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COMULTIPLICATIONS OF THE WEDGE OF TWO MOORE SPACES

BY

MAREK G O L A S I Ń S K I (TORUŃ) AND

DACIBERG LIMA G O N Ç A L V E S (SÃO PAULO)

Throughout, we work in the category of connected pointed topological
spaces which have the homotopy type of finite-dimensional CW -complexes.
All maps and homotopies preserve base points. Here, it is convenient to
ignore the distinction between a map and its homotopy class. Thus we am-
biguously regard a map f : X → Y as an element of [X,Y ], the homotopy
classes of maps from X to Y .

Recall that a comultiplication or a co-H-structure on a space X is a map
φ : X → X∨X such that jφ = ∆, where j : X∨X → X×X is the inclusion
map and ∆ : X → X×X is the diagonal map. Equivalently, φ : X → X∨X
is a comultiplication if and only if q1φ = idX = q2φ : X → X, where
q1, q2 : X ∨X → X are the projections onto the first and second summands
of the wedge. A space X together with a comultiplication φ is called a
co-H-space.

Let C(X) denote the set of homotopy classes of comultiplications of X.
A number of authors (e.g. [1, 2, 3, 9]) have computed the set C(X) for
some spaces X and investigated the basic properties of its elements. The
primary example of a co-H-space is the suspension of a space with the natural
pinching map. Then, as shown in [9], the set C(X) can be described by means
of the Hilton–Milnor Theorem (see e.g. [10, Chapter 11]). It is well known
that a rational co-H-space X has the homotopy type of the wedge of rational
spheres. The latter space admits a standard comultiplication arising from
the pinching map. Basic properties of comultiplications of this space have
been investigated in [2, 3]. On the other hand, Moore spaces are a natural
generalization of ordinary spheres.

The aim of this paper is to study the set of comultiplications of the
wedge M(A, n) ∨M(B,m) of two Moore spaces and then describe this set
by means of the groups A and B from a wide class of abelian groups. An
example of the wedge of two Moore spaces is a co-Moore space M ′(A, n)
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of type (A, n) (considered e.g. in [6]), i.e. a simply connected space with a
single non-vanishing reduced integral cohomology group A in dimension n.
Section 1 establishes the basic framework. We recall a description of the
set C(X) presented in [9], where X is the suspension of a space. Then in
Proposition 1.3 we present a formula for the set C(M(A, n)∨M(B,m)) and
deduce that its description for m = 2n − 1 leads to a computation of the
group [M(B, 2n−1),Σ(M(A, n−1)∧M(A, n−1))] for n ≥ 2. The Universal
Coefficient Theorem for homotopy groups in [7] implies an exact sequence

0→ Ext(B, π2n(X))→ [M(B, 2n− 1), X]→ Hom(B,A⊗ A)→ 0,

where X = Σ(M(A, n− 1) ∧M(A, n− 1)).
In Section 2 we show first that there is an extension

0→ A⊗ A⊗ Z2 → π2n(X)→ Tor(A,A)→ 0

determined by the dual Steenrod square Sq2 : H2n+1(X,Z2) = 2Tor(A,A)
→ H2n−1(X, Z2) = A ⊗ A ⊗ Z2. In Corollary 2.2 we infer that
[M(B, 2n−1), X] = Ext(B, π2n(X))⊕Hom(B,A⊗A) provided the p-primary
component of A ⊗ A is finitely generated and B is a cyclic group of order
pm, and m > 1 or p > 2 and m = 1. Next we restrict the computation of the
group [M(B, 2n− 1), X] to abelian groups A = A′ ⊕ T2(A) with T2(A′) = 0
and T2(A) a finitely generated group, where T2 is the 2-component functor.
In particular, from Corollaries 1.5 and 2.4 a description of C(M ′(A, n)) of
a co-Moore space M ′(A, n), for n ≥ 3 and A as above, follows. If A is a
finite direct sums

⊕
k

⊕
Ik

Z2k of cyclic 2-groups and B any abelian group
we observe that

[M(B, 2n− 1),Σ(M(A, n− 1) ∧M(A, n− 1))]

=
⊕
k,l

⊕
Ik×Il

[M(B, 2n− 1),Σ(M(Z2k , n− 1) ∧M(Z2l , n− 1))].

