = 0 a.e. in Ω. Assume that this is false; then

ci−1 ≥ f a.e. on Ω × (0, τ),
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where f(x, t) = e−(ai−1k1+bi−1)tF (x, t), k1 = |c1|L∞(ΩT ) and F is given by

(3.12)

∂F

∂t
− di−1∆ = 0 in Ω × (0, τ),

∂F

∂ν
= 0 on ∂Ω × (0, τ),

F (· , 0) = c0
i−1(·) in Ω.

Notice that (3.12) has a classical solution for t > 0 and the strong maximum
principle yields F (x, t) > 0 for t > 0, x ∈ Ω. Hence after a possible
modification on a set of measure zero, ci−1(x, t) > 0 on Ω×(0, τ ]. Therefore
it follows from (3.9) that c1(· , t) = 0 a.e. on Ω for t ∈ [0, τ ]. Then also
∑∞

j=1 ajc1cj = 0 a.e. on Ω for t ∈ [0, τ ]. Hence,

c1(t) = ed1L1tc0
1 +

t\
0

ed1L1(t−s)
∞
∑

j=1

bj+1cj+1(s) ds

and for t = τ ,
∞
∑

j=1

bj+1cj+1 = 0 a.e. on Ω × (0, τ).

Consequently, ci−1 = 0 a.e. in Ωτ and since ci−1 ∈ C([0, T ];L1(Ω)) we
conclude that ci−1(t) = 0 a.e. in Ω for t ∈ [0, τ ], contrary to the definition
of i.

Thus necessarily ci−1(0) = 0 a.e. in Ω and (3.11) yields

ci−1(· , t) = 0 a.e. in Ω for t ∈ [0, τ ].

This again contradicts the definition of i and the claim is proved.

To complete the proof fix j ≥ 2. Since E(τ) = ∅ there is a sequence
tk → 0 such that |cj(tk)|L1 > 0 for k ≥ 1. For fixed k ≥ 1 and t > tk we
have

cj(x , t) ≥ f(x, t − tk)

where f(x, t) = e−(bj+ajk1)tF (x, t) and

∂F

∂t
− dj∆F = 0 in Ω × (0, T − tk),

∂F

∂ν
= 0 on ∂Ω × (0, T − tk),

F (· , 0) = ci(· , tk) in Ω.

The strong maximum principle implies F > 0 and cj(x, t) > 0 for Ω×(tk , T ]
after a modification on a set of measure zero. Since tk → 0 the result
follows.
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Finally, we give examples of subspaces of X+ which are invariant through
the time evolution of solutions to (1.1)–(1.3).

Proposition 3.5. Assume (H1)(i) and consider a solution c = (ci)i≥1

to (1.1)–(1.3) such that c1 ∈ L∞(ΩT ) for some T > 0 and

(3.13)
∞
∑

i=1

gi|c
0
i |L1 < ∞

for some nondecreasing sequence (gi)i≥1 of nonnegative real numbers satis-

fying

(3.14) (gi+1 − gi)ai ≤ K0gi, i ≥ 2.

Then

sup
t∈[0,T ]

∞
∑

i=1

gi|ci(t)|L1 < ∞.

P r o o f. In the following we denote by K any positive constant depending
only on Ω, T , |c1|L∞(ΩT ),

∑

gi|c
0
i |L1 , g1 and K0. For N ≥ 2, we have

N
∑

i=2

gi|ci(t)|L1 ≤
N

∑

i=2

gi|c
0
i |L1 +

t\
0

\
Ω

N
∑

i=1

(gi+1 − gi)Wi(c) dx ds

−
t\
0

\
Ω

gN+1WN (c) dx ds +

t\
0

\
Ω

g1W1(c) dx ds.

Since (gi)i≥1 is nondecreasing, it follows from (3.14) and the nonnegativity
of (ci)i≥1 that

N
∑

i=2

gi|ci(t)|L1 ≤ K + K0

t\
0

\
Ω

N
∑

i=1

gic1ci dx ds

−
t\
0

\
Ω

gN+1WN(c) dx ds +

t\
0

\
Ω

g1a1c
2
1 dx ds

and so
N

∑

i=2

gi|ci(t)|L1 ≤ K
(

1 +

t\
0

N
∑

i=2

gi|ci(s)|L1 ds
)

(3.15)

−
t\
0

\
Ω

gN+1WN(c) dx ds.

From (3.2) and the monotonicity of (gi)i≥1 we infer that

(3.16) −
t\
0

\
Ω

gN+1WN (c) dx ds ≤ gN+1

∞
∑

i=N+1

|c0
i |L1 ≤

∞
∑

i=N+1

gi|c
0
i |L1 .
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We now combine (3.15) and (3.16) to find

N
∑

i=2

gi|ci(t)|L1 ≤ K
(

1 +

t\
0

N
∑

i=2

gi|ci(s)|L1 ds
)

.

