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EXACT NEUMANN BOUNDARY CONTROLLABILITY
FOR SECOND ORDER HYPERBOLIC EQUATIONS

BY

WEIJIU LIU ano GRAHAM H. WILLIAMS (WOLLONGONG, N.S.\W.)

Using HUM, we study the problem of exact controllability with Neu-
mann boundary conditions for second order hyperbolic equations. We prove
that these systems are exactly controllable for all initial states in L2(£2) x
(H'(£2)) and we derive estimates for the control time 7'

0. Introduction and main result. Let {2 be a bounded domain (open,
connected, and nonempty) in R™ (n > 1) with suitably smooth boundary
I'=08. For T >0,set Q=02x(0,7) and ¥ =1 x (0,T).

The aim of this paper is to discuss the problem of exact controllability
for second order hyperbolic equations with Neumann boundary control

n

9 Oy .
y' - Z %<aij($at)%j>: 0 inQ,

(2

ij=1
(0.1) y(0) =y° y'(0)=y! in £,
Jdy
_ 5.
oo 10} on

In (0.1), the a;;(x,t) are suitably smooth real-valued functions with a;;(x,t)
= aji(z,t),4,5=1,...,n, and

"0 0

i,j=1

The co-normal derivative dy/dv 4 with respect to A is equal to
n
dy
Z aij(.%', t)yl 1. )
i,j=1 J
and v = (v1,...,V,) is the unit normal on I" pointing towards the exterior
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of 2. Further, y' = 9y/ot, y(0) = y(z,0), ¥y’ (0) = y'(x,0), and ¢ is a
boundary control function.

More precisely, the problem of exact controllability can be stated as
follows:

Given T > 0, for any initial state (y°,y') and any terminal state (2°, 2)
in a suitable Hilbert space H, find a boundary control ¢ such that the solution

y=vy(z,t;¢) of (0.1) satisfies
(0.3) y(@,T;¢) = 2°, (2, T;¢) =2"  in 0.

Since system (0.1) is linear, it is sufficient to look for controls driving
the system (0.1) to rest, i.e.,

(0.4) y(x, T;¢) =0, y(x,T;¢6)=0 in 2.

Throughout this paper, we will adopt the following notation. Let 2°(¢) €
C1([0,00); R™), and set

(0.5) m(z,t) =z —2°(t) = (2 — 2(t), ..., 20 — 20(t))
= (my(x,t),...,my(x,t)),

(0.6) E(mo):{( t) e X :m(x,t) kaxtuk >0},
(0.7) 2. (a%) = X — 2(2"),

8)  I'(2%0)) ={z eI :m(z,0) v(z) >0},

9)  X(a°(0)) = I'(2°(0)) x (0, T),
(0.10) R(t) = irleag|m z,t)| = max ‘ Z xp — 0 (t ‘1/2,

s g|/2

011)  Ra(r) = max (x| = glea;;‘ ];«x%) O
(0.12) Ry = Jmax R(t).

Before stating the main results of this paper, we impose certain condi-
tions on a;;. We suppose

a;j(z,t),a ZJ(uv,t) al(xz,t) € C(]0,00); L (£2)),

» Yy
1 i t .
(0.13) MELOO(QX(O,OO)), L,jh,k=1,....n
&ck

and there exists a constant o« > 0 such that

(0.14) aij(z, )& > al¢)?,  VEER™, Y(x,t) € Q.
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Here and in the sequel, we use the summation convention for repeated in-
dices, for example,

n

aij(x,t)&& = Z aij(x,1)6&;.

ij=1
Set
_n g
(0.15) a(t) = max max|a; (1),
n da;;(x,t)
0.16 b(t) = — — L
(019 0= s, |
If
(0.17) a(t),b(t), Ry (t) € L*(0,00),
we set
Ry - [ R1]lo,1

0.18 Ty = | Rollb 21 llallo,1 10,1 ) 2|allo1
©018) o= (Rolblos + S2 el + 0Lt
where || - ||o,1 denotes the norm of L'(0, 00). Furthermore, if
(0.19) aj;(w,1)&E& <0, V(x,t) € 2x[0,00), &€ R,
or
(0.20) aj;(w,t)&€ >0,  V(x,t) € 2x[0,00), &€ R,

then Ty can be refined slightly to

2R R
(0.21) Ty = <Ro||b||o,1 + 20 M)enallo,l’

va 'l Va

or
(0.22) To = (RpoHo,1 + %(1 + e llalloy %)e”“”m.
If

(0.23) a(t),b(t), Ry (t) € L>(0,00),

we suppose

(0.24) 3Rollallo,c0 + Rov/ex [[bllo,co + 1 Rillo,ec < Ve,

where || - ||0,00 denotes the norm of L>°(0, 4+00).

In the sequel, W*P({2) denotes the usual Sobolev space and || - |5, its
norm for any s € R and 1 < p < oo. We write H*(§2) for W*2(§2) and || ||
for [ .

We now state the main result as follows.