Section 3 contains our study of the group [M(Z2m , 2n−1),Σ(M(Z2k , n−1)
∧M(Z2l , n− 1))]. In Proposition 3.2 the homotopy properties of the space
X = Σ(M(Z2k , n − 1) ∧M(Z2l , n − 1)) are presented to derive our main
result of this section, Theorem 3.3:

[M(Z2m , 2n− 1), X]

=

{Z2 ⊕ Z2, 1 = k = l = m;
Z4 ⊕ Z2, 1 = k < l, m = 1 or 1 = k = l, m > 1;
Z2 ⊕ Z2min(k,m) ⊕ Z2min(k,m) , otherwise

for n ≥ 2. But [M(Z2, 2n − 1),M(Z2, 2n − 1)] = Z4 by means of Bar-
ratt’s results in [4], [7, Chapter 12], so we may deduce that the group
[M(B, 2n− 1),Σ(M(A, n−1)∧M(A, n−1))] can be computed for an abelian
group A as above and B a direct sum of cyclic groups; in particular, for
finitely generated abelian groups A and B.
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1. Comultiplications. We begin by interpreting the set C(X) of co-
multiplications of X in terms of homotopy sets. If X is a cogroup with
comultiplication φ then it induces a group structure (denoted multiplica-
tively) on the set [X,Y ], for any space Y . Now let Y [Y be the space of
paths in Y × Y which begin in Y ∨ Y and end at the base point of Y × Y
and let λ : Y [Y → Y ∨ Y be the map that projects a path onto its initial
point. In other words, Y [Y is the homotopy fibre (called also a flat product)
of the inclusion map j : Y ∨Y → Y ×Y . Write j∗ : [X,Y ∨Y ]→ [X,Y ×Y ]
and λ∗ : [X,Y [Y ] → [X,Y × Y ] for the induced maps. Then there is the
following description of the set C(X) presented in e.g. [1, 3].

Proposition 1.1. If X is a cogroup then there is a split short exact
sequence

1→ [X,Y [Y ]
λ∗→ [X,Y ∨ Y ]

j∗→ [X,Y × Y ]→ 1

for any space Y and the map Φ : [X,X[X]→ C(X) defined by Φ(β) = φ·(λβ)
for β ∈ [X,X[X] is a bijection.

There is another interesting link in [9] between the set of co-H-structures
on a suspension and some sets of homotopy classes. Namely, let X1 and X2

be CW -complexes, Σ the suspension and Ω the loop functors. Then, by
the Hilton–Milnor Theorem [10], ΩΣ(X1 ∨ X2) is homotopy equivalent to
the weak product

∏∗
k≥1 ΩΣPωk

(X1, X2), where ωk runs through a set of
basic products for the set {1, 2}. The space Pωk

(X1, X2) has the homotopy

type of the smash product X
(α1)
1 ∧X(α2)

2 , where, for any space X, X(α) is
the smash product of α copies of X; the integer αi is just the number of
occurrences of i in the word ωk for i = 1, 2. The homotopy equivalence is
given by a map of the form

∏∗
k Ωgk, where gk : ΣPωk

(X1, X2)→ Σ(X1∨X2)
is an iterated generalized Whitehead product which is associated with the
basic product ωk. In particular, P1(X1, X2) = X1, P2(X1, X2) = X2 and the
maps gi : ΣXi → Σ(X1∨X2) (i = 1, 2) are inclusions. All gk with k ≥ 2 are
generalized Whitehead products involving both the first and second factors
of Σ(X1 ∨X2).

Proposition 1.2 [9]. (a) There is a split short exact sequence

1→
⊕
k≥2

[ΣY,ΣPωk
(X1, X2)]→ [ΣY,ΣX1 ∨ ΣX2]→ [ΣY,ΣX1 × ΣX2]→ 1

for any space Y .
(b) The set C(ΣX) of comultiplications of the suspension ΣX is in one-

one correspondence with elements of the group
⊕

k≥2[ΣX,ΣPωk
(X,X)].

If A is an abelian group and n an integer ≥ 2 then a Moore space of
type (A, n) is a simply connected space M(A, n) with a single non-vanishing
reduced homology group A in dimension n. In particular, M(A, n) is an
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(n − 1)-connected CW -complex and from its construction it follows that
dimM(A, n) ≤ n+ 1. By uniqueness of the Moore space we get M(A, n) =
ΣM(A, n−1) for n ≥ 2, where M(A, 1) is any connected space with a single
non-vanishing reduced homology group A in dimension 1. In [1] it is shown
that for n > 2 the set C(M(A, n)) has one element and for n = 2 it is in
one-one correspondence with Ext(A,A ⊗ A). Throughout this section and
the next one, for convenience, we denote the Moore space M(A, n) by An
in the proofs.

Now let A and B be abelian groups, n,m ≥ 2 and X = M(A, n) ∨
M(B,m). If m = n then X = M(A ⊕ B, n) and the set C(X) is described
in [1]. Therefore we may assume that 2 ≤ n < m. But X = M(A, n) ∨
M(B,m) = Σ(M(A, n− 1)∨M(B,m− 1)) so from Propositions 1.1 and 1.2
we derive

Proposition 1.3. The set C(M(A, n)∨M(B,m)) of comultiplications of
M(A, n) ∨M(B,m) is in one-one correspondence with the group:

(a) ker([M(B,m),M(A, n)∨M(A, n)]→ [M(B,m),M(A, n)×M(A, n)])
⊕Ext(A,A⊗ A)⊕ Ext(B,A⊗ B)⊕ Ext(B,A⊗ B) for 2 = n < m,

(b) ker([M(B,m),M(A, n)∨M(A, n)]→ [M(B,m),M(A, n)×M(A, n)])
for 2 < n < m.

