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1. Introduction. This paper deals with a class of three-dimensional
cooperative irreducible systems of ordinary differential equations (ODEs)

(1) ẋi = F i(x), x ∈ X,
where F = (F 1, F 2, F 3) is a vector field of class C1, defined on an open
subset X of the three-dimensional real affine space A = {x = (x1, x2, x3)}.
A system (1) is cooperative if ∂F i/∂xj ≥ 0 for i 6= j. A cooperative system
is irreducible if the matrix DF = [∂F i/∂xj ]3i,j=1 is irreducible.

The symbol φ = {φt} stands for the local flow generated on X by (1):
φtx = y if ϕ(x, t) = y, where ϕ(x, ·) is the unique noncontinuable solution of
(1) with initial condition ϕ(x, 0) = x. We shall usually write x · t instead of
φtx. For x ∈ X the domain of t 7→ x · t is an open interval (σ(x), τ(x)) 3 0,
where σ(x) [τ(x)] is called the backward [forward ] escape time for x. The
backward [forward ] semiorbit of x ∈ X is defined as Ob(x) := {x · t : t ∈
(σ(x), 0]} [Of(x) := {x · t : t ∈ [0, τ(x)}]. The orbit O(x) of x is the union
of its backward and forward semiorbits. A set Y ⊂ X is called backward
[forward ] invariant if for each x ∈ Y , Ob(x) ⊂ Y [Of(x) ⊂ Y ]. Y is invariant
if it is both backward and forward invariant.

A point y ∈ X is called an ω-limit point of x ∈ X if there is a sequence
tn →∞ such that x · tn → y as n→∞. The set of all ω-limit points of x is
called the ω-limit set of x and denoted by ω(x). An ω-limit set is invariant.
An equilibrium is a point x ∈ X such that F (x) = 0, or equivalently, x·t = x
for all t. We denote the set of all equilibria by E. By a cycle we mean the
orbit of a point x ∈ X such that x · t 6= x for t ∈ (0, T ) and x · T = x.
(Notice that for an equilibrium y its orbit {y} is not a cycle.)

By a first integral for (1) we shall understand a C1 functionH : domH →
R such that 〈dH(x), F (x)〉 = 0 for all x ∈ domH, where the domain domH
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of H is an invariant open subset of X, 〈·, ·〉 is the Euclidean inner product
and dH(x) denotes the derivative of H at x. Observe that H need not be
defined on the whole of X. If H is constant on some Y ⊂ domH, the symbol
H(Y ) stands for the level set of H passing through Y .

In the existing literature on cooperative systems, the first integral has
almost always had some monotonicity properties. That has far-reaching con-
sequences, for example, if the gradient of the C1 first integral is everywhere
positive then each ω-limit set either is empty or consists of a single equi-
librium (see the author’s note [6]). The only exception is Theorem 4.7 in
M. W. Hirsch’s paper [3]: If there are countably many equilibria and X is
a connected open subset of a real affine space such that almost every point
in X has compact forward semiorbit closure then every continuous first in-
tegral is constant on X. The proof relies heavily on results about generic
convergence to equilibria.

The motivation for the present research came from the paper [1] by
Grammaticos et al., where a wide class of first integrals was found for three-
dimensional Lotka–Volterra systems. Those first integrals are compositions
of rational functions and exponentials, and there is no hope for them to be
defined everywhere, not to speak of having positive gradient. I am grateful
to Professor J.-M. Strelcyn for calling my attention to [1].

We now state our main theorem.

Theorem 1.1. Let (1) be a C1 three-dimensional cooperative irreducible
system of ODEs defined on the positive orthant A++ := {x ∈ A : xi > 0 for
i = 1, 2, 3}. Assume that H is a first integral for (1). If x ∈ A++ \ E does
not belong to a cycle and y ∈ ω(x) ∩ domH is such that dH(y) is nonzero,
then ω(x) = {y}.

See Theorems 2.2 and 2.3 in Section 2.

We will distinguish between the affine space A (consisting of points) and
the three-dimensional real Euclidean space V , that is, the set of all (free)
vectors v = (v1, v2, v3). The dual space to V will be denoted by V ∗. As
we use only the standard bases in V and V ∗, we will freely identify vectors
[functionals] with their representations in the respective bases.

