ENDPOINT BOUNDS FOR CONVOLUTION OPERATORS
 WITH SINGULAR MEASURES

E. FERREYRA, T. GODOY and M. URCIUOLO (CÓRDOBA)

Let $S \subset \mathbb{R}^{n+1}$ be the graph of the function $\varphi:[-1,1]^{n} \rightarrow \mathbb{R}$ defined by $\varphi\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n}\left|x_{j}\right|^{\beta_{j}}$, with $1<\beta_{1} \leq \ldots \leq \beta_{n}$, and let μ the measure on \mathbb{R}^{n+1} induced by the Euclidean area measure on S. In this paper we characterize the set of pairs (p, q) such that the convolution operator with μ is $L^{p}-L^{q}$ bounded.

1. Introduction. In this paper we study convolution operators with singular measures μ given by $\mu(E)=\int_{Q} \chi_{E}(x, \varphi(x)) d x$ where $Q=[-1,1]^{n}$ and $\varphi(x)=\sum_{j=1}^{n}\left|x_{j}\right|^{\beta_{j}}$ for $x=\left(x_{1}, \ldots, x_{n}\right), \beta_{j}>1,1 \leq j \leq n$. We set, for $y \in \mathbb{R}^{n+1}, T_{\mu} f(y)=(\mu * f)(y)$ and $E_{\mu}=\left\{(1 / p, 1 / q):\left\|T_{\mu}\right\|_{p, q}<\infty\right.$, $1 \leq p, q \leq \infty\}$, where the L^{p} spaces are taken with respect to the Lebesgue measure on \mathbb{R}^{n+1}. The set E_{μ} is known in several cases. If $\beta_{j}=2,1 \leq j \leq n$, and the graph of φ has nonzero Gaussian curvature at each point, then a theorem of Littman implies that E_{μ} is the closed triangle with vertices $(0,0)$, $(1,1)$ and $((n+1) /(n+2), 1 /(n+2))$ (see $[\mathrm{O}])$. Now, if the curvature vanishes at some point, E_{μ} can be strictly contained in the above triangle. Related examples in a more general context can be found in $[\mathrm{C}],[\mathrm{O}]$ and $[\mathrm{R}-\mathrm{S}]$. In [F-G-U] we showed that E_{μ} is a polygonal region. We gave a complete description of it, as a closed polygon, when $\beta_{j} \leq n+2,1 \leq j \leq n$. In the other cases certain endpoint cases were left unsolved.

In this paper we characterize E_{μ} completely, using a different argument that follows the ideas developed by M. Christ in [C].

Acknowledgments. We wish to express our gratitude to Professor F. Ricci for his many useful suggestions.
2. Preliminaries. For $1 \leq k \leq n$, we consider an even function $\Phi_{k} \in$ $C_{\mathrm{c}}^{\infty}(\mathbb{R})$ such that $\operatorname{supp} \Phi_{k} \subset\left\{t \in \mathbb{R}: 2^{1 / \beta_{k}} \leq|t| \leq 2^{4 / \beta_{k}}\right\}, 0 \leq \Phi_{k} \leq 1$ and

[^0]\[

$$
\begin{aligned}
& \sum_{r \in \mathbb{Z}} \Phi_{k}\left(2^{r / \beta_{k}} t\right)=1 \text { if } t \neq 0 . \text { For } r_{1}, \ldots, r_{n} \in \mathbb{N} \text { and a Borel set } E \text {, we set } \\
& \nu_{r_{1}, \ldots, r_{n}}(E) \\
& \quad=\int \chi_{E}\left(x_{1}, \ldots, x_{n}, \varphi\left(x_{1}, \ldots, x_{n}\right)\right) \prod_{1 \leq k \leq n} \Phi_{k}\left(2^{r_{k} / \beta_{k}} x_{k}\right) d x_{1} \ldots d x_{n} .
\end{aligned}
$$
\]

Then

$$
\begin{equation*}
\mu \leq \nu=\sum_{r_{1}, \ldots, r_{n} \in \mathbb{N}} \nu_{r_{1}, \ldots, r_{n}} \tag{2.1}
\end{equation*}
$$

Following the approach in [C], for $1 \leq k \leq n$, we introduce a C^{∞} partition of unity $\left\{m_{k, r}\right\}_{r \in \mathbb{Z}}$ in \mathbb{R}^{2} minus the coordinate axes, with $m_{k, r}$ homogeneous of degree zero (with respect to the Euclidean dilations on \mathbb{R}^{2}) such that $m_{k, r}\left(t_{1}, t_{2}\right)=m_{k, 0}\left(2^{-r / \beta_{k}} t_{1}, 2^{-r} t_{2}\right)$ and $\operatorname{supp} m_{k, r} \subset\left\{\left(t_{1}, t_{2}\right)\right.$: $\left.2^{-r / \beta_{k}-1}\left|t_{1}\right| \leq 2^{-r}\left|t_{2}\right| \leq 2^{-r / \beta_{k}+2}\left|t_{1}\right|\right\}$. Also we set $M_{k, r}\left(\xi_{1}, \ldots, \xi_{n+1}\right)=$ $m_{k, r}\left(\xi_{k}, \xi_{n+1}\right)$. Let $Q_{k, r}$ be the operator with multiplier $M_{k, r}$, and let C_{0} be a constant such that $\widetilde{m}_{k, r}=\sum_{|i-r| \leq C_{0}} m_{k, i}$ is identically one on $\operatorname{supp} m_{k, r}$. We define $\widetilde{Q}_{k, r}=\sum_{|i-r| \leq C_{0}} Q_{k, i}$ and we denote by $\widetilde{M}_{k, r}$ its multiplier.

Let $h \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{2}\right)$ be identically one in a neighborhood of the origin, let $H_{k, r}\left(\xi_{1}, \ldots, \xi_{n+1}\right)=h\left(2^{-r / \beta_{k}} \xi_{k}, 2^{-r} \xi_{n+1}\right)$ and let $P_{k, r}$ be the Fourier multiplier operator with symbol $H_{k, r}$.

Throughout this work, c will denote a positive constant not necessarily the same at each occurrence. For $g: \mathbb{R}^{n} \rightarrow \mathbb{C}$ we set $g^{\vee}(x)=g(-x)$. If $g \in S\left(\mathbb{R}^{n}\right)$ we denote by \widehat{g} its Fourier transform.

The following lemmas provide a suitable version of arguments contained in [C] adapted to our n-dimensional setting. Lemma 2.2 is the crux of Christ's argument.