P r o o f. By Proposition 1.1, the set C(An ∨Bm) is in one-one correspon-
dence with the group ker j∗, where j∗ : [An ∨ Bm,An ∨ Bm ∨ An ∨ Bm] →
[An ∨ Bm, (An ∨ Bm) × (An ∨ Bm)] is the map induced by the inclusion.
But the inclusion maps An ∨ Bm → An × Bm and An ∨ Bm ∨ An ∨ Bm →
(An ∨ An) × (Bm ∨ Bm) are (n + m − 1)-homology isomorphisms of sim-
ply connected spaces; however, the inclusion maps An ∨ An → An × An
and Bm ∨ Bm → Bm × Bm are (2n − 1)- and (2m − 1)-homology isomor-
phisms of simply connected spaces, respectively. Therefore in the light of
the Whitehead Theorem the maps above are (n + m − 2)-, (2n − 2)- and
(2m− 2)-homotopy isomorphisms, respectively.

(a) If 2 = n < m then 3 ≤ m < m + 1 ≤ 2m − 2 and the in-
duced maps [A2,A2 ∨ Bm ∨ A2 ∨ Bm] → [A2,A2 ∨ A2] ⊕ [A2,Bm ∨ Bm] →
[A2,A2 ∨A2]⊕ [A2,Bm] ⊕[A2,Bm], and [A2,A2 ∨Bm]→ [A2,A2]⊕ [A2,Bm]
are isomorphisms. But dimA2 ≤ 3 so, by Propositions 1.1 and 1.2, [A2,A2

∨A2] = [A2,A2] ⊕ [A2,A2] ⊕ [A2,Σ(A1 ∧ A1)]. The space Σ(A1 ∧ A1) is 2-
connected and H3(Σ(A1 ∧A1),Z) = H2(A1 ∧A1,Z) = A⊗A. Therefore the
Eilenberg–MacLane space K(A⊗A, 3) is the 3-stage of its Postnikov tower
and [A2,Σ(A1 ∧ A1)] = H3(A2,A ⊗ A) = Ext(A,A ⊗ A) by the Universal
Coefficient Theorem.

Moreover, dimBm ≤ m + 1, so again by Propositions 1.1 and 1.2 we
get [Bm,A2 ∨ Bm] = [Bm,A2]⊕ [Bm,Bm]⊕ [Bm, Σ(A1 ∧ Bm−1)]. The space
Σ(A1 ∧ Bm−1) is m-connected and Hm+1(Σ(A1 ∧ Bm−1),Z) = Hm(A1 ∧
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Bm−1,Z) = A⊗B. Therefore, the Eilenberg–MacLane spaceK(A⊗B,m+ 1)
is the (m + 1)-stage of its Postnikov tower and [Bm,Σ(A1 ∧ Bm−1)] =
Hm+1(Bm,A ⊗ B) = Ext(B,A ⊗ B) by the Universal Coefficient Theorem.
Thus we get ker j∗ = ker([Bm,An∨An]→ [Bm,An×An])⊕Ext(A,A⊗A)⊕
Ext(B,A⊗ B)⊕ Ext(B,A⊗ B).

(b) If 2 < n < m then n + 1 ≤ 2n− 2 < n + m− 2 and n + 1,m + 1 ≤
n + m − 2 < 2m − 2. Then the induced maps [An,An ∨ Bm ∨ An ∨ Bm]
→ [An,An∨An]⊕[An,Bm∨Bm]→ [An,An]⊕[An,An]⊕[An,Bm]⊕[An,Bm],
[An,An ∨ Bm] → [An,An] ⊕ [An,Bm] and [Bm,An ∨ Bm] → [Bm,An] ⊕
[Bm,Bm] are isomorphisms. Finally, we get ker j∗ = ker([Bm,An ∨ An] →
[Bm,An × An]).

Corollary 1.4. (a) If m < 2n − 2 then on M(A, n) ∨M(B,m) there
is a unique comultiplication determined by the natural pinching map for
2 < n < m.

(b) If m = 2n− 2 then C(M(A, n) ∨M(B, 2n− 2)) = Ext(B,A⊗ A) for
2 < n.

(c) If m = 2n− 1 then

C(M(A, n) ∨M(B, 2n− 1))

=

 [M(B, 2n− 1),Σ(M(A, n− 1) ∧M(A, n− 1))]
⊕ Ext(B,A⊗ A⊗ A), n = 3;

[M(B, 2n− 1),Σ(M(A, n− 1) ∧M(A, n− 1))], n > 3.

