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ON A THEOREM OF MIERCZYNSKI

BY

GERD HERZOG (KARLSRUHE)

We prove that the initial value problem 2/(t) = f(¢,z(t)), (0) = z; is
uniquely solvable in certain ordered Banach spaces if f is quasimonotone
increasing with respect to x and f satisfies a one-sided Lipschitz condition
with respect to a certain convex functional.

1. Introduction. Let (E,| -|) be a real Banach space and E* its
topological dual space. We consider a partial ordering < on E induced
by a cone K. A cone K is a closed convex subset of £ with A\K C K,
A>0,and K N(—K) = {0}. In the sequel we will always assume that K
is solid (i.e. Int K # (). We define 2 < y < y —z € K, and we use the
notations r < y for y — x € Int K and K* for the dual cone, i.e., the set
of all functionals ¢ € E* with ¢(x) > 0, « > 0. Thus E* is ordered by
<Y Y—pe K*. The cone K is normal if there is a v > 1 such that
0<z<y= |z <~vlyl. Forz,y € E with <y, we define the order
interval [z,y] = {2 € E: 2 < z < y}. By K(z,r) we will always denote the
open ball {y € E: ||y — z| < r}.

Now fix p > 0. In the sequel we will assume that || - || is the Minkowski
functional of [—p,p]. This is an equivalent renorming of E (see e.g. [7]).
Then for z,y € E we have 0 <z <y = |z|| < |ly||, and ||z| < c < —cp <
z < cp.

Let f :[0,7] x E — E be continuous and let 1 € E. We consider the
initial value problem

(1) 2'(t) = f(tx(t), 2(0) =1
Let D ¢ E. A function f : [0,T7] x D — E is called quasimonotone
increasing (in the sense of Volkmann [12]) if

r,ye D, te[0,T], x <y, p € K*, p(r) = ¢(y)
= o(f(t,z)) < p(f(t,y)).

In [10] Mierczynski proved the following theorem (for a more general
result see Mierczynski [11]):
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THEOREM 1. Let E =R", K = {(x1,...,2y) :2x >0,k =1,...,n} and
let f:]0,T] x E — E be continuous and quasimonotone increasing with

N filt,z) =0, (t.x) € [0,T] x E.
k=1

Then there exists precisely one solution of problem (1).

References [1], [3], [4], [5], [6], [7] and especially [13] give a survey on
quasimonotonicity as applied to problem (1). For example, if f is continuous,
bounded and quasimonotone increasing and if the cone K is regular then
problem (1) is solvable on [0,T]; see [7]. A cone is called regular if every
monotone increasing sequence in F which is order bounded, is convergent.
If K is only supposed to be normal, even monotonicity of f does not imply
existence of a solution; see [4]. So in this case additional assumptions on f
are needed to obtain existence of a solution of problem (1).

In Theorem 1 we have £ = E*, K = K*, and with ¢(z) = (1,..., 1)z
condition (2) says: ¥(f(t,z)) =0, (t,x) € [0,T] x E.

Conditions of this type are considered in several papers pertaining to
limit sets of autonomous differential equations in R™ with the natural cone
(see e.g. [9], [10] and the references given there). We will study conditions
of this type which imply both uniqueness and existence of a solution for
problem (1). To this end we consider the set W of all continuous functions
¥ : E — R with the following properties:

1. ¥(x) >0,z € K.

2. Pz +y) <U(x)+9¥(y), z,y € E.

3. v(Ax) = M(x), z € E, A > 0.

4. Every monotone decreasing sequence(x,,)22 ; in K with lim,, o ¥(z,)
= 0 tends to zero with respect to the norm.

For ¢y € W we consider the one-sided derivative
my-[z,y] = lim (W +hy) —¢(2))/h, 2,y € E.
For z,y,z € E we have
my—[z,y] <P(y),  my-fr,y+ 2] <my [z, y] +9(2),
and if w : [0,T] — E is left-differentiable on (0,77, then
(W(u)(t) = my—[u(t),u' )], t€(0,T].
For this and further properties of the function m,_ see [8]. Note that if

1 is linear, then my_[z,y] = ¥(y), z,y € E.
We will prove the following theorem:

THEOREM 2. Let E be a Banach space ordered by a normal, solid cone K.
Let xg € E, and let f : [0,T] x E — E be a continuous function with the
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following properties:

1. fis quasimonotone increasing.
2. There exist p € W and L € R such that

my_ly—z, f(t,y)—f(t,2)] < Ly(y—x)  for(t,x),(t,y) € [0,TIXE, » < y.