Lemma 2.2. Let $\left\{\sigma_{r}\right\}_{r \in \mathbb{N}}$ be a sequence of positive measures on \mathbb{R}^{n+1}, and let $T_{r} f=\sigma_{r} * f$ for $f \in S\left(\mathbb{R}^{n+1}\right)$. Suppose $1 \leq k \leq n, 1<p \leq 2$ and $p \leq q<\infty$. If there exists $A>0$ such that

$$
\begin{gathered}
\sup _{r \in \mathbb{N}}\left\|T_{r}\right\|_{p, q} \leq A, \quad\left\|\sum_{1 \leq r \leq R} T_{r} P_{k, r}\right\|_{p, q} \leq A \quad \text { and } \\
\left\|\sum_{1 \leq r \leq R} T_{r}\left(I-P_{k, r}\right)\left(I-\widetilde{Q}_{k, r}\right)\right\|_{p, q} \leq A \quad \text { for all } R \in \mathbb{N}
\end{gathered}
$$

then there exists $c>0$, independent of A, R and $\left\{\sigma_{r}\right\}_{r \in \mathbb{N}}$, such that

$$
\left\|\sum_{1 \leq r \leq R} T_{r}\right\|_{p, q} \leq c A
$$

Proof. We note that, if $\varepsilon_{r}= \pm 1$ then $\sum_{r \in \mathbb{N}} \varepsilon_{r} \widetilde{Q}_{k, r}$ satisfies the hypothesis of the Marcinkiewicz multiplier theorem (see [S], p. 109). Thus
$\left\|\sum_{r \in \mathbb{N}} \varepsilon_{r} \widetilde{Q}_{k, r}\right\|_{p, p} \leq c$, with c independent of $\left\{\varepsilon_{r}\right\}$. As in [S], 5.3, p. 105, we get the Littlewood-Paley inequality

$$
\left\|\left(\sum_{r \in \mathbb{N}}\left|\widetilde{Q}_{k, r} f\right|^{2}\right)^{1 / 2}\right\|_{p} \leq c\|f\|_{p}
$$

Let S_{R} be the operator given by $S_{R}\left(\left\{g_{r}\right\}_{r}\right)=\left\{h_{r}\right\}_{r}$ where $h_{r}=T_{r} g_{r}$ for $1 \leq r \leq R$, and $h_{r}=0$ otherwise. As usual, we denote by $\left\|S_{R}\right\|_{p, q, s}$ the norm of $S_{R}: L^{p}\left(l^{s}\right) \rightarrow L^{q}\left(l^{s}\right)$. As in the proof of Theorem 1 of [C], there exists $c>0$, independent of $R,\left\{\sigma_{r}\right\}_{r \in \mathbb{N}}$ and $f \in S\left(\mathbb{R}^{n+1}\right)$, such that
$\left\|\sum_{1 \leq r \leq R} T_{r}\left(I-P_{k, r}\right) \widetilde{Q}_{k, r} f\right\|_{q} \leq c\left\|S_{R}\right\|_{p, q, 2}\left(\left\|\left\{f_{r}\right\}_{r}\right\|_{L^{p}\left(l^{2}\right)}+\left\|\left\{P_{k, r} f_{r}\right\}_{r}\right\|_{L^{p}\left(l^{2}\right)}\right)$
where $f_{r}=\widetilde{Q}_{k, r} f$. Let $x=\left(x_{1}, \ldots, x_{n+1}\right)$. We have, for $f \in S\left(\mathbb{R}^{n+1}\right)$,

$$
\left|\widehat{H}_{k, r_{k}}^{\vee} * f(x)\right|=\left|2^{-r_{k}\left(1+\beta_{k}^{-1}\right)}\left(\left(2^{-r_{k}} \bullet \widehat{h}^{\vee}\right) * f_{\bar{x}}\right)\left(x_{k}, x_{n+1}\right)\right|
$$

where $\bar{x}=\left(x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n}\right), f_{\bar{x}}\left(y_{1}, y_{2}\right)=f\left(x_{1}, \ldots, x_{k-1}, y_{1}\right.$, $\left.x_{k+1}, \ldots, x_{n}, y_{2}\right)$ and $\left(2^{-r_{k}} \bullet \widehat{h}^{\vee}\right)\left(y_{1}, y_{2}\right)=\widehat{h}^{\vee}\left(2^{-r_{k} / \beta_{k}} y_{1}, 2^{-r_{k}} y_{2}\right)$. Thus, using a result in $[\mathrm{St}], \mathrm{p} .85$, we see that there exists c independent of k, r such that

$$
\begin{equation*}
\left|P_{k, r} f_{r}\right| \leq c M\left(f_{r}\right) \tag{2.3}
\end{equation*}
$$

where M is the strong maximal function defined as in [St], p. 83. Let \bar{M} be the vector-valued maximal operator associated with M defined by $\bar{M}\left(\left\{g_{r}\right\}_{r \in \mathbb{N}}\right)=\left\{M g_{r}\right\}_{r \in \mathbb{N}}$. Then \bar{M} is bounded on $L^{p}\left(l^{2}\right)$ for $p \leq 2$, so for such p,

$$
\left\|\sum_{1 \leq r \leq R} T_{r}\left(I-P_{k, r}\right) \widetilde{Q}_{k, r} f\right\|_{q} \leq c\left\|S_{R}\right\|_{p, q, 2}\left\|\left\{f_{r}\right\}_{r}\right\|_{L^{p}\left(l^{2}\right)} \leq c\left\|S_{R}\right\|_{p, q, 2}\|f\|_{p} .
$$

The lemma follows as in the proof of Theorem 1 of [C].
Lemma 2.4. For $1<p, q<\infty$ and $R \in \mathbb{N}$,

$$
\left\|\sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}}, \ldots, r_{n}} P_{k, r_{k}}\right\|_{p, q} \leq c\left\|\sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}}\right\|_{p, q}
$$

with c independent of R.
Proof. Since $\nu_{r_{1}, \ldots, r_{n}}$ is a positive measure, the lemma follows from (2.3) and the boundedness of the strong maximal function (see [St], p. 84).

Lemma 2.5. For $1<p, q<\infty$ and $R \in \mathbb{N}$,

$$
\left\|\sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}}\left(I-P_{k, r_{k}}\right)\left(I-\widetilde{Q}_{k, r_{k}}\right)\right\|_{p, q} \leq c\left\|\sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}}\right\|_{p, q}
$$

with c independent of R.