(d) C(M(A, 2) ∨M(B, 3))

= [M(B, 3),Σ(M(A, 1) ∧M(A, 1))]

⊕ Ext(B,A⊗ A⊗ A)⊕ Ext(A,A⊗ A)

⊕ Ext(B,A⊗ B)⊕ Ext(B,A⊗ B).

P r o o f. (a) The inclusion map An ∨ An → An × An is a (2n − 1)-
homology isomorphism so it is a (2n − 2)-homotopy isomorphism by the
Whitehead Theorem. But dimBm ≤ m+ 1 < 2n− 1 thus the induced map
[Bm,An ∨ An] → [Bm,An × An] is an isomorphism and the result follows
from Proposition 1.3.

(b) If m = 2n − 2 then, by Propositions 1.2 and 1.3, C(An ∨ B2n−2) =
[B2n−2,Σ(An−1∧An−1)]. But the space Σ(An−1∧An−1) is (2n−2)-connected
and H2n−1(Σ(An−1 ∧ An−1),Z) = A ⊗ A. Hence the Eilenberg–MacLane
space K(A⊗A, 2n−1) is the (2n−1)th stage of its Postnikov tower. Finally,
C(An ∨ B2n−2) = [B2n−2,K(A ⊗ A, 2n − 1)] = H2n−1(B2n−2,A ⊗ A) =
Ext(B,A⊗ A) by the Universal Coefficient Theorem.

(c) If 2 < n < m = 2n − 1 then, by Propositions 1.2 and 1.3, C(An ∨
B2n−1) = [B2n−1,Σ(An−1 ∧An−1)]⊕ [B2n−1,Σ(An−1 ∧An−1 ∧An−1)]. But
the space Σ(An−1∧An−1∧An−1) is (3n−3)-connected and H3n−2(Σ(An−1∧
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An−1∧An−1),Z)=H3n−3(Σ(An−1∧An−1∧An−1),Z)=A⊗A⊗A. Hence the
Eilenberg–MacLane space K(A⊗A⊗A, 3n−3) is the (3n−3)th stage of its
Postnikov tower and [M(B, 2n−1),Σ(An−1∧An−1∧An−1)] = [B2n−1,K(A⊗
A⊗A, 3n−3)] = Ext(H3n−4(B2n−1,Z),A⊗A⊗A). Thus the result follows.

(d) Again by Propositions 1.2 and 1.3 we get

C(A2 ∨ B3) = [B3,Σ(A1 ∧ A1)]⊕ [B3,Σ(A1 ∧ A1 ∧ A1)]

⊕ Ext(A,A⊗ A)⊕ Ext(B,A⊗ B)⊕ Ext(B,A⊗ B).

But the space Σ(A1∧A1∧A1) is 3-connected andH4(Σ(A1∧A1∧A1),Z) =
A⊗A⊗A. Hence the Eilenberg–MacLane space K(A⊗A⊗A, 4) is the 4th
stage of its Postnikov tower and [B3,Σ(A1 ∧ A1 ∧ A1)] = [B3,K(A ⊗ A ⊗
A, 4)] = Ext(B,A ⊗ A ⊗ A) by the Universal Coefficient Theorem. This
completes the proof.

On the other hand, for an abelian group A and an integer n ≥ 3, a
simply connected space M ′(A, n) with a single non-vanishing reduced in-
tegral cohomology group A in dimension n is called a co-Moore space of
type (A, n). In [6] it is shown that a co-Moore space of type (A, n) has
the homotopy type of the wedge M(A′, n− 1) ∨M(A′′, n) of Moore spaces,
for some abelian groups A′, A′′ with A = Ext(A′,Z) ⊕ Hom(A′′,Z) and
Hom(A′,Z) = Ext(A′′,Z) = 0. Therefore Corollary 1.4 yields

Corollary 1.5. Let M ′(A, n) = M(A′, n−1)∨M(A′′, n) be a co-Moore
space of type (A, n) for n ≥ 3.

(a) If n > 4 then on M ′(A, n) there is a unique comultiplication deter-
mined by the natural pinching map.

(b) C(M ′(A, 4)) = Ext(A′′,A′ ⊗ A′).
(c) C(M ′(A, 3)) = [M(A′′, 3),Σ(M(A′, 1) ∧M(A′, 1))]

⊕ Ext(A′′,A′ ⊗ A′ ⊗ A′)⊕ Ext(A′,A′ ⊗ A′)
⊕ Ext(A′′,A′ ⊗ A′′)⊕ Ext(A′′,A′ ⊗ A′′).

In the remaining part of the paper we describe the group [M(B, 2n− 1),
Σ(M(A, n− 1) ∧M(A, n− 1))] for some abelian groups A, B and n ≥ 2.