THEOREM 0.1. Let {2 be a bounded domain in R™ with the boundary I' of
class C?. Suppose (0.13) and (0.14) hold and X (x°(0)) C X (2°). If either
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(0.17) holds and T > Ty or (0.23) and (0.24) hold and T is large enough so
that

(0.25) 3Rollallo,cc + Rov/albllo,co + | R1lo,00 <
then for all initial states
(y".y') € L*(2) x (H'(2))",

JaT — 2R,
T b

there exists a control
¢ _ ¢0 on Z(CEO),
Tl ¢ on X.(zY),
with ¢o € (HY(X(2?)))" and ¢1 € (HY(X.(2)))" such that the solution
y=1y(x,t;¢) of (0.1) satisfies (0.4).
COROLLARY 0.2. Under the conditions of Theorem 0.1, if X, (2°) = 0,
then for all initial states

°,y") € L*(2) x (H' (2)),
there exists a control

€ (H'(0,T; L*(I)))'
such that the solution y = y(w t;9) o (O 1) satisfies (0.4).

REMARK 0.3. X, (2°) = 0if 2°(t) = 2o and 2 is star-shaped with respect
to 29 (see [13]).

The method of proof of Theorem 0.1 uses multiplier techniques and the
Hilbert Uniqueness Method (HUM for short) introduced by Lions [9].

We now compare our result with the existing literature. The problem of
exact controllability for second order hyperbolic equations for both Dirich-
let and Neumann boundary controls has been extensively studied. The first
work for Dirichlet boundary controls was done probably by Komornik [5],
who dealt with the wave equation with variable coefficients but not depend-
ing on time by using HUM. Later the time-dependent case was considered
by Apolaya [1] and Miranda [11]. In addition, making use of the theory of
pseudodifferential operators, Bardos, Lebeau and Rauch [2] considered the
Neumann boundary controllability with rather smooth coefficients and do-
mains 2. The control considered in this paper is of Neumann type and the
coefficients and domain (2 are required to be less smooth. Generally speak-
ing, Neumann control is more delicate than the Dirichlet one. We also allow
for the case when X (z°) is not a cylinder of a form X (z") = I'(2°) x (0,7),
where 20 is independent of ¢, and give delicate estimates for the control time
Ty as given in (0.18) and (0.25). Further, the condition (0.24) generalizes
condition (3) of [5].

The rest of this paper is divided into four parts. Section 1 is devoted
to a discussion of the regularity of solutions of Neumann boundary value
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problems. We then establish an identity for the solution in Section 2. Using
the identity, we obtain an observability inequality in Section 3. We prove
Theorem 0.1 in Section 4.

1. Regularity of solutions. We first give some preliminary results on
solutions of the following Neumann boundary value problem:

u —Au=f in Q,
— 0 4 — 1
(1.1) ua(g)—u , u(0)=wu" in £,
o >
B 0 on

Throughout this paper, it is assumed that there is a > 0 such that
(1.2) aij(z, )€€ > al€)?,  VEER™, (x,t) € 2 x [0,T].

Let X be a Banach space. We denote by C*([0,T]; X) the space of all k
times continuously differentiable functions defined on [0,7] with values in
X, and write C([0,T]; X) for C°([0, T); X).

By Example 3 of Chapter XVIII of [3], we have

THEOREM 1.1. Let {2 be a bounded domain in R™ with Lipschitz boundary
I'. Suppose that

(1.3) aij(z,t),a;;(x,t) € C([0,T]; L>(82)), 4,j=1,...,n.

Then, for (u%,u, f) € HY(2) x L*(£2) x L*(0,T; L*(£2)), problem (1.1) has
a unique solution with
(1.4) € C([0,T]; H' (£2)) N CH([0, T]; L*($2)).

Moreover, there exists a constant ¢ = ¢(T') such that

(L5)  ulleqo,m @) + 1v'lleqo 22 0)
< clllu’lls + 1wt flo + 11£11 L2 0,15 22(2)))-

A solution to (1.1) which satisfies (1.4) is called a weak solution.
Set

(1.6) W0, T; L2(2)) = {f : f, [/ € LY(0,T; L*(£2))}
with norm
(1.7) £ lwra = (T o z2 0oy + 1130 0,min200) %
and
2 ou
(1.8) D(A) = ue H(2): — =0¢.
aVA

We will need the following regularity result.
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THEOREM 1.2. Let {2 be a bounded domain in R™ with boundary I' of
class C?. Suppose that

aij (@, 1), ag;(w,t), aj(x, t) € C([0,T]; L>(£2)),
(1.9) Ja;j(z,t)
oy
Assume that (u®,u') € D(A) x HY($2).
(i) If f € WHY0,T; L%(£2)), then problem (1.1) has a unique solution
with
(1.10)  we C([0,T); D(A)) N C'([0,T); H' (£2)) N C*([0, T]; L*(£2)).

€eL®Q), ijk=1,...,n.

Moreover, there exists a constant ¢ = ¢(T') such that
(111 (@l + [[v' @)l
< cllu’llz + ully + 1 e o,mn22p), Ve €[0T,
(i) If f € LY(0,T; H(£2)), then problem (1.1) has a unique solution with
(1.12) u e C([0,T]; D(A)) N CH([0,T); H (£2)).
Moreover, there exists a constant ¢ = ¢(T') such that
(1.13)  Ju(®)l2 + [/ )2
< cfl|u’llz + utlls + I fllLro,rmr o)), V€ [0,T).
A solution satisfying (1.12) is called a strong solution.