Then there exist r > 0 and 7 € (0,T] such that problem (1) is uniquely solv-
able on [0, 7] for every x1 € K(xo,7), and the solution depends continuously
on x1 € K(xg,1).

Let f have in addition the following properties:

3. For every bounded set M C E the set f(]0,T] x M) is bounded.
4. There exists a function ¢ € C1([0,T],Int K) and A, B > 0 such that

1/t sq@)ll < Als|+ B, t€[0,T], s€R.
Then problem (1) is uniquely solvable on [0,T].

REMARKS. 1. For the case 1) = || - || Theorem 2 is related to Martin’s
Theorem [8], p. 232.
2. Condition 2 holds if there exists L € R such that

1/}(f(t7 y) - f(tax)) < L¢(y - LU), (tvx)7 (tvy) € [O7T] X Ea x < Y.

3. Suppose ¥ € E* and K = {z € E : ¢¥(x) > «a|z||} with 0 <
a < ||¥]]. Then K is a regular cone with Int K # ), and if (z,,)22, is a
sequence in K (not necessarily decreasing) such that lim, . ¥ (z,) = 0,
then lim,, ., z,, = 0. Hence ¢ € W.

4. Consider the Banach space c of all convergent sequences z = ()52,
with norm ||z|| = supycy ||, and let K = {z € c¢: 2, > 0,k € N}. Then
K is normal and Int K # (), for example p = (1)72; € Int K. Now let
(ar)2, € 1F with ag, > 0, k € N, and define

o0
T) = apTr + lim .
W) kzl Jim
Then ¢ € W N c*.

5. Consider the Banach space [*° of all bounded sequences x = (x)52;
with norm ||z|| = supycy |zx|, and let K = {x € [* : z;, > 0,k € N}. Then
K is normal and Int K # (), for example p = (1)72; € Int K. Again let
()2, € ' with ag, > 0, k € N, and define

oo
P(x) = Z Ty + lim sup zy,.
k—oo0
k=1

Then ¢ € W. Note that 1 is nonlinear.
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6. A possible way to find linear functionals 1) € W is the following: Let
1) € K* and consider a set

Mc{pe K" :|¢|=1, 3c¢>0:¢ <cy}.

If M is weak-+ compact and if sup{|p(z)| : ¢ € M} is an equivalent norm
on F, then ¢ € W. This is an easy consequence of Dini’s Theorem.

7. Condition 4 in Theorem 2 holds if ||f(¢,z)| < Allz|| + B, (t,z) €
[0,T] x E, for some constants A, B > 0.

8. Using Theorem 2 one can prove existence of a solution of problem (1)
for right-hand sides which do not satisfy classical existence criteria such
as one-sided Lipschitz conditions, conditions formulated with measures of
noncompactness, or classical monotonicity conditions.

From Theorem 2 we get the following corollary for the autonomous case:

COROLLARY 1. Let E and K be as in Theorem 2 and let f : E — E be a
continuous function such that:

1. f is quasimonotone increasing.

2. For every bounded set M C E, the set f(M) is bounded.
3. There exists » € W N E* such that ¢(f(x)) =0, x € E.
4. There exist ¢ € Int K and A, B > 0 such that

If(sq)ll < Als|+ B, seR.

Then the initial value problem z'(t) = f(z(t)), x(0) = xo is uniquely
solvable on [0,00), and the solution is continuously dependent on the initial
value (in the sense of compact convergence).

Moreover, if x : [0,00) — E is a solution of x'(t) = f(x(t)) and t1 # to
then x is periodic for t > min{ty,ta} if z(t1) and z(t3) are comparable.

To prove the last part of Corollary 1 note that o (z(t)) = (z(0)),
t € [0,00). Hence if for example z(t1) < x(t2), we have ¥ (x(t2) —x(t1)) = 0,
which implies z(¢1) = z(t2). Thus z(t), t > min{t1,t2}, has |t; — t2| as a
period. Note that under the conditions of Corollary 1 we do not have unique-
ness to the left. Consider for example f : R? — R?, f(x,y) = (= ¥z, )
(K the natural cone and ¢(x,y) = x + y).

We will use Theorem 2 to prove the following;:

THEOREM 3. Let E, K be as in Theorem 2, let f : [0,T] x E — E be
continuous, let f satisfy conditions 1 and 2 in Theorem 2, and let u,v €
CL([0,T], E) be such that

w(0) <v(0),  W'(t) = f(t,ult)) < V') — f(tv(®), tel0,T]
Then u(t) < w(t), t € 0,T).