Proof. We decompose

$$
\begin{aligned}
\sum_{1 \leq r_{k} \leq R} & T_{\nu_{r_{1}}, \ldots, r_{n}}\left(I-P_{k, r_{k}}\right)\left(I-\widetilde{Q}_{k, r_{k}}\right) \\
= & \sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}}-\sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}}, \ldots, r_{n}} P_{k, r_{k}}-\sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}} \widetilde{Q}_{k, r_{k}} \\
& +\sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}} P_{k, r_{k}} \widetilde{Q}_{k, r_{k}} .
\end{aligned}
$$

In view Lemma 2.4, it is enough to study the last two terms. By (2.3), for $f \in S\left(\mathbb{R}^{n+1}\right)$,

$$
\begin{aligned}
\| \sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}}, \ldots, r_{n}} & P_{k, r_{k}} \widetilde{Q}_{k, r_{k}} f \|_{q} \\
& \leq c\left\|\sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}}, \ldots, r_{n}}\right\|_{p, q}\left\|M\left(\sup _{r \in \mathbb{N}}\left|\widetilde{Q}_{k, r} f\right|\right)\right\|_{p} \\
& \leq c\left\|\sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}}\right\|_{p, q}\left\|\sup _{r}\left|\widetilde{Q}_{k, r} f\right|\right\|_{p} \\
& \leq c\left\|\sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}}\right\|_{p, q}\left\|\left\{\widetilde{Q}_{k, r} f\right\}_{r}\right\|_{L^{p}\left(l^{2}\right)} \\
& \leq c\left\|\sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}}\right\|_{p, q}\|f\|_{p} .
\end{aligned}
$$

The estimation of the term $\sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}}, \ldots, r_{n}} \widetilde{Q}_{k, r_{k}} f$ is analogous.
Lemma 2.6. The kernel of the convolution operator

$$
\sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}}\left(I-P_{k, r_{k}}\right)\left(I-\widetilde{Q}_{k, r_{k}}\right)
$$

belongs to weak- $L^{1+\beta_{k}^{-1}}$ and its norm is less than $c 2^{-\sum_{j \neq k} r_{j} / \beta_{j}}$, with c independent of R and $r_{j}, j \neq k$.

Proof. We set

$$
I_{k}\left(t_{1}, t_{2}\right)=\int \Phi_{k}(s) e^{-i s t_{1}-i|s|^{\beta_{k} t_{2}}} d s \quad \text { for }\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2} .
$$

A computation shows that the kernel $K_{r_{1}, \ldots, r_{n}}$ of the convolution operator $T_{\nu_{r_{1}, \ldots, r_{n}}}\left(I-P_{k, r_{k}}\right)\left(I-\widetilde{Q}_{k, r_{k}}\right)$ is the function given by

$$
\begin{aligned}
K_{r_{1}, \ldots, r_{n}}^{\vee} & \left(x_{1}, \ldots, x_{n+1}\right) \\
& =2^{r_{k}} G_{k}\left(2^{r_{k} / \beta_{k}} x_{k}, 2^{r_{k}}\left(x_{n+1}+\sum_{j \neq k}\left|x_{j}\right|^{\beta_{j}}\right)\right) \prod_{j \neq k} \Phi_{j}\left(2^{r_{j} / \beta_{j}} x_{j}\right)
\end{aligned}
$$

where

$$
G_{k}=\left(I_{k}(1-h)\left(1-\widetilde{m}_{k, 0}\right)\right)^{\wedge}
$$

Taking account of Proposition 1 of $[\mathrm{St}]$, p. 331, we note that if we choose, in the definition of $\widetilde{m}_{k, 0}, C_{0}$ large enough, we find that $G_{k} \in S\left(\mathbb{R}^{2}\right)$.

For $1 \leq k \leq n$ and $r_{1}, \ldots, r_{k-1}, r_{k+1}, \ldots, r_{n} \in \mathbb{N}$, we set

$$
\begin{aligned}
& V_{r_{1}, \ldots, r_{k-1}, r_{k+1}, \ldots, r_{n}}^{k} \\
& \quad=\left\{\left(x_{1}, \ldots, x_{n}\right) \in Q: 2^{-\left(r_{j}-1\right) / \beta_{j}} \leq\left|x_{j}\right| \leq 2^{-\left(r_{j}-4\right) / \beta_{j}}, j \neq k\right\} .
\end{aligned}
$$

Since $G_{k} \in S\left(\mathbb{R}^{2}\right)$, we obtain

$$
\sum_{1 \leq r_{k} \leq R}\left|K_{r_{1}, \ldots, r_{n}}^{\vee}\left(x_{1}, \ldots, x_{n+1}\right)\right| \leq c \frac{\chi_{V_{r_{1}, \ldots, r_{k-1}, r_{k+1}, \ldots, r_{n}}^{k}}\left(x_{1}, \ldots, x_{n}\right)}{\left|x_{k}\right|^{\beta_{k}}+\left.\left|\sum_{j \neq k}\right| x_{j}\right|^{\beta_{j}}+x_{n+1} \mid}
$$

with c independent of R and $r_{j}, j \neq k$. Thus

$$
\begin{aligned}
\mid\left\{x \in \mathbb{R}^{n+1}: \sum_{1 \leq r_{k} \leq R}\left|K_{r_{1}, \ldots, r_{n}}^{\vee}\left(x_{1}, \ldots, x_{n+1}\right)\right|\right. & >\lambda\} \mid \\
& \leq c 2^{-\sum_{j \neq k} r_{j} / \beta_{j}} \frac{1}{\lambda^{1+1 / \beta_{k}}}
\end{aligned}
$$

and the lemma follows.
Lemma 2.7. The kernel of the convolution operator

$$
\sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}} P_{k, r_{k}}
$$

belongs to weak- $L^{1+\beta_{k}^{-1}}$ with norm less than $c 2^{-\sum_{j \neq k} r_{j} / \beta_{j}}$, with c independent of R and $r_{j}, j \neq k$.