Proof. We first prove (1.11). To this end, we first suppose that f €
D((0,T); L*(£2)) (the space of all infinitely differentiable functions with sup-
ports in (0,7) and values in L?(£2)). Set

(1.14) a(t;u(t),v(t)) = | ai;(z,1) &gz 2 ava(i; 2,

2
(1.15) d (tu(t), o(t) = | af;(x, 1) aua(?t) ava(i’.t) dz,
0 7 J
S

ou(zx,t) ov(x,t)

a;;(z,t) oz, oz, dzx.

(1.16) a”’ (t;u(t),v(t)) =

Let (-, -) denote the scalar product in L?(§2). For any v€ H'(§2), multiplying
(1.1) by v and integrating over (2, we obtain

(1.17) (W' (t),v) + a(t; u(t),v) = (f(t),v).
Differentiating (1.17) with respect to t, we get
(1.18) (W (t),v) + a' (t;ut),v) + alt;u' (t),v) = (f'(t),v).
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Replacing v by «”(t) in (1.18) gives
(1.19)  [(@"(2),w" (1)) + a(t; u' (), ' (1))

+2d/ (tu(t), u” (1)) — o' (t0/(8), W' (8)) = 2(f'(£), u" (1))
But
(1.20)  a(tu(t), u” (1)) = [o (t; u(t), v (1))

—a (Eule), o (1) — (6 (1), (1),
Integrating (1.19) from 0 to ¢ and using (1.20), we have
(121) " ()5 + alt, ' (1), /(1))
= [[u"(0)II5 + a(0,(0), v/ (0))
+2a’(0,u(0),u’(0)) — 2a’ (¢, u(t),u (t))

+3\d(s u'(s))ds

S
0
—|—2§a” ds+2§ (s))ds.
0 0

(

It therefore follows from (1.2), (1.9) and (1.21) that (the following ¢’s de-
noting various constants depending on a, «, T)

o
[ @15 + llVe' @)l < IV @)llg + C[Hu”(o)H% + a5 + [l

t

(I + § (lal)IF + [ (s)[17) ds

0

+ max [ (3)llo § 11/ (5)o ds|
0

0<s<t

which, by adding ||u’(¢)]|3 to both sides of the above inequality, implies
(122) "5+ [l (D17
< C[Hu"(o)H% + [l 1+ 1T+ e+l @1

t ¢
+§ ()T + ' ()11 )ds + max [u"(s Mo Y11 ()l dS}-
0 0
But u(t) = u® + S(t) u'(s)ds and v/ (t) = u' + S(t) u'’(s) ds yield respectively
¢

(1.23) lu()lls < Jlu®lls + e’ (s ds
0
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and
t

(1.24) e @)llo < lluflo + § lu” (5)llo ds.
0

In addition, by (1.1) we have
(1.25) u”(0) = Au® + f(0) = Au®.
So we deduce from (1.22)—(1.25) that
(126)  [lu" (@) + o' (DT
< c[IlUB + I 13 + 1513 0,72y
t
4T (I + I (3)2) ds] + & ma " (3)]3,

2 0<s<t
0

from which, setting

o " 2 / 2
(1.27) w(t) = mas (" ()] + ]/ (9)]13).
we deduce
t
(128)  w(t) < e[ Iull3 + I3 + 1S s oz + §w(s) ds]

0
Gronwall’s inequality (see [4, p. 36]) shows
(1.29) w(t) < c[llu’ll3 + l[ulIF + 117 0,722 ()

This implies (1.11). By a density argument, we can show (1.11) still holds
for f € WH(0,T; L?(92)).

Now we prove (1.10). Using the proof of Theorem 8.2 of [10, Vol. I,
p. 275] and (1.7) of [10, Vol. II, p. 97], we can prove

(1.30) u e CH[0,T]; H' (22)) n C*([0,T); L*(12)).

On the other hand, by inequality (6.7) of [7, p. 66] and Remark 6.2 of
[7, p. 77], we have

(1.31) lu@®)3 < erl| Au()|[§ + callu(®)]13
< cfllu” 5 + [lu@®g + 1f ©)l5)-
It follows from (1.1) and (1.31) that
(1.32)  [lu(ts) — ult2)ll3
< cfllu(tr) = u" (t2) 1§ + [lu(tr) — u(t2)[§ + 11f(t:) — f(E2)II5)-
Thus, the continuity of v” and f implies

(1.33) u € C([0,T]; D(A)).