Applying the Gronwall lemma gives

N
∑

i=2

gi|ci(t)|L1 ≤ K(1 + eKt).

We let N → ∞ to complete the proof.

Remark 3.6. It is easy to see that if (H1)(i) holds, then gi = iα, i ≥ 1,
for some α > 1 satisfies (3.14), and so does gi = i ln i, i ≥ 1.

Remark 3.7. Notice that the solutions constructed in Theorem 2.4
satisfy the assumption c1 ∈ L∞(ΩT ) . Therefore the conclusions of both
propositions above are valid for those solutions.

4. Uniqueness. In this section, we investigate uniqueness of solutions
to (1.1)–(1.3). We notice that, so far, we have not been able to prove
uniqueness results comparable to that for the case without diffusion (see [4,
Theorem 3.6]). We first state a uniqueness result under some a posteriori

conditions on the solution to (1.1)–(1.3). The remainder of the section
is then devoted to verifying that in some cases, solutions to (1.1)–(1.3)
satisfying those conditions do exist.

Proposition 4.1. Under the hypothesis (H1)(i) there exists at most one

solution c = (ci)i≥1 to (1.1)–(1.3) satisfying for some T > 0,

(4.1.)
∞
∑

i=1

iai|ci|L∞(Ω) ∈ L∞(0, T ).

P r o o f. Let c and v be two solutions to (1.1)–(1.3) with

(4.2) c1 ∈ L∞(ΩT ), v1 ∈ L∞(ΩT ),

and put yi = ci − vi , i ≥ 1. In the following, we denote by K any positive
constant depending only on Ω, T , κ, |c1|L∞(ΩT ) and |v1|L∞(ΩT ). Let N ≥ 2.
Since −di∆ is an accretive operator in L1(Ω) for each i ≥ 1, we have

(4.3)

N
∑

i=1

i|yi(t)|L1 ≤
t\
0

\
Ω

∞
∑

i=N

(|Wi(c)| + |Wi(v)|) dx ds
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+

t\
0

\
Ω

N−1
∑

i=1

(Wi(c) − Wi(v))[(i + 1) sign(yi+1) − i sign(yi) − sign(y1)] dx ds

−
t\
0

\
Ω

N(WN (c) − WN (v)) sign(yN ) dx ds.

Computations similar to those of [4, p. 675] give

(4.4) Wi(c) − Wi(v) = ai(v1yi + y1ci) − bi+1yi+1

and

(4.5) [Wi(c) − Wi(v)][(i + 1) sign(yi+1) − i sign(yi) − sign(y1)]

= v1ai|yi|[(i + 1) sign(yiyi+1) − i − sign(yiy1)]

+ |y1|aici[(i + 1) sign(yi+1y1) − i sign(yiy1) − 1]

− bi+1|yi+1|[(i + 1) − i sign(yiyi+1) − sign(yi+1y1)]

≤ 2(v1ai|yi| + iaici|y1|).

Combining (H1)(i), (4.2), (4.3) and (4.5) yields

N
∑

i=1

i|yi(t)|L1 ≤
t\
0

\
Ω

∞
∑

i=N

(|Wi(c)| + |Wi(v)|) dx ds(4.6)

+ K

t\
0

\
Ω

(

N−1
∑

i=1

i|yi| + |y1|
N−1
∑

i=1

iaici

)

dx ds

−
t\
0

\
Ω

N(WN (c) − WN (v)) sign(yN) dx ds.

Next we have for M > N ,

M
∑

i=N+1

|yi(t)|L1 ≤
t\
0

\
Ω

M−1
∑

i=N

(sign(yi+1) − sign(yi))(Wi(c) − Wi(v)) dx ds

+

t\
0

\
Ω

sign(yN )(WN (c) − WN (v)) dx ds

−
t\
0

\
Ω

sign(yM )(WM (c) − WM (v)) dx ds,

hence by (4.4),
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M
∑

i=N+1

|yi(t)|L1 ≤
t\
0

\
Ω

M−1
∑

i=N

((aiv1|yi| + bi+1|yi+1|)(sign(yi+1yi) − 1)) dx ds

+ 2

t\
0

\
Ω

|y1|
M−1
∑

i=N

aici dx ds

+

t\
0

\
Ω

sign(yN )(WN (c) − WN (v)) dx ds

−
t\
0

\
Ω

sign(yM )(WM (c) − WM (v)) dx ds.