2. Restriction to abelian 2-groups. Let M(A, n) be the Moore space
of type (A, n) for n ≥ 2 and X a simply connected pointed space. Then, by
the Universal Coefficient Theorem for homotopy groups in [7], we have the
following exact sequence:

0→ Ext(A, πn+1(X))→ [M(A, n), X]
η→Hom(A, πn(X))→ 0,

where η associates with a homotopy class the induced homomorphism on
the nth homotopy groups. Note that we can easily derive the sequence
above from the cofibre sequence for some map of wedges of spheres. In
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particular, if X is the Moore space M(B, n) of type (B, n) then by [5],
πn+1(M(B, n)) = Γ(B) for n = 2 and πn+1(M(B, n)) = B ⊗ Z2 for n ≥ 3,
where Γ is the Whitehead quadratic functor. Thus we get the following short
exact sequence:

0→ Ext(A,B⊗ Z2)→ [M(A, n),M(B, n)]
η→ Hom(A,B)→ 0

for n ≥ 3.

For the reduced integral homology groups of the space Σ(M(A, n− 1)∧
M(A, n− 1)), from the Künneth formula, we derive

Hm(Σ(M(A, n− 1) ∧M(A, n− 1)),Z) =

{A⊗ A, m = 2n− 1;
Tor(A,A), m = 2n;
0, otherwise.

From the homology decomposition in [7, Chapter 8] it follows that the space
Σ(M(A, n− 1) ∧M(A, n− 1)) has the homotopy type of the mapping cone
M(A⊗A, 2n−1)∪τ c(M(Tor(A,A), 2n−1)) of a homologically trivial map τ :
M(Tor(A,A), 2n−1)→M(A⊗A, 2n−1). Thus by the Universal Coefficient
Theorem for homotopy groups it follows that the map τ is determined by
an element of the group Ext(Tor(A,A),A⊗ A⊗ Z2).

Subsequent results require some lemmas and comments. Let X be a
CW -complex and X(n) its nth skeleton for n ≥ 0. We define Γn(X) =
im(πn(X(n−1)) → πn(X(n))). There is then ([7, Chapter 8]) the exact
Whitehead sequence

. . .→ Hn+1(X,Z)
ν→ Γn(X)

λ→ πn(X)
µ→ Hn(X,Z)→ . . . ,

where µ is the Hurewicz homomorphism, λ is induced by inclusion and
ν by the homotopy boundary πn+1(X(n+1), X(n)) → πn(X(n)). Let Sq2 :
Hn+2(X,Z2)→ Hn(X,Z2) be the dual Steenrod square. We point out that
for the existence of this map, which is dual to a map of linearly compact
vector spaces, we do not need to require that X is of finite type.

Recall from [7, Chapter 8] that an A2
n-polyhedron is an (n−1)-connected,

(n + 2)-dimensional polyhedron for n > 2. In particular, the space X =
Σ(M(A, n−1)∧M(A, n−1)) is an A2

2n−1-polyhedron being the mapping cone
of a homologically trivial map τ : M(Tor(A,A), 2n−1)→M(A⊗A, 2n−1).

Lemma 2.1 [7, Chapter 8]. Let X be an A2
n-polyhedron with Hn+2(X,Z)

= 0. Then there is a short exact sequence

0→ Γn+1(X)
λ→ πn+1(X)

µ→ Hn+1(X,Z)→ 0

with an isomorphism Γn+1(X) ≈ Hn(X) ⊗ Z2. Furthermore, πn+1(X)
is determined by an element χ ∈ Ext(Hn+1(X,Z),Γn+1(X)) =
Hom(2Hn+1(X,Z), Γn+1(X)) such that χ∂ = Sq2, where ∂ : Hn+2(X,Z2)→
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2Hn+1(X,Z) is the Bockstein map to the subgroup of Hn+1(X,Z) consisting
of elements of order 2.

In particular, if X = Σ(M(A, n−1)∧M(A, n−1)) then there is an exact
sequence

0→ A⊗ A⊗ Z2 → π2n(X)→ Tor(A,A)→ 0

and the group π2n(X) is determined by a map χ : 2Tor(A,A) → A ⊗
A ⊗ Z2 such that χ∂ = Sq2. But H2n+1(X,Z2) = Tor(H2n(X,Z),Z2) =
Tor(Tor(A,A),Z2) = 2Tor(A,A) so the Bockstein map ∂ is the identity
on the group 2Tor(A,A). Thus π2n(X) is determined by the map Sq2 :

2Tor(A,A)→ A⊗A⊗Z2. Now if B is another abelian group then from the
Universal Coefficient Theorem for homotopy groups we have the following
short exact sequence:

0→ Ext(B, π2n(X))→ [M(B, 2n− 1), X]→ Hom(B,A⊗ A)→ 0.

In particular, from [7, Chapter 12] we infer

Corollary 2.2. If B is a cyclic group of order pm, with p a prime and
m ≥ 1 then the sequence above splits provided the p-primary component of
A⊗ A is finitely generated and either m > 1 or p > 2 and m = 1.