EXACT NEUMANN BOUNDARY CONTROLLABILITY 125

It remains to prove (1.13). Multiplying (1.1) by (Au)" and integrating
over {2, we obtain

(1.34)  (Au(t), (Au(t))") + a(t;u'(t),u" (t)) + o’ (t; u(t),

Combining this and (1.20) gives

(1.35)  $[(Au(t ) Au(t)) + a(t; ' (¢), 4/ (t))]
= 5/ (Hu/ (1), v/ () + a” (G u(t), u' (1) — o (& u(t), w' (1))
+a(tu() f@) +ad (tu(t), f(1)).
Integrating (1.35) from 0 to ¢, we have

(1.36)  [Au(®)]g + alt,u'(t), /(1))
= HAUO Hg + a(0, ul(0)7 uI(O)) + 20’,(07 u(0)7 ul(o)) - 2al(t7 u(t)v u,(t))
a'(s,u'(s),u'(s))ds + 2 S a”(s,u(s),u'(s))ds
0

+3

+2\[a(s;u'(s), f(5)) +a(s;u(s), f(s))] ds.

Oty O ey

It therefore follows from (1.2), (1.5), and (1.36) that there exists a constant
¢ =¢(T) > 0 such that

(L37) [l Au(®)I§ + [IVu' ()13

t
< e/l + I 15 + 113 050 ) + § 1V ()15 s
0

2
+ 3 s [V ()],
from which, as in the proof of (1.29), we deduce
(138)  [lAu®§ + V' @ONF < elllu®l3 + [l IF + 117 0 711 2]

Thus (1.13) follows from (1.5), (1.31), and (1.38). Finally, (1.12) is a conse-
quence of (1.13) through a density argument. m

2. An identity. We are now in a position to establish an identity which
is indispensable for obtaining an observability inequality in the following
section.
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We define the energy of the solution u of (1.1) with f =0 by

(2.1) E(t) = % | [/ (2, t)]? o + %a(t;u(t),u(t)).
2
Then
(2.2) B/(1) = o/ (1 u(t), u(t),
and
(2.3) E(t) = E(0) + % Sa'(s; u(s),u(s)) ds,
0

where a(t;u(t),u(t)) and o' (t;u(t),u(t)) are given by (1.14) and (1.15),
respectively.

For the coming calculation, we introduce the notion of tangential differ-
ential operators with respect to A which are similar to those introduced in
[9, p. 137].

Let {2 be a bounded domain with a Lipschitz boundary I'. Since by
(1.2) we have a;;(z, t)v;v; > a, the vector va = {371 as;(x,t)v; }j_; is not
tangential to I" for almost all z € I'. Thus, we can define a tangential vector

field {74 (x)}7Z] such that{va(z),75(z),..., 74 ' (x)} forms a basis in R™
for almost all zel. ‘ '
For a smooth function wu, there exist 37, fyZ’] G=1,....,n; k=1,...
.,n — 1) depending on {va(z),7}(z),..., 74 ' (z)} such that
du i du | N~ g, Ou
2.4 e I, withj=1,...,n.
( ) 8.%. /BAaVA+I;7 aI]X on i, wi J ) ,
Set
n—1 Ou
(2.5) JJAu:Z'yZ’J—k, j=1,...,n.
— ori
Then
ou . Ou
2.6 =) 7— + o
( ) 8.%'j BA aVA + J Y
Evidently, o ( j=1,...,n) are independent of the choice of the tangential
vector field {7’ HE Therefore we obtain a family of first order tangen-
tial differential operators a (j=1,...,n) on I" with respect to A. We can
define the tangential gradlent of u on F by
(2.7) Vyau = {afu};-‘zl
For any subset X7 of X', the O'JA (j =1,...,n) are linear and continuous

from H'(X) to L?(X1). Set
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28 4, = Yoy,

j=1
where (0'3-4)* denotes the adjoint of O'JA. Then the operator —Agl is linear
and continuous from H'(X) to (H'(X1))" and satisfies

(2.9) (— A% u,v) = S VoauVoavdX, Yu,ve€ H'(X)).
P
LEMMA 2.1. Let §2 be a bounded domain in R™ with boundary I of class

C?. Let q = (qi) be a vector field in [C*(£2 x [0,00))]™. Suppose u is a weak
solution of (1.1). Then the following identity holds:

1
(2.10) 3 S qevi(|u']? — aij(x,t)afuafu) dX
b5

ou \|* Ou Jqr Ou
_ /
= (u (t)’%—&rk> ) + S a;;(z, t)(?x] o, 0ty dx dt
Q
1 ¢ Ogx 9 Ou Ou
+5 | o <|u| — iz, t)5— ax]>d dt
Q
1 Oa;j(x,t) Ou Ou
= ——d dt
) X e Oz, Ox; Ox;
Q
— S qk%fd:cdt — S u'q;% dx dt,
axk Q axk

where
ou o ou
(v angr) = S0 i

REMARK 2.2. If n = 1, then (2.10) becomes
T

(2.10) % S qu|u' | dX = (u'(t),q%>

ou 26q
0‘%2@@%tﬂz&ﬁ agdxdt

1c0q/( ,o ou|?