Proof. As in Lemma 2.6 we can see that the kernel of $T_{\nu_{r_{1}}, \ldots, r_{n}} P_{k, r_{k}}$ is given by

$$
\left(\prod_{j \neq k} \Phi_{j}\left(2^{r_{j} / \beta_{j}} x_{j}^{j}\right) G_{k}\left(2^{r_{k} / \beta_{k}} x_{k}, 2^{r_{k}}\left(x_{n+1}+\sum_{j \neq k}\left|x_{j}\right|^{\beta_{j}}\right)\right)\right)^{\vee}
$$

where now $G_{k}=\left(I_{k} h\right)^{\wedge}$. Since $G_{k} \in S\left(\mathbb{R}^{2}\right)$, as before, the lemma follows.
3. The main result. Let Q, φ, μ and E_{μ} be defined as in the introduction. Without loss of generality we suppose $1<\beta_{1} \leq \ldots \leq \beta_{n}$. It is easy to check that E_{μ} contains the principal diagonal, and the Riesz-Thorin theorem implies that E_{μ} is a convex subset of $[0,1] \times[0,1]$. It is well known that if $(1 / p, 1 / q) \in E_{\mu}$ then $p \leq q$ (see [S-W], p. 33).

For $1 \leq k \leq n$, we set $S_{k}=\sum_{j=k}^{n} \beta_{j}^{-1}$, also we set $S_{n+1}=0$. We denote by $L_{k}, 0 \leq k \leq n$, the lines given by

$$
\frac{1}{q}=\frac{k+1+S_{k+1}}{1+S_{k+1}} \cdot \frac{1}{p}-\frac{k+S_{k+1}}{1+S_{k+1}}
$$

Also we denote by $A_{k}, 0 \leq k \leq n$, the intersection of L_{k} with the nonprincipal diagonal $\{(x, 1-x): 0 \leq x \leq 1\}$ and by $B_{k}, 1 \leq k \leq n$, the intersection of L_{k-1} with L_{k}. A computation shows that for $0 \leq k \leq n$,

$$
A_{k}=\left(\frac{1+k+2 S_{k+1}}{k+2+2 S_{k+1}}, \frac{1}{k+2+2 S_{k+1}}\right)
$$

and for $1 \leq k \leq n$,

$$
B_{k}=\left(\frac{1+S_{k+1}+(k-1) \beta_{k}^{-1}}{1+k \beta_{k}^{-1}+S_{k+1}}, \frac{1-\beta_{k}^{-1}}{1+k \beta_{k}^{-1}+S_{k+1}}\right)
$$

Let $\Sigma^{\left(\beta_{1}, \ldots, \beta_{n}\right)}$ be the closed convex polygonal region contained in $[0,1] \times$ $[0,1]$, given by the intersection of the lower half space determined by the principal diagonal with all the upper half spaces determined by the lines $L_{k}, 0 \leq k \leq n$, and all the upper half spaces determined by their symmetric images with respect to the nonprincipal diagonal. Lemma 2.1 and Remark 2.4 of [F-G-U] say that $E_{\mu} \subset \Sigma^{\left(\beta_{1}, \ldots, \beta_{n}\right)}$. Let k_{0} be defined by $k_{0}=0$ if $\beta_{1}>2$ and $k_{0}=\max \left\{k: 1 \leq k \leq n, \beta_{k} \leq 2\right\}$ if $\beta_{1} \leq 2$. Remark 2.6 of [F-G-U] says that, for $k_{0}<n, \Sigma^{\left(\beta_{1}, \ldots, \beta_{n}\right)}=\Sigma^{\left(2, \ldots, 2, \beta_{k_{0}+1}, \ldots, \beta_{n}\right)}$ is the closed convex polygonal region with vertices $A_{k_{0}},(0,0),(1,1), B_{n}, B_{n-1}, \ldots, B_{k_{0}+1}$ and their symmetric images $B_{n}^{\prime}, B_{n-1}^{\prime}, \ldots B_{k_{0}+1}^{\prime}$ with respect to the nonprincipal diagonal, and for $k_{0}=n, \Sigma^{\left(\beta_{1}, \ldots, \beta_{n}\right)}$ is the closed triangular region with vertices $(0,0),(1,1)$ and A_{n}. Our aim is to prove that $E_{\mu}=\Sigma^{\left(\beta_{1}, \ldots, \beta_{n}\right)}$ for $k_{0}<n$. The remaining case is done in [F-G-U].

For $B=(1 / p, 1 / q) \in(0,1) \times(0,1)$ and $T: L^{p} \rightarrow L^{q}$ we write, to simplify the notation, $\|T\|_{B}$ instead of $\|T\|_{p, q}$.

Lemma 3.2. There exists $c>0$, independent of r_{1}, \ldots, r_{k-1}, such that for $R \in \mathbb{N}$ and $k_{0}+1 \leq k \leq n$,

$$
\begin{aligned}
\| & \sum_{1 \leq r_{k}, \ldots, r_{n} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}}\left(I-P_{k, r_{k}}\right)\left(I-\widetilde{Q}_{k, r_{k}}\right) \|_{B_{k}} \\
& \leq c \exp _{2}\left(-\sum_{j=1}^{k-1} \frac{r_{j}}{\beta_{j}} \cdot \frac{\beta_{j}\left(\beta_{j}^{-1}-\beta_{k}^{-1}\right)}{1+S_{k+1}+k \beta_{k}^{-1}}\right)
\end{aligned}
$$

where $\exp _{2}(x)=2^{x}$.
Proof. We fix k and consider the operator

$$
\sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}}\left(I-P_{k, r_{k}}\right)\left(I-\widetilde{Q}_{k, r_{k}}\right)
$$

Lemma 2.6 and the weak Young inequality imply that it is of weak type $\left(1,1+\beta_{k}^{-1}\right)$ with weak constant less than $c \exp _{2}\left(-\sum_{j \neq k} r_{j} / \beta_{j}\right)$, with c independent of R and $r_{j}, j \neq k$. We set $D=\left(1,1 /\left(1+\beta_{k}^{-1}\right)\right)$.

We now study the behavior of this operator on the nonprincipal diagonal. We note that $\nu_{r_{1}, \ldots, r_{n}} \leq \mu_{r_{1}, \ldots, r_{n}}$ where $\mu_{r_{1}, \ldots, r_{n}}$ is the measure μ restricted to

$$
\prod_{1 \leq j \leq n}\left\{t \in \mathbb{R}: 2^{-\left(r_{j}-1\right) / \beta_{j}} \leq|t| \leq 2^{-\left(r_{j}-4\right) / \beta_{j}}\right\}
$$

Let $J_{z}=\delta \otimes \ldots \otimes \delta \otimes I_{z}$, where I_{z} is the analytic extension to \mathbb{C} of the fractional integration kernel

$$
\frac{2^{-z / 2}}{\Gamma(z / 2)}|t|^{z-1}
$$

We consider the analytic family of operators given by

$$
T_{z} f=\sum_{1 \leq r_{k} \leq R} \mu_{r_{1}, \ldots, r_{n}} * J_{z} * f, \quad z \in \mathbb{C}, f \in S\left(\mathbb{R}^{n+1}\right)
$$