The set C := {v ∈ V : vi ≥ 0 for i = 1, 2, 3} is called the (nonnegative)
cone. Evidently the interior C◦ of C equals {v ∈ C : vi > 0 for i = 1, 2, 3}.
D stands for the nonnegative cone in the dual space V ∗, and D◦ stands for
the interior of D.

For any two points x, y ∈ A, we write x ≤ y if y − x ∈ C, and x � y
if y − x ∈ C◦. Also, x < y means that x ≤ y and x 6= y. The reversed
inequalities are obvious. We say that Y ⊂ A is p-convex if for any two
points x, y ∈ Y with x < y the line segment joining them is contained in Y .
A set Y ⊂ A is strongly balanced if there are no x, y ∈ Y with x < y. The
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symbol B(x; r) will stand for the closed ball in A with center x and radius
r > 0.

Denote by Φ = {Φt} the derivative (local) flow of (1),

Φt(x, v) = (φtx, ψt(x)v) for x ∈ X, v ∈ V and t ∈ (σ(x), τ(x)).

Here ψt(x)v is the unique noncontinuable solution of the variational system
of ODEs dv/dt = DF (φtx)v with initial condition v(0) = v.

The derivative flow is a local linear skew-product flow on the tangent
bundle X ×V of X: for each x ∈ X and t ∈ (σ(x), τ(x)) the linear operator
ψt(x) acts from the tangent space at x onto the tangent space at φtx.

We can associate with Φ the dual local linear skew-product flow Φ∗ on
the cotangent bundle X × V ∗ of X, defined abstractly as

Φ∗t (x, v
∗) = (φ−tx, (ψt(φ−tx))∗v∗)

for x ∈ X, v∗ ∈ V ∗ and t ∈ (−τ(x),−σ(x)),

where (ψt(φ−tx))∗ is the linear operator from the cotangent space at x onto
the cotangent space at φ−tx dual to the linear operator ψt(φ−tx) from the
tangent space at φ−tx onto the tangent space at x.

For v∗ ∈ V ∗ the linear functional (ψt(φ−tx))∗ ∈ V ∗ equals the value at
time s = t of the solution of the three-dimensional system of linear ODEs

dv∗

ds
= (DF (φ−s(x)))Tv∗

with initial condition v∗(0) = v∗, where T stands for the matrix transpose.

Notice that if x ∈ domH, where H is a C1 first integral, then dH(x) =
(ψt(x))∗dH(φtx) for all t ∈ (σ(x), τ(x)). As (ψt(x))∗ are linear automor-
phisms, the open set of those x ∈ domH at which dH(x) is nonzero is
invariant.

An important property of cooperative irreducible systems of ODEs is
contained in the following result, due essentially to M. Müller and E. Kamke.

Proposition 1.2. Assume that (1) is a C1 cooperative irreducible system
of ODEs defined on an open set X ⊂ A. Then

(a) If x ∈ X then ψt(x)(C \ {0}) ⊂ C◦ for 0 < t < τ(x).

(b) If x ∈ X then (ψt(φ−tx))∗(D \ {0}) ⊂ D◦ for 0 < t < −σ(x).

The next result is a consequence of the above proposition.

Proposition 1.3. Assume that (1) is a C1 cooperative irreducible system
of ODEs defined on an open p-convex set X ⊂ A. If x < y then φtx� φty
for 0 < t < min{τ(x), τ(y)}.

For proofs see e.g. Hirsch’s paper [2].

Henceforward our standard assumption will be:
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(1) is a C1 cooperative irreducible system of ODEs defined on an open
p-convex subset X of A admitting a C1 first integral H : domH → R.

Finally, we state a slightly more general version of Theorem 1.1.

Theorem 1.4. For x ∈ X \ E not belonging to a cycle, if y ∈ ω(x) ∩
domH is such that dH(y) is nonzero, then ω(x) = {y}.

2. Proof of Theorem 1.4. We begin by formulating an easy conse-
quence of the implicit function theorem.

Lemma 2.1. Let x ∈ domH be such that dH(x) is nonzero. Then there
is an open neighborhood U of x in X with the following properties:

(i) H(x) ∩ U is a C1 embedded two-dimensional submanifold.
(ii) At each z ∈ H(x) ∩ U the tangent space of H(x) at z equals the

nullspace of the linear functional dH(z).