This means, in particular, that the solution of problem (1) depends
monotonically on the initial value.
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2. Approximate solutions. To prove our theorems we will use the
following results. Theorem 4 is due to Volkmann [12] and for Theorem 5 see
[2], Theorem 1.1.

THEOREM 4. Let D C E, let f : [0,a] x D — E be quasimonotone
increasing, and let u,v : [0,a] — D be differentiable functions with

uw(0) < v(0), u'(t) — f(t,u(t)) <v'(t) — f(t,o(t)), telo,al
Then u(t) < v(t), t € [0,a].

THEOREM 5. Let D = K(x1,7), and let f : [0,a] x D — E be continuous
with || f(t,x)|| < M on [0,a] x D. Let ¢ > 0 and a. = min{a,r/(M +¢)}.
Then there ezists . € C1([0,a.], D) such that z.(0) = x1 and

22 (t) = f(t,ze()| <&, tel0,ac].

Next we show the existence of a certain kind of approximate solutions
for problem (1) (compare [7] for the case of f bounded and quasimonotone
increasing).

PROPOSITION 1. Let E, K, z¢ be as in Theorem 2, and let f : [0, T|xE —
FE be continuous and quasimonotone increasing. Then there exist r > 0 and
7 € (0,T] such that for each x1 € K(xo,7) and each o with |o| <1 there are

sequences ()2, (v,)5, in CH([0, 7], E) with the following properties:

L U () € Uppg1 () K vpg1(t) K vp(t), t €0,7], m,n € N.

2. up(0) < 1 € v,(0), myn € N.

3. Every solution x : [0,7] — E of ' = f(t,x) + op, ©(0) = x1, satisfies
um (t) € z(t) < vy(t), t € [0,7], m,n € N.

4. limy,— 00 n (0) = limy,— 00 v, (0) = 7.

5. Forr, =ul,— f(-,up)—op,n €N, and s,, = v, — f(-,v,) —op, n € N,
we have lim,, oo Maxe(o,r] |70 (t)|| = limy, oo maxcjo,7 [|sn(t)|| = 0.

Proof. Since f is continuous there exists 4 > 0 such that
1 (&)l <1410, zo)[|,  max{t, ||z —zol[} < 0.

We set » = 0/3 and we consider x; € K(xo,7). Let (¢,)52; be a strictly
decreasing sequence of real numbers with limit 0 and let ¢; < r. For n € N
and (t,z) € [0,0] x K(x1 £ ¢,p,r) we have |z — zo|| < J, and therefore

Cn + Cn+1
- e—

Hf(t’ ™) topk < M =2+ (0, z0)[| + 1.

Now set 7 := min{d,r/(M + ¢1)} = r/(M + ¢1). Then, according to The-
orem 5, for n € N there exist functions u, and v, in C'([0,7], E) with
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Uun(0) = 21 — cpp, v, (0) = 21 + ¢,,p and

Uy, () = f(t, un(t)) — op +

cpt+c ch —C
n n—‘,—lpHS n n+1

2 4 ’
v, (t) — f(t,vn(t)) —op — %*2‘3”“1,” < %'

By [7] this implies for t € [0, 7] and m,n € N that

—Cmp L Uy, (1) = f(t,um (1) — op < —Cmy1p
< Cpp1p L v (t) = f(t,va(t)) — op < cnp.
Application of Theorem 4 leads to um (t) <K Umt1(t) K vpt1(t) <K v,(1),
t €[0,7], m,n € N, and u,,(t) < z(t) < v,(t), t € [0,7], m,n € N, for any
solution x : [0,7] — E of ' = f(t,z) + op, ©(0) = 1. The other properties
of u,, and v, follow immediately from the construction of these functions. m

3. Proofs

Proof of Theorem 2. Let conditions 1 and 2 hold. We first prove existence
and uniqueness of the solution of ' = f(¢,x)+op, £(0) = 1. The parameter
o is needed to prove continuous dependence and is also needed in the proof
of Theorem 3.