A computation shows that $\left\|T_{z}\right\|_{1, \infty} \leq c$ if $\operatorname{Re}(z)=1$. Reasoning as in the proof of Theorem 3.2 of [F-G-U], using Lemma 2.2 of [R-S] and the van der Corput Lemma (see [St], p. 332), we obtain

$$
\begin{aligned}
& \left|\sum_{1 \leq r_{k} \leq R} \widehat{\mu}_{r_{1}, \ldots, r_{n}}\left(y_{1}, \ldots, y_{n+1}\right)\right| \\
& \leq c \exp _{2}\left(\sum_{j \neq k} \frac{r_{j}}{\beta_{j}} \cdot \frac{\beta_{j}-2}{2}\right)\left|y_{n+1}\right|^{-(n-1) / 2-1 / \beta_{k}}
\end{aligned}
$$

Thus the complex interpolation theorem, applied on the strip $-(n-1) / 2-$ $1 / \beta_{k} \leq \operatorname{Re}(z) \leq 1$, gives us

$$
\left\|\sum_{1 \leq r_{k} \leq R} T_{\mu_{r_{1}, \ldots, r_{n}}}\right\|_{A^{n-1}} \leq c \exp _{2}\left(\sum_{j \neq k} \frac{r_{j}}{\beta_{j}} \cdot \frac{\beta_{j}-2}{n+1+2 \beta_{k}^{-1}}\right)
$$

where

$$
A^{n-1}=\left(\frac{n+2 \beta_{k}^{-1}}{1+n+2 \beta_{k}^{-1}}, \frac{1}{1+n+2 \beta_{k}^{-1}}\right)
$$

Since $\nu_{r_{1}, \ldots, r_{n}} \leq \mu_{r_{1}, \ldots, r_{n}}$, Lemma 2.5 implies that

$$
\begin{align*}
&\left\|\sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}}, \ldots, r_{n}}\left(I-P_{k, r_{k}}\right)\left(I-\widetilde{Q}_{k, r_{k}}\right)\right\|_{A^{n-1}} \tag{3.3}\\
& \leq c \exp _{2}\left(\sum_{j \neq k} \frac{r_{j}}{\beta_{j}} \cdot \frac{\beta_{j}-2}{n+1+2 \beta_{k}^{-1}}\right) .
\end{align*}
$$

We set, for $t \in(0,1], B_{t}^{n}=t A^{n-1}+(1-t) D$. The Marcinkiewicz interpolation theorem (see [B-S], p. 227, Remark 4.15(d)) gives us

$$
\begin{align*}
&\left\|\sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}}\left(I-P_{k, r_{k}}\right)\left(I-\widetilde{Q}_{k, r_{k}}\right)\right\|_{B_{t}^{n}} \tag{3.4}\\
& \leq c \exp _{2}\left(-\sum_{j \neq k} \frac{r_{j}}{\beta_{j}}\left((1-t)-\frac{\beta_{j}-2}{n+1+2 \beta_{k}^{-1}} t\right)\right)
\end{align*}
$$

for some positive constant c independent of t, R and $r_{j}, j \neq k$.
If $k=n$, we check that there exists $t \in(0,1)$ such that $B_{t}^{n}=B_{n}$. Using this t in the above expression, we get the lemma in this case.

If $k_{0}+1 \leq k \leq n-1$, we will construct inductively an open polygonal region that contains B_{k} and such that at each of its points,

$$
\begin{aligned}
&\left\|\sum_{1 \leq r_{k}, \ldots, r_{n} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}}\left(I-P_{k, r_{k}}\right)\left(I-\widetilde{Q}_{k, r_{k}}\right)\right\| \\
& \leq c \exp _{2}\left(-\sum_{j=1}^{k-1} \frac{r_{j}}{\beta_{j}} \cdot \frac{\beta_{j}\left(\beta_{j}^{-1}-\beta_{k}^{-1}\right)}{1+S_{k+1}+k \beta_{k}^{-1}}\right)
\end{aligned}
$$

We define $t_{n} \in(0,1)$ as the value of t that annihilates the coefficient of r_{n} / β_{n} in (3.4). Now we set $B^{n}(\varepsilon)=B_{t_{n}-\varepsilon}^{n}$. So a computation shows that

$$
\begin{align*}
& \left\|\sum_{1 \leq r_{n} \leq R} \sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}}\left(I-P_{k, r_{k}}\right)\left(I-\widetilde{Q}_{k, r_{k}}\right)\right\|_{B^{n}(\varepsilon)} \tag{3.5}\\
& \leq \\
& c_{\varepsilon} \exp _{2}\left(-\sum_{j=1, j \neq k}^{n-1} \frac{r_{j}}{\beta_{j}}\left(\frac{\beta_{j}\left(\beta_{j}^{-1}-\beta_{n}^{-1}\right)}{n \beta_{n}^{-1}-\beta_{n}^{-1}+2 \beta_{k}^{-1} \beta_{n}^{-1}+1}\right.\right. \\
& \left.\left.\quad+\varepsilon\left(1+\frac{\beta_{j}-2}{n+1+2 \beta_{k}^{-1}}\right)\right)\right)
\end{align*}
$$

We set, for $k-1 \leq m \leq n-1$,

$$
A^{m}=\left(\frac{1+m+2 \beta_{k}^{-1}+2 S_{m+2}}{2+m+2 \beta_{k}^{-1}+2 S_{m+2}}, \frac{1}{2+m+2 \beta_{k}^{-1}+2 S_{m+2}}\right)
$$

We note that $A^{k-1}=A_{k-1}$. Reasoning as in the proof of (3.3), but now using the complex interpolation theorem on the strip $-m / 2-1 / \beta_{k}-S_{m+2} \leq$ $\operatorname{Re}(z) \leq 1$, we obtain

$$
\begin{align*}
& \| \sum_{1 \leq r_{m+2, \ldots, r_{n} \leq R}} \sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}, \ldots r_{n}}}\left(I-P_{k, r_{k}}\right)\left(I-\widetilde{Q}_{k, r_{k}}\right) \|_{A^{m}} \tag{3.6}\\
& \leq c \exp _{2}\left(\sum_{j=1, j \neq k}^{m+1} \frac{r_{j}}{\beta_{j}} \cdot \frac{\beta_{j}-2}{m+2+2 \beta_{k}^{-1}+2 S_{m+2}}\right)
\end{align*}
$$