The proof of Theorem 1.4 will be carried out in two steps. First, we ex-
clude the case of ω(x) containing points not being equilibria (Theorem 2.2).
Next, in Theorem 2.3 we prove that equilibria must be isolated in ω(x)∩E.

Theorem 2.2. Assume that x ∈ X \ E does not belong to a cycle. Let
y ∈ ω(x) ∩ domH be such that dH(y) is nonzero. Then y ∈ E.

P r o o f. Consider first the case dH(y) ∈ D. We can assume dH(y) ∈ D◦,
since otherwise in view of Proposition 1.2(b) we can replace y by y·s for some
σ(y) < s < 0. Again from Proposition 1.2(b) we deduce that dH(x · t) ∈ D◦
for all t ∈ (σ(x),∞). An application of the Main Theorem in Mierczyński [6]
gives that y ∈ E.

Assume now that dH(y) 6∈ D, that is, dH(y) = (w1, w2, w3) with some
nonzero wi and wj of different signs. It is easy to see that the intersection
of the nullspace of dH(y) with the interior C◦ of the cone C is nonempty.
Suppose by way of contradiction that y 6∈ E. Then there is a vector v ∈ C◦
not collinear with F (y) and tangent at y to H(y). Take a C1 arc M ⊂ H(y)
tangent at y to v and so small as to be linearly ordered by �. The arc M
is a transversal for the vector field F |H(y). As y ∈ ω(x), there is a sequence
tn → ∞ such that x · tn ∈ M and x · tn → y as n → ∞. Assume for
definiteness x · t1 � x · t2. By choosing a subsequence, if necessary, we can
assume x� x·t1 � . . .� x·tn � x·tn+1 � . . .� y, and limn→∞ x·tn = y.
In order not to have too complicated indices, we do now some relabeling.
Put x1 := x·t1, x2 := x·t2. Also, we write tn−1 instead of tn−t1. Therefore,
we now have x2 = x1 · t1. In the new notation

x1 � x1 · t1 � . . .� x1 · tn � x1 · tn+1 � . . .� y.

As a consequence of strong monotonicity,

x2 � x2 · t1 � . . .� x2 · tn � x2 · tn+1 � . . .
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Put

η := inf{‖x1 · tn − x2 · tn‖}.
We claim η > 0. Indeed, if not then (after possibly taking a subsequence)
‖x1 ·tn−x2 ·tn‖ → 0 as n→∞. From this it follows that limn→∞ x2 ·tn = y,
which by the Colimiting Principle (see e.g. Smith [9]) gives y ∈ E.

Suppose that x2 ·tn converges to some y′ ∈ X. From the above paragraph
we get y < y′. We can assume y � y′, since otherwise we replace xi, i =
1, 2, by xi·s for some 0 < s < τ(y). We have thus obtained two points, y, y′ ∈
ω(x) being in the� relation, which contradicts Theorem 3.3.2 of [9]. (That
theorem is formulated for ω(x) compact, but it holds without assuming
compactness.)

Finally, suppose that the sequence x2·tn does not have a limit inX. Since
the function σ(·) is upper semicontinuous, we can find a closed neighborhood
U ⊂ X of M and a number θ > 0 such that σ(z) < −θ for each z ∈ U .

Consider the set

S :=

{
ψθ(z)v

‖ψθ(z)v‖
: z ∈ φ−θU, v ∈ C, ‖v‖ = 1

}
.

From Proposition 1.2(a) we derive that S is compact and contained in {v ∈
C◦ : ‖v‖ = 1}. Consequently, there exists a closed convex cone C in V such
that C \ {0} ⊂ C◦ and S ⊂ C. The cone C is defined in the tangent space V ,
but the natural exponential mapping allows us to define a new partial order
relation on A:

z1 � z2 if z2 − z1 ∈ C,
and z1 ≺ z2 if z1 � z2 and z1 6= z2. Obviously z1 � z2 implies z1 ≤ z2, and
z1 ≺ z2 implies z1 � z2. Because x1 · (tn − θ) → y · (−θ) as n → ∞, there
are n0 and δ > 0 such that B(x1 · (tn− θ); δ) ⊂ φ−θU for all n ≥ n0. Define,
for each n,

Kn := (x1 · tn + C) ∩ (A \ (y + C◦)).