+§S—x<]u\ —a(w,t)'% dx dt
Q

1¢ da(z,t)|oul’

—§(§)q ox x d dt

0 ou
- é}q%fdxdt - gu'q'% dx dt.
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Proof (of Lemma 2.1). We first prove (2.10) in the case of strong
solutions, that is, we assume initial conditions (u®,u') € D(A) x H(£2)
and f € LY(0,T; H'(£2)). Multiplying (1.1) by g,0u/dz} and integrating on
@, we have

ou ou 0 ou
2.11 —” — —_—
(2.11) S qk axku dxdt S Ty o1 07 (aw(x t)ax] )dw dt
Q Q
= S qu—uf dx dt.
Q Ok
Integrating by parts, we obtain
T
(2.12) S qk%u” drdt = (v (t),qp=— Ou + 1 S %\u'\Q dzx dt
aCUk axk 0 2 T
Q Q
ou 1 9

— S 'q}ca—xkdxdt -3 iqkuklu’\ ax

and
ou 0 ou
2.1 — izt dx dt
(2.13) X kaxka <a](3: )8%) €
0 ou
S aiy (@ 63:] 0x; <Qk axk>dx dt
Q
dqr Ou 0%u

éa” (93:] <8CCZ Oy + 0z, 0x; du dt.

But

Ou O
axj e 6mk6xl

1 0 ou Ou Oa;j(x,t) Ou Ou
2 é}qk<3xk <a”( o 0x; 3@) x, O Ox; )d dat

dzx dt

2.14) | ai(at)
Q

1 ou Ju 1 dai;(z,t) du du
_1 ‘ el Y _ el Sk i
2 i%”kaw(x?t)axi oz, d 2 (qu Ox,  Ox; Ox; de dt
1 ¢ Oqu ou Ou
“3) Jary 90 ) g i, 0t

By (2.13) and (2.14), and noting that du/dx; = of'u on X, we have
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ou 0 ou
2.1
(2.15) é}qka o (aw(x t)axj )dmdt
1 A A Ou Oqi, Ou
- _= y AvoAudy — -
5 éqkuka” (z,t)o; uojud S a;j(z, t)axj o, Oy dx dt
1 Oa;j(z,t) Ou Ou 1 Oqx ou Ou
It follows from (2.11), (2.12) and (2.15) that
1
3 quuk(\ul — ai;(x, t)o; ua]A )dx
b
ou \ | ou 0q; Ou
— (W' (), qp—os it 2 dzdt
(u()’Qkaxk>0+Xa’](l‘ )8.7]] 8xza$k
Q
1¢0qk (o Ou Ou
—i—QS xk(!u\ a”(uv,t)a 9z, dx dt
Q
1 Oa;j(z,t) Ou Ou
2 éqk o0x 8% Ox; du dt
ou , Ou

This is (2.10).

We now consider the general case of weak solutions with (u%,u!) €
HY(02) x L?(2) and f € LY(0,T;L?*(2)). We take (u,ul) € D(A) x
HY(2) andf,, € L'(0,T; H'(£2)) such that

(W, ul) = (u,u')  in HY(02) x L3(£2),

fn—f in L1(0,T; L?(£2)).

Now for strong solutions w,, with initial conditions (u,u}), and right hand

side f,, the identity (2.10) holds. Due to Theorem 1.1, we have
u, —u in C([0,T); H(£2)),
u, =o' in C([0,T); L2(£2)).

Thus, as in the proof of Lemma 1.3 of Chapter 3 of [9, p. 139], taking
the limit in (2.10) we deduce that (2.10) still holds in this case. m

3. Observability inequality. To establish an observability inequality,
we need the following lemma.
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LEMMA 3.1. Let 2 be a bounded domain in R™ with boundary I" of class
C?. Then for all weak solutions u of (1.1) with f =0 the following hold:

(i) If n > 1, then
1
(3.1) 5 S myvg(|u']? — aij(x,t)afuafu) ax
b5
T T

+\E@)dt
0 o

- (u’(t),mk% + 2 ; 1u(t)>

1 da;j(x,t) Ou Ou , , Ou
> S m w0, O, dz dt é}u my, 02y dz dt.
If n =1, then
1 ou\|" T
3.2) = Smu\u'\zdﬂ = <u'(t),m—> SE(t) dt
23 oz /|,
1 da(z,t) | Ou)’ , ,0u

(ii) If n > 1, then

(3.3) ‘ (u’(t),mkﬂ + n—_lu(t)> ‘

&rk 2
<20 ey + YU o e
2
L Yo -1)

1
) \ mavilu(t)?dl, vt e [0,T7.
4R, )

If n =1, then for v € (0,1),

(3.4) ‘ <u’(t),m% 41 7u(zt)) ‘

< R—ZE(t) + \/a(gTo_l) [ u(t)[? de

Va(l—17) 2
_|_47R01Sm1/|u(t)| dr, vtel[o,T].