For $1 \leq j \leq m-1, k \leq m \leq n$ and $\varepsilon>0$ small enough, we define $\delta(m, j, \varepsilon)$ and $B^{m}(\varepsilon)$ recursively on m. These definitions will be done in such a way
that, for $k+1 \leq m$,

$$
\begin{equation*}
\left\|\sum_{r_{m}, \ldots, r_{n}} \sum_{r_{k}} T_{\nu_{r_{1}}, \ldots, r_{n}}\left(I-P_{k, r_{k}}\right)\left(I-\widetilde{Q}_{k, r_{k}}\right)\right\|_{B^{m}(\varepsilon)} \tag{3.7}
\end{equation*}
$$

$$
\leq c_{\varepsilon} \exp _{2}\left(-\sum_{j=1, j \neq k}^{m-1} \frac{r_{j}}{\beta_{j}}\left[\frac{\beta_{j}\left(\beta_{j}^{-1}-\beta_{m}^{-1}\right)}{(m-1) \beta_{m}^{-1}+2 \beta_{k}^{-1} \beta_{m}^{-1}+S_{m+1}+1}+\delta(m, j, \varepsilon)\right]\right)
$$

for some positive constant c_{ε}.
(3.5) is (3.7) with $m=n$,

$$
c_{\varepsilon}=c \sum_{r_{n} \in \mathbb{N}} \exp _{2}\left(-\frac{r_{n}}{\beta_{n}} \varepsilon\left(1+\frac{\beta_{n}-2}{n+1+2 \beta_{k}^{-1}}\right)\right)
$$

and

$$
\delta(n, j, \varepsilon)=\varepsilon\left(1+\frac{\beta_{j}-2}{n+1+2 \beta_{k}^{-1}}\right)
$$

Suppose that we have defined $B^{m+1}(\varepsilon)$ and $\delta(m+1, j, \varepsilon)$ for $1 \leq j \leq m$ so that (3.7) holds for $m+1$ instead of m. We set, for $t \in[0,1], B_{t}^{m}(\varepsilon)=$ $t A^{m-1}+(1-t) B^{m+1}(\varepsilon)$. The Marcinkiewicz interpolation theorem and (3.6) applied to $m-1$ instead of m give us

$$
\begin{align*}
& \left\|\sum_{1 \leq r_{m+1}, \ldots, r_{n} \leq R} \sum_{1 \leq r_{k} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}}\left(I-P_{k, r_{k}}\right)\left(I-\widetilde{Q}_{k, r_{k}}\right)\right\|_{B_{t}^{m}(\varepsilon)} \tag{3.8}\\
& \leq c_{\varepsilon} \exp _{2}\left(-\sum_{j=1, j \neq k}^{m} \frac{r_{j}}{\beta_{j}}[(1-t)\right. \\
& \quad \times\left(\frac{\beta_{j}\left(\beta_{j}^{-1}-\beta_{m+1}^{-1}\right)}{m \beta_{m+1}^{-1}+2 \beta_{k}^{-1} \beta_{m+1}^{-1}+S_{m+2}+1}+\delta(m+1, j, \varepsilon)\right) \\
& \left.\left.\quad-t \frac{\beta_{j}-2}{m+1+2 \beta_{k}^{-1}+2 S_{m+1}}\right]\right) .
\end{align*}
$$

We define t_{m} by
$\left(1-t_{m}\right) \frac{\beta_{m}\left(\beta_{m}^{-1}-\beta_{m+1}^{-1}\right)}{m \beta_{m+1}^{-1}+2 \beta_{k}^{-1} \beta_{m+1}^{-1}+S_{m+2}+1}-t_{m} \frac{\beta_{m}-2}{m+1+2 \beta_{k}^{-1}+2 S_{m+1}}=0$.
Taking account of $1<\beta_{1} \leq \ldots \leq \beta_{n}$, we easily check that $t_{m} \in[0,1)$. We set

$$
B_{m}(\varepsilon)=t_{m} A^{m-1}+\left(1-t_{m}\right) B^{m+1}(\varepsilon) .
$$

A computation shows that t_{m} satisfies, for $1 \leq j \leq m$,

$$
\begin{aligned}
\left(1-t_{m}\right) \frac{\beta_{j}\left(\beta_{j}^{-1}-\beta_{m+1}^{-1}\right)}{m \beta_{m+1}^{-1}+2 \beta_{k}^{-1} \beta_{m+1}^{-1}+S_{m+2}+1}-t_{m} \frac{\beta_{j}-2}{m+1+2 \beta_{k}^{-1}+2 S_{m+1}} \\
=\frac{\beta_{j}\left(\beta_{j}^{-1}-\beta_{m}^{-1}\right)}{(m-1) \beta_{m}^{-1}+2 \beta_{k}^{-1} \beta_{m}^{-1}+S_{m+1}+1} .
\end{aligned}
$$

Then from (3.8) we obtain (3.7) if $m \geq k+1$, with

$$
\delta(m, j, \varepsilon)=\left(1-t_{m}\right) \delta(m+1, j, \varepsilon)
$$

and some positive constant c_{ε}. Thus

$$
\begin{align*}
& \text { (3.9) }\left\|\sum_{1 \leq r_{k}, \ldots, r_{n} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}}\left(I-P_{k, r_{k}}\right)\left(I-\widetilde{Q}_{k, r_{k}}\right)\right\|_{B^{m}(\varepsilon)} \tag{3.9}\\
& \leq c_{\varepsilon} \sum_{r_{k+1}, \ldots, r_{m-1}} \exp _{2}\left(-\sum_{j=1, j \neq k}^{m-1} \frac{r_{j}}{\beta_{j}}\left(\frac{\beta_{j}\left(\beta_{j}^{-1}-\beta_{m}^{-1}\right)}{(m-1) \beta_{m}^{-1}+2 \beta_{k}^{-1} \beta_{m}^{-1}+S_{m+1}+1}\right.\right.
\end{align*}
$$

$$
+\delta(m, j, \varepsilon)))
$$

$$
\leq c_{\varepsilon} \exp _{2}\left(-\sum_{j=1}^{k-1} \frac{r_{j}}{\beta_{j}}\left(\frac{\beta_{j}\left(\beta_{j}^{-1}-\beta_{m}^{-1}\right)}{(m-1) \beta_{m}^{-1}+2 \beta_{k}^{-1} \beta_{m}^{-1}+S_{m+1}+1}+\delta(m, j, \varepsilon)\right)\right)
$$