The closed sets Kn are easily seen to be bounded and starshaped. As the
sequence x1 · tn converges in a strongly monotone way to y, the intersection⋂∞
n=1Kn equals {y}. As a consequence, limn→∞ diamKn = 0.

The mapping φ−θ is locally Lipschitz, so there is λ > 0 such that

(2.1) ‖z1 · θ − z2 · θ‖ ≥ λ‖z1 − z2‖ for any z1, z2 ∈ φ−θU.
Fix l ≥ n0 such that tl > θ and diamKl < min{λδ, η}. Denote by I the
line segment with endpoints x1 · (tl − θ) and x2 · (tl − θ). The segment I is
linearly ordered by �.

Assume first that we have η/λ ≤ ‖x1 · (tl − θ) − x2 · (tl − θ)‖ ≤ δ. The
convexity of closed balls in A implies I ⊂ B(x1 · (tl − θ); δ) ⊂ φ−θU . By
integration we obtain x1 · tl ≺ x2 · tl, that is, x2 · tl ∈ x1 · tl + (C \ {0}).
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An application of 2.1 yields ‖x1 · tl − x2 · tl‖ ≥ η > diamKl. Consequently,
x2 · tl 6∈ Kl, hence x2 · tl � y.

Now, assume ‖x1 · (tl − θ) − x2 · (tl − θ)‖ > δ. Denote by ζ the unique
point in I at distance δ from x1 · (tl − θ), and ζ ′ := ζ · θ. Proceeding as in
the above paragraph we obtain ‖x1 · tl − ζ ′‖ ≥ λδ > diamKl, hence ζ ′ � y.
As ζ � x2 · (tl − θ), strong monotonicity yields x2 · tl � ζ ′ � y.

Pick a natural m such that tm > tl+ t1. We have x1 ·0� x1 · tm � y �
x2 · tl = x1 · (tl + t1) with 0 < tl + t1 < tm, which contradicts Lemma 3.3.1
of [9].

Theorem 2.3. Let x 6∈ E and y ∈ ω(x)∩domH ∩E be such that dH(y)
is nonzero. Then ω(x) = {y}.

Before proving the above theorem we note a couple of results.
For an equilibrium y we denote by %(y) the stability modulus of the

matrix DF (y), that is, the maximum of the real parts of the eigenvalues of
DF (y).

The following result is a corollary of the well-known Perron–Frobenius
theorem.

Lemma 2.4. Let y be an equilibrium for a cooperative irreducible system
of ODEs. Then the stability modulus %(y) is a simple eigenvalue exceeding
in modulus the remaining two eigenvalues (counted with multiplicity). More-
over , any eigenvector corresponding to %(y) belongs to C◦ ∪ (−C◦), and the
DF (y)-invariant two-dimensional subspace corresponding to the remaining
eigenvalues meets C only at 0.

For y ∈ E, denote by V s(y), V u(y) and V c(y) the sums of the general-
ized eigenspaces corresponding to the eigenvalues of DF (y) with negative,
positive and zero real parts, respectively. It is well known (see e.g. Hirsch,
Pugh and Shub [5]) that there exist locally invariant C1 embedded subman-
ifolds M s(y), Mu(y) and M c(y), tangent at y to V s(y), V u(y) and V c(y)
(the local stable, unstable and center manifolds at y). The stable and un-
stable manifolds are locally unique, whereas the center manifold need not
be unique in general. Also, M s(y) [Mu(y)] can be made forward [backward]
invariant.

Recall that an equilibrium y is hyperbolic if no eigenvalue of DF (y) has
zero real part.

Lemma 2.5. No equilibrium y ∈ domH such that dH(y) 6= 0 is hyper-
bolic.

P r o o f. Suppose that y is a hyperbolic equilibrium with dH(y) 6= 0.
Since ω(z) = {y} for each z ∈ M s(y) and α(z) = {y} for each z ∈ Mu(y),
we have M s(y) ∪Mu(y) ⊂ H(y). But the latter set is a two-dimensional
manifold (Lemma 2.1), whereas the former is either a three-dimensional
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manifold or the union of a two-dimensional manifold and a one-dimensional
manifold transverse to each other, a contradiction.