Proof. We prove the lemma only in the case of n > 1. For n = 1 the
proof is similar.
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(i) Taking g = my in (2.10), we have
1

(3.5) 5 S mpv(Ju)? — aij(x,t)afuafu) ax
b
ou \|" ou Ou
— (. o
= <u (t), my (9:Uk> ) —i—éaw(az t)(?x] oz, dx dt
n ne ou Ou
+ 5 X<|u | aw(x,t)awZ awj)d:r:dt
Q
1 da;j(x,t) Ou Ou , , Ou
- = — s —dxdt — —dxdt
2 Smk o0x Bxl Ox; v Sumk@xk .
Q
ou\|" n-1 ou Ou
_ / el - 12 B it
= <u (t)’mk&rk> ) + 5 CX)<|u| a,,](x,t)a ,;axj>dxdt
1 9 ou Ou
t3 S<|u| + a;(z, 75)a o )d dt
Q
1 da;j(x,t) Ou Ou , , Ou
zxmk 0y Bxlaxjd xdt — Xumkakdxdt
Q Q
But
Ou Ou
(36) (1 o) g S e = ().
Q
Therefore,
(3.7) S v (U * — aij(z,t)o uou) dS

2
X
T T
+ \ E(t)dt

1 da;j(x,t) Ou Ou , , Ou
- = — = —dxdt — —— dux dt.
2 S M Oz Oz; Ox;j chu my oxy, v

This shows (3.1).
(ii) From the Cauchy—Schwarz inequality we have

(3.8) ‘ <u’(t),mk§—g: + 2 > 1u(t)> ‘

)2
é ]dx—i—QR\/_
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As shown in [6] by Komornik, we have

However,

(3.10) <mk§—;€,u(t)> = S mk%u(t) dx = % S mki(IU(t)P)dx
2 2

2

ou n-—1
(3.11) (S) Mg+ — u(t)| de
2 2
_ §7nh§3- do + 1" § lu()? dz + == { mulu(t)? dT
2 2 1—n? 2
< R} | [Vu(t)]? dz + | u()? da
2
n—1
5 | mpvelu(t)? dr
r
Thus, by (1.2) and (3.8) we have
ou n-—1
/ —_—
(3.12) ‘(u (t), my B +— u(t))‘
Ry va(l—n?) 2
< = A Sl
_vaE@y+ ST éM@Ndm
L Yol -

1
) X myvp|u(t)|>dl,  Vte [0,T). m
4R,
r
LEMMA 3.2. Let 2 be a bounded domain in R™ with boundary I" of class
C?. Suppose (0.13) and (0.14) hold. If either (0.17) holds and T > Ty or
(0.23) and (0.24) hold and T is large enough so that

vaT — 2R,

(3.13) 3ROHGHO,<>O + Ro\/a HbHO,oo + HR1H0,<>O < T
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then for all weak solutions u of (1.1) with f = 0 there exists ¢ = ¢(T) > 0
such that

(3.14) S mk’/k(\u”Q _aij(x,t)afuafu) dy + S mka(’u(O)IQ 4 ]u(T)\Q) qr
> r
> (|’ + lutg)  for n>1,
and

(3.15)  {mo/[?ds + { mr(ju(0)]® + |u(T)[?) dI
z r
> c([[u’IF +[lutl§)  for n=1.

Furthermore, if condition (0.19) or (0.20) is satisfied, then Ty can be refined
slightly to (0.21) or (0.22), respectively.

Proof. (i) Suppose (0.17) holds and T > Tp.

CASE I: n > 1. It follows from (0.14) and (1.15) that
(3.16) —a(t)E(t) < E'(t) <a(t)E(t), Vt>0,
where a(t) is given by (0.15). Let

(3.17) h(t) = Sa(s) ds;
0
then
(3.18) (e"E) = e"E' + W'e"E > —e"aF + ae"E = 0.
Thus,
(3.19) E(t) > E(0)e "® > B(0)e~lalloa vt > 0.
On the other hand, it follows from Gronwall’s inequality and (3.16) that
(3.20) E(t) < E(0)ellalloa vz >0,
Set
T

(3.21) z :<u'(t),mk% + 22 1u(t)> O
It follows from (3.3) and (3.20) that
(3:22) 2] < |Z(0) + |Z(T)]

< I gy 1+ et + L= § o)+ (D)) o

a(n—1 9 9
# g S (WO + o) ar
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In addition, by (0.14) and (3.20), we have

1 da;;(x,t) Ou Ou Ry
2 - W dedt] < = \ b(t)a;i(z,t —— dxdt
(3:23) ‘287”’“ dxe  Ow; O ‘ 5 ) bl (.05 oz,
Q Q
T
< Ry {b()E(t) dt
0
< RoE(0)||b]lo Lellallon

where b(t) is given by (0.16). Also,

(3.24) ‘ X u’m}cg—u dx dt‘ < X W' Ry (t)|Vu| dz dt
T
Q Q

1
<— 2
< 2\/_8 t)(|[u'? + a|Vu|?) dz dt
Q
STSR
Q
E(0)[|R1lfo,1 Sl
< 01
—_ f

It therefore follows from (3.1), (3.19), (3.22), (3.23), and (3.24) that

1
(3.25) 3 S mpv(|u'? — aij(z,t)ouotu) dS
b5

> TE(0)6—||a||0,1 _ ROE(O)HbHO,lella”O’l _ %E(O)(l + e||a||071)

Va(l - nQ) 2 2
~ 5 JOF + D)) de

aln —1 9 2
~ QTO) ; mave([u(0)|? + [u(T)|?) dT

_ BOBillos jayi.s
! .

Thus,

3.26 muv (|02 = aii(x, t)otuotu) dX
J 1 7

X

N |

an—1 2 2
+%0);mkuk(\u(o)\ + [u(T)[7) dI"
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R

> (Tellalll _ ROHbH0716||G||O,1 _ Tg(l + e||a||0,1)

| [u(0)[? dx.