$$
\leq c_{\varepsilon} \exp _{2}\left(-\sum_{j=1}^{k-1} \frac{r_{j}}{\beta_{j}}\left(\frac{\beta_{j}\left(\beta_{j}^{-1}-\beta_{k}^{-1}\right)}{(k-1) \beta_{k}^{-1}+2 \beta_{k}^{-1} \beta_{k}^{-1}+S_{k+1}+1}+\delta(k, j, \varepsilon)\right)\right)
$$

$$
\leq c_{\varepsilon} \exp _{2}\left(-\sum_{j=1}^{k-1} \frac{r_{j}}{\beta_{j}} \cdot \frac{\beta_{j}\left(\beta_{j}^{-1}-\beta_{k}^{-1}\right)}{1+S_{k+1}+k \beta_{k}^{-1}}\right)
$$

where $\delta(k, j, \varepsilon)=\left(1-t_{k}\right) \delta(k+1, j, \varepsilon)$.
Also, (3.8) with $m=k$ and $t=t_{k}$ gives us

$$
\begin{equation*}
\left\|\sum_{1 \leq r_{k}, \ldots, r_{n} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}}\left(I-P_{k, r_{k}}\right)\left(I-\widetilde{Q}_{k, r_{k}}\right)\right\|_{B^{k}(\varepsilon)} \tag{3.10}
\end{equation*}
$$

$$
=c_{\varepsilon} \exp _{2}\left(-\sum_{j=1}^{k-1} \frac{r_{j}}{\beta_{j}}\left[\left(\frac{\beta_{j}\left(\beta_{j}^{-1}-\beta_{k}^{-1}\right)}{(k-1) \beta_{k}^{-1}+2 \beta_{k}^{-1} \beta_{k}^{-1}+S_{k+1}+1}+\delta(k, j, \varepsilon)\right)\right]\right)
$$

$$
\leq c_{\varepsilon} \exp _{2}\left(-\sum_{j=1}^{k-1} \frac{r_{j}}{\beta_{j}} \cdot \frac{\beta_{j}\left(\beta_{j}^{-1}-\beta_{k}^{-1}\right)}{1+S_{k+1}+k \beta_{k}^{-1}}\right)
$$

Now,

$$
\frac{\beta_{j}\left(\beta_{j}^{-1}-\beta_{k}^{-1}\right)}{1+S_{k+1}+k \beta_{k}^{-1}} \leq 1,
$$

so the same bound holds for the norm of

$$
\sum_{1 \leq r_{k}, \ldots, r_{n} \leq R} T_{\nu_{r_{1}}, \ldots, r_{n}}\left(I-P_{k, r_{k}}\right)\left(I-\widetilde{Q}_{k, r_{k}}\right)
$$

at the points D and ($1 / 2,1 / 2$).
We set $B^{m}=\lim _{\varepsilon \rightarrow 0} B^{m}(\varepsilon)$. Taking account of the definition of t_{m} one can check inductively on m that

$$
\begin{aligned}
& B^{m}=\left(\frac{1+S_{m+1}+(m-2) \beta_{m}^{-1}+2 \beta_{m}^{-1} \beta_{k}^{-1}}{1+S_{m+1}+(m-1) \beta_{m}^{-1}+2 \beta_{m}^{-1} \beta_{k}^{-1}}\right. \\
&\left.\frac{\left(1+\beta_{k}^{-1}\right)^{-1}\left(1-\beta_{m}^{-1}+\beta_{m}^{-1} \beta_{k}^{-1}\right)}{1+S_{m+1}+(m-1) \beta_{m}^{-1}+2 \beta_{m}^{-1} \beta_{k}^{-1}}\right)
\end{aligned}
$$

Now, it is easy to see that B_{k} belongs to the open segment that joins B^{k} and D, so for ε small enough, it belongs to the open convex polygonal region with vertices $D, B^{n}(\varepsilon), \ldots, B^{k}(\varepsilon)$ and $(1 / 2,1 / 2)$. Therefore the lemma follows from (3.9), (3.10) and the Marcinkiewicz interpolation theorem.

Lemma 3.11. There exists $c>0$, independent of r_{1}, \ldots, r_{k-1}, such that for each $R \in \mathbb{N}$ and for $k_{0}+1 \leq k \leq n$,

$$
\begin{aligned}
&\left\|\sum_{1 \leq r_{k} \leq R} \ldots \sum_{1 \leq r_{n} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}} P_{k, r_{k}}\right\|_{B_{k}} \\
& \leq c \exp _{2}\left(-\sum_{j=1}^{k-1} \frac{r_{j}}{\beta_{j}} \cdot \frac{\beta_{j}\left(\beta_{j}^{-1}-\beta_{k}^{-1}\right)}{1+S_{k+1}+k \beta_{k}^{-1}}\right) .
\end{aligned}
$$

Proof. In view of Lemmas 2.4 and 2.7, the proof follows as in Lemma 3.2.

Theorem 3.12. E_{μ} is the closed convex polygonal region with vertices $(1,1), B_{n}, \ldots, B_{k_{0}+1}, A_{k_{0}}, B_{k_{0}+1}^{\prime}, \ldots, B_{n}^{\prime}$ and $(0,0)$.

Proof. Since $A_{k_{0}} \in E_{\mu}$ (see [F-G-U], Lemma 3.1). Taking account of $E_{\nu} \subset E_{\mu} \subset \Sigma^{\left(2, \ldots, 2, \beta_{k_{0}+1}, \ldots, \beta_{n}\right)}$, we first prove that $B_{n}, \ldots, B_{k_{0}+1} \in E_{\nu}$. Let $R \in \mathbb{N}$. We prove inductively on k that, if $k_{0}+1 \leq k \leq n$, then

$$
\begin{align*}
\| \sum_{1 \leq r_{k}, \ldots, r_{n} \leq R} T_{\nu_{r_{1}}, \ldots, r_{n}} & \|_{B_{k}} \tag{3.13}\\
& \leq c \exp _{2}\left(-\sum_{j=1}^{k-1} \frac{r_{j}}{\beta_{j}} \cdot \frac{\beta_{j}^{-1}-\beta_{k}^{-1}}{\beta_{j}^{-1}\left(1+S_{k+1}+k \beta_{k}^{-1}\right)}\right)
\end{align*}
$$

with c independent of r_{1}, \ldots, r_{k-1} and R. Indeed, if $k=n$ we decompose

$$
\begin{aligned}
\sum_{r_{n}} T_{\nu_{r_{1}}, \ldots, r_{n}}= & \sum_{r_{n}} T_{\nu_{r_{1}}, \ldots, r_{n}} P_{n, r_{n}}+\sum_{r_{n}} T_{\nu_{r_{1}}, \ldots, r_{n}}\left(I-P_{n, r_{n}}\right)\left(I-\widetilde{Q}_{n, r_{n}}\right) \\
& +\sum_{r_{n}} T_{\nu_{r_{1}}, \ldots, r_{n}}\left(I-P_{n, r_{n}}\right) \widetilde{Q}_{n, r_{n}} .
\end{aligned}
$$