An easy implication of Lemmas 2.4 and 2.5 is that for each y ∈ E such
that dH(y) 6= 0 the dimension of the center manifold M c(y) is either one or
two.

We now state the following easy lemma, which will be instrumental in
proving Theorem 2.3.

Lemma 2.6. Assume that x is not an equilibrium and y ∈ ω(x) ∩ E.
Then either ω(x) = {y} or there is δ > 0 such that for each 0 < ε ≤ δ there
is z ∈ ω(x) with ‖y − z‖ = ε.

Proof of Theorem 2.3. Take U ⊂ X to be an open neighborhood of y as
in Lemma 2.1. Also, we can assume U to be such that M s(y)∩U [Mu(y)∩U ]
is forward [backward] invariant.

Assume first dimM c(y) = 1. As for each z∈M s(y) [z∈Mu(y)] we have
x · t→ y as t→∞ [x · t→ y as t→ −∞], it follows that M s(y) ∪Mu(y) ⊂
H(y). In the local C1 dynamical system {φt|H(y) ∩ U} the point y is a
hyperbolic equilibrium, hence it is isolated in the set E∩H(y)∩U . In view
of Theorem 2.2, ω(x)∩U ⊂ E∩H(y)∩U . Lemma 2.6 shows that ω(x) = {y}.

Assume now dimM c(y) = 2. By Lemma 2.4, dimMu(y) = 1. As
dimV c(y)+dimV u(y) = 3 and V u(y) is contained in the nullspace of dH(y),
we see that the two-dimensional locally invariant C1 manifolds H(y)∩U and
M c(y) are transverse. Consequently, their intersection I is a locally invari-
ant C1 submanifold of dimension one, passing through y. By Palis and Tak-
ens [7], the local dynamical system {φt|H(y)∩U} has local product structure:
After possibly taking a smaller U , there is an orbit-preserving homeomor-
phism P of H(y) ∩ U onto the neighborhood N := {(ξ1, ξ2) : −1 ≤ ξi ≤ 1}
of 0 in the two-dimensional real affine space, where P (I) = N ∩ {(ξ1, 0)}
and the orbits of {φt|H(y) ∩ U} are taken into orbits of an ODE system
ξ̇1 = g(ξ1), ξ̇2 = %(y)ξ2, with g a C1 function satisfying g(0) = g′(0) = 0.

Suppose to the contrary that ω(x) 6= {y}. Lemma 2.6 gives the existence
of δ > 0 such that for each 0 < ε ≤ δ there is z ∈ ω(x) with ‖z − y‖ = ε.
From the local product structure it follows that ω(x) ∩ U ⊂ E ∩ H(y) ∩ U
is contained in the one-dimensional submanifold I. Therefore, there is a
set J ⊂ I homeomorphic to the real interval [0, 1], consisting entirely of
equilibria from ω(x), and such that y is a boundary point (in the sense
of manifolds-with-boundary) of J . For definiteness, assume that P (I ′) =
{(ξ1, 0) : ξ1 ∈ [0, 1]}. Consider the set S := P−1([0, 1]× [−1, 1]). S is easily
seen to be backward invariant. Also, if for some z ∈ S its forward semiorbit
Of(z) is contained in S then z ∈ J (hence z is an equilibrium). Now, take
y′ := P−1(1/2, 0). Since y′ ∈ ω(x), there is a sequence tn → ∞ such that
x · tn → y′. As y′ belongs to the interior of S relative to H(y) ∩ U , we
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can assume that all x · tn → y′ are in S. But S is backward invariant, so
Of(x · t1) ⊂ S. Therefore x · t1 ∈ E, a contradiction.

3. Cycles. The existence of a first integral (in our sense) does not pre-
clude occurrence of cycles, as the following example shows.

Example. Consider the linear three-dimensional cooperative irreducible
system of ODEs:

(3.1)

ẋ1 = x1 + 2x2,

ẋ2 = x2 + 2x3,

ẋ3 = 2x1 + x3.

The matrix of system (3.1) has eigenvalue 3 corresponding to the eigenvector
(1, 1, 1) and a pair of purely imaginary eigenvalues corresponding to the
invariant subspace Σ := {x∈ A : x1+ x2+ x3 = 0}. Consequently, Σ \ {0}
is filled with cycles. A straightforward computation shows that H(x) :=
‖x‖2 − (x1x2 + x2x3 + x3x1) is an analytic first integral with domH = A.
Also, dH(x) = 0 if and only if x ∈ span (1, 1, 1).