2

[ R11[0,1 llall va(n? -1)
_ ) aljo,1 E
(% ¢ (0) + 8R0

This implies (3.14).
CASE II: n = 1. By (3.2), we have

T
(3.27) %gmyyuy dx = ( —> +\E@)dt
0
1 da(z,t) | Ou)’ , ,0u
—§Sm 9 |5z dwdt—é)um%dxdt.

Choose v € (0,1) such that
1R

—|la a R a a
(3.28)  ~Te lalon — Ry|lbfloae! ||0,1_\/_%(1+6|| o1y \%01 lallo < .
We write
T T 1— ou 2
(329) \E®)dt=~|E®)dt+ TV | <|u’|2 - a(x,t)‘a— )dm dt
0 0 Q z
22 2
+ 5 7 a(m,t)‘% dx dt.
Then,
T T
1 1—
(3.30) = S mu|u'|*dY = (u’(t),m@ + 7u(t)) + S E(t)dt
2 5 ox 2 0 )
1 da(x,t) Bu , ,0u
Q Q
2 — 2y ul?
+— Xa(x,t)‘%‘ dx dt
Q
P 1 T T
> (W), ma— + —ut) )| ++ | E(t) at
ox 2 0 )

ou |?
Ox

1 Oa(x
|

X

dw dt — | u'm’% dz dt,
Q

from which, as in the case n > 1, we can deduce (3.15).
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Furthermore, if (0.19) is satisfied, then E’(¢) < 0. Consequently,
(3.31) E(t) < E(0) fort>0.
Then (3.26) becomes
1
(3.32) 5 S mpvg([u'? — a(z, t)a{‘uafu) ay
b

+ \/aflnTo_l) ;mkuk(!u(ow + |u(T)|?)dl

> (Te_”‘”IO’1 — Rol[bllo,1 — % - %)E(O)
VOl = )P de

9}

So T} can be refined to (0.21).
If (0.20) is satisfied, then E’(t) > 0. Consequently,

(3.33) E(t)> E(0) fort>0.
Then (3.26) becomes

1
(3.34) 3 S mpve(|u'|* — aij(z,t)o uofu) dS

X
an—1
# YD () + (D)) dr
iR, )
R R
> <T _ Rylbllo pelelon — 7%(1 + lalloxy _ %enano,vﬁy(o)
va(n® —1) 2
Lo | [u(0)? da.

2

So Ty can be refined to (0.22).

(i) Suppose (0.23) and (0.24) hold and T is large enough so that (3.13)
holds.

By (2.3) we deduce

(3.35) E(T) < E(0) + |[allo.0 | E(t) dt,
0
and
(3.36) | E(t)dt > TE(0) — Tllallo, | E() dt.
0 0
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It therefore follows from (3.1), (3.19), (3.22), (3.23), and (3.24) that

1
(3.37) 3 S mpvg([u'? — a(z, t)a{‘uafu) ay
b

T
~ Rollallo,c HRlHo,oo>

> <1 - ol o — 252 o) § ) ar

21 va(l —n?) 2 2
_ TcSE(O) — W é(!u(O)] + |w(T)|?) da
- \/ainTo_l) ;ﬂm(lu(O)l2 + [w(T)|?) dr
> (1 Rl - Pl W) TEO)
21 va(l - n?) 2 2
_ TcSE(O) — W é(!u(O)] + [w(T)|?) da
- yetn =l J mese(u(O) + (T
Thus,
(3.38) % S mkyk(|ul|2 - aij(x,t)O'ZAUO'JAu) dax;
b
L Ve -1

1T, D ;mkyk(’U(O)IQ + (T2 dI

- vaT — 2R = 3RyTallo,cc = BoTVa[|bllo,co = T R1 0,00
- Va(l+Tlallo,e)

| [u(0)]? da.
2

Taking into account (3.13), this implies (3.14). m

E(0)

Va(n? - 1)
+ 8Ry

REMARK 3.3. If 2°(¢) is independent of ¢, then Ry(t) = 0. If a;; are
independent of x, then b(t) = 0. If a,; are independent of ¢, then a(t) = 0.

Let Iy be any subset of I and Xy = Iy x (0,7"). Then
2(T+1)
(339) (P + ur)yar < 2

FO EO

(1 [* + |uf*) d2.
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As a matter of fact, by calculation we have

T
| Tju(m)?dr = | Su dtdr+ | \tdu®dr
I I, 0 Io0
<@ +1) § (W +uf)dx
3o
and
T T
| Tjuo)ar = \ \u?dtar + | \(t — 1) du?dr
Iy Iv 0 I 0
<(T+1) | (') +[uf) dz
Yo

Therefore (3.39) follows from the above.
By Lemma 3.2, we obtain the following observability inequality.