Let r > 0 and 7 € (0,7] as in Proposition 1. We fix z; € K(x,r) and
o with |o] < 1. Let (un,)2%q, (v,)52; be the approximate solutions as in
Proposition 1 and let r,, s,, n € N, be the corresponding defects. Since
un(t) K vy (t), n € N, t € [0, 7], we see that for ¢t € (0, 7] and for a constant
A >0,

(©(vn = un))" () = my—[on(t) = un(t), v, () = up, (£)]
<y fon(t) = un(t), [t 0n(t) = F(E, un(t))]
+9(sn(t) — (1))
< Lp(n(t) = un(t)) + Alllsn ()] + [[rn (D)])-
Because lim,,_.o ¥ (v,(0) — u,(0)) = 0, application of Gronwall’s Lemma

)
leads to lim, o0 (v, (t) — un(t)) = 0, t € [0, 7], and since v, (t) — u, () is
decreasing we have

lim ||v,(t) —un(t)]| =0, t€][0,7].

As K is normal, Dini’s Theorem implies lim,,_, o0 ||vn,—uy, || = 0in C([0, 7], E)
(endowed with the maximum norm ||-||). Now from u,, (t) < v,(t), t € [0, 7],
m,n € N, we find for ¢ € [0, 7] and m > n that

[[on () = vm @] < [[on(t) = un @] < flon — unll,

and therefore (v,)22; is a Cauchy sequence in C([0, 7], E). Analogously,
(un)22, is a Cauchy sequence in C([0, 7], E'). The limits of both sequences
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are equal, and this limit is a solution of ' = f(t,z) + op, (0) = x;. It
is unique, since u,(t) < z(t) < v,(t), t € [0,7], n € N, for every solution
x:[0,7] = E of ' = f(t,x) + op, x(0) = x; (see Proposition 1).

We prove that the solution of problem (1) is continuously dependent on
the initial value z1 € K(zo,r).

Let (z1,)52; be a sequence in K (zg,r) with limit z; € K(xg,r), let
Zy ¢ [0,7] — E be the solution of z/,(t) = f(t,z,(t)), ,(0) = 1, n € N,
and let x : [0,7] — E be the solution of problem (1). Now assume that
there exists € > 0 with ||z, — z|| > e, n € N.

There exist strictly decreasing sequences (A,,)22; and (fy,)
numbers, both with limit 0 and with

o0

o°_, of positive

x1 (and x15,) > U1y = 1 — Upp, nEN,
x1 (and x1,,) € V1 = X1 + App, n €N

There exists ng € N such that the initial value problems !, (t) = f(t, un(t))—
pnD, Un(0) = w1y, and v}, (t) = f(t,v,(t)) + Anp, v, (0) = v1,, have solutions
Up, Uy : [0,7] — E for each n > ng. There is a subsequence (ny)72, of
(n)32.,,, with

Ulngyq > Ulny, Ving4q K Viny, k € N.

Since A, and p,, are strictly decreasing, Theorem 4 shows for ¢ € [0, 7] and
k € N that

Uny, (1) K Up,, (1) € 2(t) (and zp, ., (1) <K Vpy, (B) K 0py (T).
Therefore for ¢ € [0,7] and k € N we have
Up, (1) — 2(t) K Tp, (1) — x(t) K v, () — ().
Hence
[, (8) = 2(8)|] < max{[lz(t) — wn, (O], [[vn, (&) — (B[},
which implies
len, — 2l < max{llz —un[l, lvn, — 2|}
Moreover, for t € [0,7] and k € N we have
0 < a(t) —un, (1) < xt) —un,(t), 0<Lvp,,(t)—2x(t) < vy, (t)—x().
Now for t € (0, 7],
(W(x = un,))(t) < Lp(@(t) = un, (1) + pn, Y (p),
and limg_, o ¥(2(0) — up, (0)) = 0. Thus limg— 0o Y(x(t) — up, (1)) = 0,
t € [0, 7], which implies limy_, o0 ||2(t) — un, (t)|| = 0, t € [0, 7], since ¢ € W.
Again by Dini’s Theorem we have limy_. ||z — uy, || = 0. Analogously we

get limg o0 ||on, — || = 0. Therefore limg_.o ||zn, — z|| = 0, which is a
contradiction.
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We now add Conditions 3 and 4 and prove existence of the solution on
[0, T].
We have
1£(t,sq(t))]| < Als|+ B, t€l0,T], s €R,
Therefore
—(Als| + B)p < f(t,sq(t)) < (Als| + B)p, te€][0,T], seR.