By a closed order-interval we mean the set [a, b] := {x ∈ A : a ≤ x ≤ b},
where a ≤ b. By an open order-interval we mean the set [[a, b]] := {x ∈ A :
a � x � b}, where a � b. We say Y ⊂ A is order-convex if [x, y] ⊂ Y for
any two x, y ∈ Y , x ≤ y.

The next result should be well known to everybody working in coopera-
tive systems; I was unable, however, to locate it anywhere in the literature.

Proposition 3.1. Assume that X = [[a, b]] and γ ⊂ X is a cycle. Then
there exists a strongly balanced invariant C1 embedded two-dimensional disk
G ⊃ γ having γ as its (manifold) boundary.

P r o o f. Following Smith [9], define K to be the set of those x ∈ A which
are not <-related to any point z ∈ γ. Proposition 4.3 of [9] states that K has
two components, one bounded and one unbounded, and the bounded one,
K(γ), is homeomorphic to an open ball in A, contained in X and backward
invariant. It is straightforward that K(γ) is order-convex. Now we apply
results in Hirsch [4] to conclude that there is an invariant (with respect to
the local flow {φt|K(γ)}) strongly balanced surface M ⊂ K(γ) containing
γ, such that the orthogonal projection Π along (1, 1, 1) is a Lipeomorphism
onto its image. Also, this image Π(M) is homeomorphic to the open two-
dimensional unit ball. By the Jordan curve theorem, there are two closed
sets, G̃ and G̃′, such that Π(M) = G̃ ∪ G̃′, G̃ ∩ G̃′ = Π(γ), G̃ is compact

and G̃′ is not compact. Put G := Π−1(G̃). Then G is a Lipschitz manifold-
with-boundary. A result of I. Tereščák [10] shows that G is in fact C1.
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Theorem 3.2. Assume that dH(x) is nonzero at each x in some [[a, b]]
⊂ X. Then there is no cycle contained in [[a, b]].

P r o o f. Assume that there is a cycle γ ⊂ [[a, b]]. As we will consider the
local flow restricted to [[a, b]], we put X = [[a, b]]. Let G be a C1 disk as in

Proposition 3.1. Denote by Ĥ the restriction of H to G. Evidently Ĥ is a
C1 function on the C1 manifold-with-boundary G. We claim that if x ∈ G
belongs to some cycle γ1 then the derivative dĤ(x) is nonzero. Indeed, by
Theorem 1.3 of Smith [8] there exists a backward invariant two-dimensional
strong unstable manifold L of γ1 such that z · t approaches γ1 as t→ −∞,
for any z ∈ L. Consequently, H is constant on L. The two-dimensional
submanifolds L and G intersect transversely at γ1, hence the derivative
dĤ(x) is nonzero at each x ∈ γ1.

Consider the set S of those x ∈ G for which dĤ(x) is zero. Evidently, S
is nonempty, compact and invariant. By the Poincaré–Bendixson theorem,
S contains equilibria or cycles. But from the above paragraph it follows that
S cannot contain any cycle. So, let y ∈ S ∩ E. Then the stability modulus
%(y) is zero. Indeed, by Lemmas 2.5 and 2.4, %(y) cannot be negative. On the
other hand, if %(y) were positive then there would exist a locally invariant
one-dimensional strongly unstable C1 manifold Muu(y), tangent at y to
some vector w ∈ C◦ (see e.g. [5]). For each z ∈Muu(y) we have z · t→ y as
t → −∞, hence H is constant on Muu(y) and 〈dH(y), w〉 = 0. As Muu(y)
is transverse to G, we deduce that dH(y) is zero, a contradiction.

We have thus proved that %(y) = 0. But from Lemma 2.4 it follows that
the eigenvalues of the restriction of DF (y) to the tangent space of G at y
are negative. Therefore, there is a relative neighborhood U of y in G such
that ω(z) = {y} for each z ∈ U . This yields that H is constant on U , hence

dĤ is zero on U . Now, for any x ∈ S we have ω(x) ⊂ E, and therefore S is
relatively open in G. As the latter is connected, this gives a contradiction.
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