LEMMA 3.4 (Observability inequality). Suppose X(x°(0)) C X (2°), and
suppose the conditions of Lemma 3.2 are satisfied. Then there exists a con-
stant ¢ = ¢(T') > 0 such that for all strong solutions u of (1.1) with f =0,

(3.40) V (WP +P)de+ | [Voaul?dE = flu’f + ' [IF):

= (20) =, (20)

4. Proof of Theorem 0.1. We apply HUM. To do so, we consider the
problem

u' —Au=0 in Q,
_ 0 ) — 1 s
(4.1) ug;) =u’, (0)=u' in £,
— =0 .
B0 on

For any (u®,u') € (C*(£2) N D(A)) x C>=(£2), problem (4.1) has a unique
strong solution due to Theorem 1.2. Define

4.2 0 gt = "2 dxy \Y4 2dx 2
(4.2) |(u”,u) || = X (|7 + |u|*) dX + X |V aul ,
2 (x9) X (x9)

which is a norm on (C*°(£2) N D(A)) x C*°(£2) due to Lemma 3.4. Let A
be the completion of (C(2) N D(A)) x C>(£2) with respect to the norm
| - [[%. Then Lemma 3.4 implies that

(4.3) H C H' () x L*(92).
Consequently,

(4.4) (HY(2)) x L*(2) ¢ H'.
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According to the definition of H, for any (u®,u') € H we have
(4.5) u’E(mO), U,,’E(mO) € LQ(E(xo)), VUA’LL’E*(QUO) € (LQ(E*(.%O)))"
To apply the HUM, we need to consider the following backward problem:
v —Av =0 in Q,
v(T)=0,v(T)=0 1in §2,
v —u+ %u’ on X(x0),
ova | As.eoyu on I (av).
The solution of (4.6) can be defined by the transposition method (see [9,
10]) as follows. Let (-,-) denote the duality pairing between H and #'.

DEFINITION 4.1. v is said to be an wltraweak solution of (4.6) if there
exist (o', —0") € H' such that v satisfies
@7) | fodzdt+ (=o', 0", (6°,6"))
Q

(4.6)

=— | (u+0u)dx— | V,u0V,audy
() 2, (20)
for any (8°,60') € H, f € L*(0,T; H*(£2)), and where 6 is the solution of the
following problem:

0" —Ab=f in Q,

(4.8) 6(0) = 6°,60'(0) = ' in 0,
ﬁ =0 on .
ova

We define

(4.9) v(0) =%,  V'(0) = 0"

LEMMA 4.2. Problem (4.6) has a unique ultraweak solution in the sense
of Definition 4.1 satisfying

(4.10) v e L0, T (H' (2))),
(4.11) (v'(0), —v(0)) € H'.
Moreover, there exists ¢ > 0 such that

(4.12) 1" (0), =v(0) 2 < ell(w®,ul)l2-

We assume Lemma 4.2 for the moment. We then define a linear operator

A by
(4.13) A(u®,ut) = (v'(0), —v(0)).
Taking f =0 in (4.7), we find

(4.14) (A ut), @ ut))y = | (WP+ ) dE+ | |[Veaufd2.
3(x0) 2, (x9)
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It therefore follows from Lemma 3.4, Lemma 4.2, and the Lax—Milgram
Theorem that A is an isomorphism from H onto H’. This means that for
all (y*, —y") € H’', the equation

(4.15) A’ ut) = (v, —y°)

has a unique solution (u°,u'). With this initial condition we solve problem
(4.1), and then solve problem (4.6). Then set

u+ 2u’  on X(z9),
(4.16) = {AE (If)tu on X, (29),
and
(4.17) y(@,t;9) = v(z, 15 9).

Then we have constructed a control function ¢ such that the solution
y(x,t; ¢) of (0.1) satisfies (0.4). Thus, we have proved Theorem 0.1 provided
we can prove Lemma 4.2.

Proof of Lemma 4.2. The solution 6 of problem (4.8) can be written as
0 = n+ w, where n and w are solutions of the following problems:

N’ —An=0 in Q,
(4.18) n(0) =6° /(0)=6" in 2,
) o
M =0 on Y,
and
(4.19) ( ) ( )=0 in £,
‘ ow
— =0 on 3.
al/A

Since (6°,60') € H, we have
0 gl "2 2 2 1/2
(420) 1% = ( § (0 P+mPdz+ | |Vondx)
S(20) 5, (9)
On the other hand, by Theorems 1.1-1.2 and the trace theorem (see [10,
Chap. 1]), we have
/"2 2 2 12
(421) (| (wP+wPyas+ | 1VoulPds) " <elflormm):
S(20) . (20)

Therefore,
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(4.22) H fodzdt + ((—a", 0", (90,91)>‘

Q
:‘ | (Gu+ouyaz+ | vaAevaAudz(

= (20) =, (20)

g‘ S (nu+n'u') dX + S VG-AUVG-AUdE‘
$(20) 2.(2)

—i—‘ S (wu +w'u") dX + S VO.A’LUVO.A’LLdE‘
S(20) 5, (20)

< c([1(8°, 012 + I f |z 0,251 () ) (® 1t [l

Thus, there exist v € L>(0,T; (H'(£2))') and (¢!, —0°) € H’ such that (4.7)
holds, that is, v is an ultraweak solution of (4.6) and (v(0),—v'(0)) € H'.
Taking f =0, (4.22) gives (4.12). m
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