Let ¢ > 0. For A, u > 0 we consider the functions

up(t) = —Aexp(ut)q(t), t€0,7],

vo(t) = Nexp(ut)q(t),  t€[0,T].
Now

ug(t) — f(t uo(t)) < —Aexp(ut)(pa(t) +¢'(t) — Ap) + Bp,
and
vo(t) = f(t,vo(t)) = Nexp(ut)(uq(t) + d'(t) — Ap) — Bp.
Since ¢([0,T7]) is a compact subset of Int K,
ug([0,T]) +¢'([0,T]) — Ap
is a compact subset of Int K if p is sufficiently large. Then for A sufficiently
large
up(t) — f(t,uo(t)) < —ep < ep < vp(t) — f(two(t), € [0,T],
and
up(0) < xg < vg(0).

Let x : [0,w) — E be a solution of problem (1). Theorem 4 gives

uo(t) € z(t) K vo(t), te0,w).

Hence ||z(t)| < max{||uo(t)]], ||vo(t)||}. Now z(t) is bounded on [0,w), and
therefore 2/(t) is bounded on [0,w). Thus lim;_,,_ x(t) exists, and prob-
lem (1) is uniquely solvable on [0,7]. =

Proof of Theorem 3. We set w = v — u, and we define g : [0,T] x E — E

by
g9(t,x) = [t u(t) +x) — f(t,u(t))
+ /() = ft0(t) = (u'(t) = f(£,u(®))).

Then w'(t) = g(t,w(t)), t € [0, } and ¢(¢,0) > 0, t € [0,T]; compare
[2], p. 7T1. Assume that w(t) > 0 does not hold for ¢t € [0,7] and consider
o :=inf{t € [0,7] : w(t) € K}. Note that w(ty) > 0. The function f and
hence g satisfies Conditions 1 and 2 in Theorem 2. Therefore there exists
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€ > 0 such that the initial value problems
Wl (t) = gt wa(t) + . walto) =w(to) + 7, neN,

have solutions wy, : [to,to + €] — E. We have 0 < wy(tp) and w(ty) <
U}n(to) For t € [to,to +€]
—9(t,0) <0 < wy,(t) = g(t, walt)),
w'(t) = g(t, w(t)) < wy(t) — g(t, w(t)).
Theorem 4 gives 0 < w,,(t) and w(t) < wy(t), t € [to,to + €]. Once again
using condition 2 of Theorem 2, we find that (w, )52 tends uniformly to w

on [to,to 4+ ¢€]. Thus w(t) > 0 on [to, o + €], which contradicts the definition
of to. u

4. Examples. We illustrate our results by examples. Let the spaces ¢
and [*° be normed and ordered as in Section 1.

1. Let £ = c. We consider the linear functional ) € W defined by

o0

Y(z) = ﬁ + hm Tk

Now consider the function
9 k2
f(f) = <\3/$2, \3/56 —4\3/3_72, \S/CC — 1\3/333, PN \3/33k+1 — m J Tk, - - )

The function f : ¢ — ¢ is continuous, quasimonotone increasing, ¥ (f(x))
=0,z €c, and || f(z)] < 5|z|] +5, z € c. By Corollary 1 the initial value
problem z'(t) = f(z(t)), (0) = xo, is uniquely solvable on [0, c0).
2. Let E = c and let
>z,
Y(z) = Z ok + hm Tk

k=1

Again 1» € W. Now consider

flt,x)=(2 hm x4 s —3(1 4+ )2t 23 — 223 + (1 +tH)a?,

xf — 225 + (L4+ )2}, ... xp,y — 225 + (L+ %)z, .. ).
For every T' > 0, the function f : [0,7] X ¢ — ¢ is continuous, quasi-
monotone increasing, ¥(f(t,x)) = 0, (t,z) € [0,T] x ¢, and for ¢(t) =
(1+t2)~Y31,1,...) e Int K, t € [0,T], we have f(t,sq(t)) =0, t € [0,T],
s € R. By Theorem 2 problem (1) is uniquely solvable on [0, 7.
3. Next let £ =1, and consider the function ) € W defined by

kxy,
Y(z) = Z ; + lim sup z.

k=1 k—oo
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Consider

f(t,z)
\3/97—23/97 \3/:1:7—23/97 YThr1 — 2Tk
=z+1i| Iz cey R
2 3 k

For every T' > 0, the function f : [0,T] x I* — [*° is continuous, quasi-
monotone increasing, ¥(f(t,y) — f(t,x)) < Y(y —z), t € [0,T], z < y, and
|f(t,2)|| < (3T +1)||z|| + 3T, (t,z) € [0,T] x I*°. Hence, by Theorem 2
problem (1) is uniquely solvable on [0, 7.
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