Let T (A) be the torsion subgroup of an abelian group A and T2(A)
its 2-component. Then Tor(A,A) = Tor(T (A), T (A)) and the map 2 × − :
T (A) → T (A) given by multiplication by 2 is an isomorphism provided
T2(A) = 0. Thus we deduce that Ext(Tor(A,A),A ⊗ A ⊗ Z2) = 0 and the
space Σ(M(A, n − 1) ∧M(A, n − 1)) has the homotopy type of the wedge
M(A⊗ A, 2n− 1) ∨M(Tor(A,A), 2n). The inclusion map

M(A⊗A, 2n−1)∨M(Tor(A,A), 2n)→M(A⊗A, 2n−1)×M(Tor(A,A), 2n)

is a (4n− 2)-homotopy isomorphism. Hence

[M(B, 2n− 1),Σ(M(A, n− 1) ∧M(A, n− 1))]

= [M(B, 2n− 1),M(A⊗ A, 2n− 1)]⊕ [M(B, 2n− 1),M(Tor(A,A), 2n)]

= [M(B, 2n− 1),M(A⊗ A, 2n− 1)]⊕ Ext(B,Tor(A,A)).

If B has no elements of order 2 then by [7, Chapter 8], Ext(B,A ⊗ A ⊗
Z2) = 0 and from the Universal Coefficient Theorem for homotopy groups
[M(B, 2n− 1),M(A⊗ A, 2n− 1)] = Hom(B,A⊗ A).

In particular, let B be an infinite cyclic group or of order pm, where p
is a prime and m ≥ 1. Then from the Universal Coefficient Theorem for
homotopy groups and [7, Chapter 8] we derive

[M(B, 2n− 1),M(A⊗ A, 2n− 1)] =

{A⊗ A, B = Z;

pm(A⊗ A), B = Zpm , p > 2;
A⊗ A⊗ Z2, B = Z2m , p = 2,
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where pm(A⊗A) is the subgroup of A⊗A consisting of elements annihilated
by pm.

More generally, we have

Lemma 2.3. If A = A′ ⊕ T2(A) with T2(A′) = 0 then

[M(B, 2n− 1),Σ(M(A, n −1) ∧M(A, n− 1))]

= [M(B, 2n− 1),M(A′ ⊗ A′, 2n− 1)]⊕ Ext(B,Tor(A′,A′))

⊕ Ext(B,A′ ⊗ T2(A)⊕ T2(A)⊗ A′)

⊕ [M(B, 2n− 1),Σ(M(T2(A), n− 1) ∧M(T2(A), n− 1))]

for any abelian group B.

P r o o f. As in the previous section, we write An for the Moore space
M(A, n). Then observe that

An−1 ∧ An−1 = A′n−1 ∧ A′n−1 ∨ A′n−1 ∧ (T2(A))n−1 ∨ (T2(A))n−1 ∧ A′n−1
∨ (T2(A))n−1 ∧ (T2(A))n−1

and A′n−1 ∧ A′n−1 = (A′ ⊗ A′)2n−1 ∨ (Tor(A′,A′))2n. But H2n−1(Σ(A′n−1 ∧
(T2(A))n−1),Z) = A′ ⊗ T2(A) and H2n(Σ(A′n−1 ∧ (T2(A))n−1),Z) =
Tor(A′, T2(A)) = Tor(T (A′), T2(A)) = 0, since Tor(T (A′), T2(A)) =
lim−→i∈I Tor (T (A′), T2(A)i) = 0, where T2(A)i runs over all finite subgroups
of T2(A). So Σ(A′n−1 ∧ (T2(A))n−1) = (A′ ⊗ T2(A))2n−1 and

Σ(An−1 ∧ An−1) = Σ(A′n−1 ∧ A′n−1) ∨ (A′ ⊗ T2(A)⊕ A′ ⊗ T2(A))2n

∨ Σ((T2(A))n−1 ∧ (T2(A))n−1).

Then we deduce that

[B2n−1,Σ(An−1 ∧ An−1)] = [B2n−1, (A′ ⊗ A′)2n−1]

⊕ [B2n−1, (Tor(A′,A′))2n]

⊕ [B2n−1, (A′ ⊗ T2(A)⊕ A′ ⊗ T2(A))2n]

⊕ [B2n−1,Σ((T2(A))n−1 ∧ (T2(A))n−1)]

= [B2n−1, (A′ ⊗ A′)2n−1]⊕ Ext(B,Tor(A′,A′))
⊕ Ext(B,A′ ⊗ T2(A)⊕ A′ ⊗ T2(A))

⊕ [B2n−1,Σ((T2(A))n−1 ∧ (T2(A))n−1)].