Since |sign(yM )| ≤ 1, the first term of the right-hand side of the above
estimate is nonnegative and we may let M → ∞ and use Definition 1.1 and
(H1)(i) to obtain

∞
∑

i=N+1

|yi(t)|L1 ≤ K

t\
0

\
Ω

∞
∑

i=N

aici dx ds

+

t\
0

\
Ω

sign(yN )(WN (c) − WN (v)) dx ds,

hence

(4.7) −N

t\
0

\
Ω

sign(yN )(WN (c) − WN (v)) dx ds ≤ K

t\
0

\
Ω

N
∞
∑

i=N

aici dx ds.

Combining (4.6) and (4.7) finally gives

N
∑

i=1

i|yi(t)|L1 ≤
t\
0

\
Ω

∞
∑

i=N

(|Wi(c)| + |Wi(v)|) dx ds(4.8)

+ K

t\
0

\
Ω

(

N−1
∑

i=1

i|yi| + |y1|
N−1
∑

i=1

iaici

)

dx ds

+ K

t\
0

\
Ω

N
∞
∑

i=N

aici dx ds.

The proof is now almost complete. Using (4.1), we obtain

N
∑

i=1

i|yi(t)|L1 ≤
t\
0

\
Ω

∞
∑

i=N

(|Wi(c)| + |Wi(v)|) dx ds + K

t\
0

∞
∑

i=N

iai|ci|L∞(Ω) ds

+ K

t\
0

\
Ω

(

N−1
∑

i=1

i|yi| +
(

∞
∑

i=1

iai|ci|L∞(Ω)

)

|y1|
)

dx ds.
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Owing to Definition 1.1, (3.1) and (4.1), we may let N → ∞ in the above
estimate and obtain

∞
∑

i=1

i|yi(t)|L1 ≤ K ′

t\
0

∞
∑

i=1

i|yi(s)|L1 ds

for some constant K ′ depending on Ω, T , κ and the L∞(0, T )-norms of
∑

iai|ci|L∞(Ω) and
∑

iai|vi|L∞(Ω). Proposition 4.1 then follows from the
above inequality by the Gronwall lemma.

Though Proposition 4.1 is stated in a rather general way, it turns out
that we are, unfortunately, not able to construct a solution to (1.1)–(1.3)
satisfying the requirements of Proposition 4.1 in the general case (compare
(4.1) or (4.3) to (3.1)). Still, assuming the initial data c0 = (c0

i )i≥1 to be
sufficiently decreasing with respect to i, we have the following result.

Theorem 4.2. Assume that (H1)–(H2) hold and there are α ∈ [0, 1],
β ≥ 0 and an integer k > n/2 such that

ai ≤ K0i
α, i ≥ 1,(4.9)

K1i
−β ≤ di ≤ K2, i ≥ 1,(4.10)

for some positive real numbers Kj , j = 0, 1, 2, and

(4.11)
∞
∑

i=1

i1+α+(α+β)k |c0
i |L∞(Ω) < ∞.

Then (1.1)–(1.3) has a unique solution c = (ci)i≥1 with c1 ∈ L∞(ΩT ) for

any T > 0.

The key point of the proof of Theorem 4.2 is the following lemma.

Lemma 4.3. Assume that (H1)–(H2) and (4.9)–(4.10) hold and consider

a solution c = (ci)i≥1 to (1.1)–(1.3) satisfying

∞
∑

i=1

iλ|c0
i |L∞(Ω) < ∞,(4.12)

∞
∑

i=1

iα+β+λ|ci|Lp(Ω) ∈ L∞(0, T ) and c1 ∈ L∞(ΩT ),(4.13)

for some positive real numbers λ, T and p ∈ [1,∞]. Then

(4.14)

∞
∑

i=1

iλ|ci|Lq(Ω) ∈ L∞(0, T ),
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where

(4.15) q ∈







[1, np/(n − 2p)) if n > 2p,
[1,∞) if n = 2p,
[1,∞] if n < 2p.

P r o o f. We denote by K any constant depending only on Ω, T , (κ, γ) in
(H1), |c1|L∞(ΩT ), α, β, K0, K1 and K2. We first consider the case n > 2p.

Let q ∈ [1, np/(n− 2p)). For i ≥ 2, we infer from (1.1), (H1), (4.13) and
[13, p. 25] that, for t ∈ (0, T ),

|ci(t)|Lq(Ω)

≤ |c0
i |Lq(Ω)

+ K

t\
0

min(1, di(t − s))−(n/2)(1/p−1/q) |Wi−1(c(s)) − Wi(c(s))|Lp(Ω) ds

≤ K(q)
(

|c0
i |L∞(Ω)

+ iβ
t\
0

(

i+1
∑

j=i−1

jα|cj |Lp(Ω)

)

min(1,K1(t − s))−(n/2)(1/p−1/q) ds
)

.