Reasoning as in the proof of (3.3), we obtain

$$
\left\|T_{\nu_{r_{1}, \ldots, r_{n}}}\right\|_{A_{n}} \leq c \exp _{2}\left(\sum_{j=1}^{n} \frac{r_{j}}{\beta_{j}} \cdot \frac{\beta_{j}-2}{n+2}\right)
$$

Using the Riesz-Thorin interpolation theorem between A_{n} and $(1,1)$ we get

$$
\sup _{r_{n}}\left\|T_{\nu_{r_{1}, \ldots, r_{n}}}\right\|_{B_{n}}<c \exp _{2}\left(-\sum_{j=1}^{n-1} \frac{\beta_{n}-\beta_{j}}{n+\beta_{n}} \cdot \frac{r_{j}}{\beta_{j}}\right) .
$$

So, Lemmas 2.2, 3.2 and 3.11 imply

$$
\left\|\sum_{1 \leq r_{n} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}}\right\|_{B_{n}} \leq c \exp _{2}\left(-\sum_{j=1}^{n-1} \frac{r_{j}}{\beta_{j}} \cdot \frac{\beta_{n}-\beta_{j}}{n+\beta_{n}}\right)
$$

with c independent of r_{1}, \ldots, r_{n-1} and R. Suppose (3.13) holds for k. Let us prove it for $k-1$. We decompose

$$
\begin{aligned}
& \sum_{1 \leq r_{k-1}, \ldots, r_{n} \leq R} T_{\nu_{r_{1}}, \ldots, r_{n}} \\
&= \sum_{1 \leq r_{k-1}, \ldots, r_{n} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}}\left(I-P_{k-1, r_{k-1}}\right)\left(I-\widetilde{Q}_{k-1, r_{k-1}}\right) \\
&+\sum_{1 \leq r_{k-1}, \ldots, r_{n} \leq R} T_{\nu_{r_{1}}, \ldots, r_{n}} P_{k-1, r_{k-1}} \\
&+\sum_{1 \leq r_{k-1}, \ldots, r_{n} \leq R} T_{\nu_{r_{1}, \ldots, r_{n}}}\left(I-P_{k-1, r_{k-1}}\right) \widetilde{Q}_{k-1, r_{k-1}}
\end{aligned}
$$

Again, reasoning as in the proof of (3.3), we obtain

$$
\begin{equation*}
\left\|\sum_{1 \leq r_{k}, \ldots, r_{n} \leq R} T_{\nu_{r_{1}}, \ldots, r_{n}}\right\|_{A_{k-1}} \leq c \exp _{2}\left(\sum_{j=1}^{k-1} \frac{r_{j}}{\beta_{j}} \cdot \frac{\beta_{j}-2}{k+1+2 S_{k}}\right) \tag{3.14}
\end{equation*}
$$

and so (3.13), (3.14) and the Riesz-Thorin theorem imply

$$
\begin{aligned}
& \sup _{r_{k-1}}\left\|\sum_{1 \leq r_{k}, \ldots, r_{n} \leq R} T_{\nu_{r_{1}}, \ldots, r_{n}}\right\|_{B_{k-1}} \\
& \leq c \exp _{2}\left(-\sum_{j=1}^{k-2} \frac{r_{j}}{\beta_{j}} \cdot \frac{\beta_{j}\left(\beta_{j}^{-1}-\beta_{k-1}^{-1}\right)}{1+S_{k}+(k-1) \beta_{k-1}^{-1}}\right) .
\end{aligned}
$$

This inequality and Lemmas 2.2, 3.2 and 3.11 give us (3.13) with k replaced by $k-1$. So (3.13) holds.

Now, it is easy to see that $B_{k} \in E_{\nu}$ for $k_{0}+1 \leq k \leq n$. Indeed, if $\beta_{k-1} \neq \beta_{k}$, we can sum over $r_{1}, \ldots, r_{k-1} \in \mathbb{N}$ in (3.13). In the other case, let $s=\min \left\{j \geq k_{0}+1: \beta_{j}=\beta_{k}\right\}$. Then $B_{k}=B_{s}$ and we can sum over $r_{1}, \ldots, r_{s-1} \in \mathbb{N}$ in (3.13). Since c is independent of R we conclude that, in both cases, $B_{k} \in E_{\nu}$.

A simple computation shows that $\left(T_{\mu}\right)^{*}=T_{\mu^{*}}$ where

$$
\mu^{*}(E)=\mu(-E)=\int_{Q} \chi_{E}\left(x_{1}, \ldots, x_{n},-\varphi\left(x_{1}, \ldots, x_{n}\right)\right) d x_{1} \ldots d x_{n}
$$

Reasoning as before, we deduce, by duality that $B_{n}^{\prime}, \ldots, B_{k_{0}+1}^{\prime}$ belong to E_{μ}.

REFERENCES

[B-S] C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Appl. Math. 129, Academic Press, 1988.
[C] M. Christ, Endpoint bounds for singular fractional integral operators, UCLA preprint, 1988.
[F-G-U] E. Ferreyra, T. Godoy and M. Urciuolo, $L^{p}-L^{q}$ estimates for convolution operators with n-dimensional singular measures, J. Fourier Anal. Appl., to appear.
[O] D. Oberlin, Convolution estimates for some measures on curves, Proc. Amer. Math. Soc. 99 (1987), 56-60.
[R-S] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. III, Fractional integration along manifolds, J. Funct. Anal. 86 (1989), 360-389.
[S] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970.
[St] -, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
[S-W] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.

Facultad de Matemática, Astronomía y Física
Universidad Nacional de Córdoba
Ciudad Universitaria
5000 Córdoba, Argentina
E-mail: eferrey@mate.uncor.edu
godoy@mate.uncor.edu
urciuolo@mate.uncor.edu

[^0]: 1991 Mathematics Subject Classification: Primary 42B20.
 Research partially supported by CONICOR, CONICET and SECYTUNC.