Furthermore, observe that π2n(Σ(M(T2(A), n−1)∧M(T2(A), n−1))) is
an abelian 2-group and Ext(B, π2n(Σ(M(T2(A), n− 1)∧M(T2(A), n− 1))))
= 0 provided T2(A) is a finite abelian group and Ext(B,Z) = 0, i.e. B
is a Whitehead group. Then

[M(B, 2n− 1),Σ(M(T2(A), n− 1) ∧M(T2(A), n− 1))] = Hom(B,A′ ⊗ A′)

and we get the following complement of Corollary 1.5.
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Corollary 2.4. Let M ′(A, 3) = M(A1, 2) ∨ M(A2, 3) be a co-Moore
space of type (A, 3), where A = Ext(A1,Z)⊕Hom(A2,Z) with Hom(A2,Z) =
Ext(A2,Z) = 0. If A1 = A′1⊕T2(A1) with T2(A′1) = 0 and T2(A1) is a finitely
generated abelian group then

[M(A2, 3),Σ(M(A1, 1) ∧M(A1, 1))]

= Hom(A2,A′1 ⊗ A′1)⊕ Ext(A2,Tor(A′1,A′1))

⊕ Ext(A2,A′1 ⊗ T2(A1)⊕ T2(A1)⊗ A′1)⊕Hom(A2, T2(A′1)⊗ T2(A′1)).

Moreover, Ext(Zpm , π2n(Σ(M(T2(A), n−1)∧M(T2(A), n−1)))) = 0 since
π2n(Σ(M(T2(A), n−1)∧M(T2(A), n−1))) is a 2-group and Hom(Zpm , T2(A)
⊗ T2(A)) = 0 for p > 2. Therefore

[M(B, 2n− 1),Σ(M(T2(A), n− 1) ∧M(T2(A), n− 1))]

=

{
T2(A)⊗ T2(A), B = Z;
0, B = Zpm , p > 2.

In the sequel we compute this group if T2(A) is a finitely generated
abelian group (i.e. a finite direct sum of cyclic 2-groups) and B = Z2m .
Then we obtain a description of the group [M(B, 2n− 1),Σ(M(A, n− 1) ∧
M(A, n − 1))] for A = A′ ⊕ T2(A) with T2(A′) = 0 and T2(A) a finitely
generated abelian group, and B a direct sum of cyclic groups; in particular,
for finitely generated abelian groups A and B.

On the other hand, if A =
⊕

k

⊕
Ik

Z2k is a finite direct sum of cyclic 2-
groups and B an abelian group then M(A, n−1) =

∨
k

∨
Ik
M(Z2k , n−1) and

Σ(M(A, n−1)∧M(A, n−1)) =
∨
k,l

∨
Ik×Il Σ(M(Z2k , n−1)∧M(Z2l , n−1)).

Thus

[M(B, 2n− 1),Σ(M(A, n− 1) ∧M(A, n− 1))]

=
⊕
k,l

⊕
Ik×Il

[M(B, 2n− 1),Σ(M(Z2k , n− 1) ∧M(Z2l , n− 1))].

3. Cyclic 2-groups. Write X = Σ(M(Z2k , n−1)∧M(Z2l , n−1)). The
aim of this section is to compute the group [M(Z2m , 2n−1), X] for 1 ≤ k ≤ l
and m ≥ 1. In the sequel some cohomology groups of the spaces involved
will be needed. Observe that by the Universal Coefficient Theorem,

Hm(X,Z) =

{Z, m = 0;
Z2k , m = 2n, 2n+ 1;
0, otherwise,

Hm(X,Z2) =


Z2, m = 0;
Z2 = (a2n−1), m = 2n− 1;
Z2 ⊕ Z2 = (a′2n)⊕ (a′′2n), m = 2n;
Z2 = (a2n+1), m = 2n+ 1;
0, otherwise
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and

Hm(M(Z2k , n− 1),Z2) =

{Z2, m = 0;
Z2k , m = n− 1, n;
0, otherwise.

Let ιkn−1 ∈ Hn−1(M(Z2k , n − 1),Z2) be the generator and βr the rth
power Bockstein operation [8, Chapter 7]. Then βk(ιkn−1) is the generator
of Hn(M(Z2k , n − 1),Z2). Furthermore, a2n−1 = σ(ιkn−1 ⊗ ιln−1), a′2n =
σ(βk(ιkn−1) ⊗ ιln−1), a′′2n = σ(ιkn−1 ⊗ βl(ιln−1)) and a2n+1 = σ(βk(ιkn−1) ⊗
βl(ι

l
n−1)), where σ : H∗(M(Z2k , n− 1)∧M(Z2l , n− 1),Z2)→ H∗(X,Z2) is

the suspension isomorphism.