Summing up the above inequalities with respect to i, we obtain for M ≥ 2
and t ∈ (0, T ),

M
∑

i=2

iλ|ci(t)|Lq(Ω)

≤ K(q)
(

∞
∑

i=1

iλ|c0
i |L∞(Ω)

+

t\
0

min (1,K1(t − s))
−(n/2)(1/p−1/q)

∞
∑

i=1

iα+β+λ|ci|Lp(Ω) ds
)

.

Since q ∈ [1, np/(n − 2p)), it follows from (4.12) and (4.13) that the right-
hand side of the above estimate is bounded uniformly with respect to M ≥ 2
and t ∈ (0, T ), hence (4.14) holds by the monotone convergence theorem.

The cases n = 2p and n < 2p are then handled by a similar argument.

Proof of Theorem 4.2. Let c = (ci)i≥1 be a solution to (1.1)–(1.3) with
c1 ∈ L∞(ΩT ) for any T > 0. We fix T > 0 and claim that

(4.16)

∞
∑

i=1

i1+α|ci|L∞(Ω) ∈ L∞(0, T ).
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We first consider the case n = 1. It follows from (4.11) and Proposi-
tion 3.5 that

(4.17)
∞
∑

i=1

i1+α+(α+β)k |ci|L1(Ω) ∈ L∞(0, T ).

Hence by Lemma 4.3 (with p = 1 and λ = 1 + α + (α + β)(k − 1))

∞
∑

i=1

i1+α+(α+β)(k−1)|ci|L∞(Ω) ∈ L∞(0, T ),

which yields (4.16) since k ≥ 1.

Assume next that n ≥ 2. Again, we first infer from (4.11) and Proposi-
tion 3.5 that (4.17) holds. We put ℓ0 = n/2 if n is even and ℓ0 = (n − 1)/2
if n is odd, and pl = n/(n − 2l) for l ∈ {1, . . . , ℓ0}.

Step 1. We prove that for each l ∈ {1, . . . , ℓ0} and q ∈ [1, pl),

(4.18)
∞
∑

i=1

i1+α+(α+β)(k−l)|ci|Lq(Ω) ∈ L∞(0, T ).

We proceed by induction. It first follows from (4.11), (4.17) and Lemma 4.3
(with p = 1 and λ = 1 + α + (α + β)(k − 1)) that (4.18) holds for l = 1.
Assume that it holds for some l ∈ {1, . . . , ℓ0 − 1}, i.e.

(4.19)

∞
∑

i=1

i1+α+(α+β)(k−l)|ci|Lq(Ω) ∈ L∞(0, T )

for each q ∈ [1, pl). Owing to (4.11) and (4.19), we may apply Lemma 4.3
(with p = q and λ = 1 + α + (α + β)(k − l − 1)) and obtain

∞
∑

i=1

i1+α+(α+β)(k−l−1)|ci|Lr(Ω) ∈ L∞(0, T )

for each r ∈ [1, nq/(n − 2q)) and q ∈ [1, pl) (observe that q < pl and
l ≤ ℓ0 − 1 imply that 2q < n). Since this is valid for each q ∈ [1, pl) and
r ∈ [1, nq/(n− 2q)), and pl+1(n− 2pl) = npl, we conclude that (4.18) holds
for l + 1.

Step 2. We now infer from (4.18) with l = ℓ0 that

(4.20)
∞
∑

i=1

i1+α+(α+β)(k−ℓ0)|ci|Lq(Ω) ∈ L∞(0, T )

for each q ∈ [1, pℓ0 ). Since pℓ0 = ∞ if n is even and pℓ0 = n if n is odd, (4.20)
is true for q = (2n + 1)/4 ∈ (n/2, n), which yields, together with (4.11) and
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Lemma 4.3 (with p = (2n + 1)/4 and λ = 1 + α + (α + β)(k − ℓ0 − 1)),

(4.21)

∞
∑

i=1

i1+α+(α+β)(k−ℓ0−1)|ci|L∞(Ω) ∈ L∞(0, T ).

Since k > n/2 is an integer, we have k ≥ ℓ0 + 1 and (4.16) follows at once
from (4.9) and (4.21).

Consequently, under the assumptions of Theorem 4.2, any solution c =
(ci)i≥1 to (1.1)–(1.3) with c1 ∈ L∞(ΩT ) for any T > 0 satisfies (4.16) for
each T > 0. We then infer from Proposition 4.1 that under the assumptions
of Theorem 4.2, (1.1)–(1.3) has at most one solution c = (ci)i≥1 with c1 ∈
L∞(ΩT ) for any T > 0. Since Theorem 2.4 provides the existence of such a
solution, the proof of Theorem 4.2 is complete.

Remark 4.4. Notice that Theorem 4.2 implies uniqueness of solutions in
the physically important situation in which the coagulation-fragmentation
process starts from a single concentration of monoclusters.
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