Lemma 3.1. Let X = Σ(M(Z2k , n− 1) ∧M(Z2l , n− 1)) and 1 ≤ k ≤ l.
(a) If k = l = 1 then the action of the Steenrod algebra A2 on H∗(X,Z2)

is given by the formulae: Sq1(a2n−1) = a′2n + a′′2n, Sq1(a′2n) = Sq1(a′′2n) =
a2n+1 and Sq2(a2n−1) = a2n+1.

(b) Otherwise the action of the Steenrod algebra A2 and higher power
Bockstein operations on H∗(X,Z2) are given by the formulae: βr(a2n−1) = 0
for r < k, βk(a2n−1) = a′2n, βr(a

′′
2n) = 0 for r < k, βk(a′′2n) = a2n+1 and

Sq2(a2n−1) = 0.

P r o o f. (a) The action of the Steenrod algebra A2 on H∗(M(Z2, n−1)∧
M(Z2, n− 1),Z2) is stable, so by the Cartan formula the result follows.

(b) From the long exact cohomology sequence

. . .→ Hm(X,Z)→ Hm(X,Z)→ Hm(X,Z2)
δ→ Hm+1(X,Z)→ . . .

determined by the short one 0→ Z 2×→ Z→ Z2 → 0 we get

0→ Z2
δ→ Z2k

2×→ Z2k → Z2 ⊕ Z2
δ→ Z2k

2×→ Z2k → Z2 → 0.

But im(δ) = ker(×2) = 2k−1Z2k so δ(e) is divisible by 2k−1, where e ∈ Z2

is the non-zero element. Thus by [8, Chapter 7] we get βr(a2n−1) = 0 for
r < k and βk(a2n−1) = a′2n. The pair (a′2n, a

′′
2n) is a basis for H2n(X,Z2) so

δ(a′′2n) = 2k−1e and βr(a
′′
2n) = 0 for r < k, and βk(a′′2n) = a2n+1. Moreover,

by the Cartan formula,

Sq2(ιkn−1 ⊗ ιln−1)

= Sq2(ιkn−1)⊗ ιln−1 + Sq1(ιkn−1)⊗ Sq1(ιln−1) + ιkn−1 ⊗ Sq2(ιln−1).

But Sq2(ιkn−1) = Sq2(ιln−1) = 0 by dimension reasons and Sq1(ιln−1) = 0 for
l > 1. This completes the proof.

Proposition 3.2. Let X = Σ(M(Z2k , n − 1) ∧M(Z2l , n − 1)) and 1 ≤
k ≤ l. Then

π2n(X) =

{
Z4, k = l = 1;
Z2 ⊕ Z2k , otherwise.

(a)
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X =

{
M(Z2, 2n− 1) ∪2 idM(Z2,2n−1)

c(M(Z2, 2n− 1)), k = l = 1;

M(Z2k , 2n− 1) ∨M(Z2k , 2n), otherwise
(b)

for n ≥ 2.

P r o o f. (a) The spaceX is an A2
2n−1-polyhedron, Γ2n(X)=H2n−1(X,Z)

⊗ Z2 = Z2 and H2n(X,Z) = Z2k . By Lemma 2.1 there is a short exact se-
quence

0→ Z2 → π2n(X)→ Z2k → 0

and the group π2n(X) is determined by the map

H2n+1(X,Z2)
Sq2−→ H2n−1(X,Z2) = Z2.

If k = l = 1 then Sq2 6= 0 by Lemma 3.1. Thus Sq2 is the identity map
and π2n(X) = Z4.

If 1 ≤ k ≤ l and 1 < l then Sq2 = 0, by Lemma 3.1, and π2n(X) =
Z2 ⊕ Z2k again by Lemma 2.1.

(b) By [7, Chapter 8] the space X has the homotopy type of the map-
ping cone M(Z2k , 2n−1)∪τ c(M(Z2k , 2n−1)) of a homologically trivial map
τ : M(Z2k , 2n−1)→M(Z2k , 2n−1). But a non-zero Steenrod square occurs
whenever a cone over a Moore space is attached essentially. Therefore, by
Lemma 3.1, the map τ : M(Z2k , 2n − 1) → M(Z2k , 2n − 1) is essential for
k= l=1 and trivial otherwise. Thus the space X has the homotopy type of
the wedge M(Z2k , 2n−1)∨M(Z2k , 2n) for 1 ≤ k ≤ l and 1 < l. However, for
1 = k = l by [4, 7, Chapter 12] we have [M(Z2, 2n−1),M(Z2, 2n− 1)] = Z4,
where the identity map idM(Z2,2n−1) is a generator of this group. On the
other hand, by the Universal Coefficient Theorem for homotopy groups,
the homologically trivial map τ is determined by an element of the sub-
group Ext(Z2,Z2) = Z2 ⊆ [M(Z2, 2n − 1),M(Z2, 2n − 1)] = Z4. Thus
τ = 2 idM(Z2,2n−1) and the proof is finished.

We can now compute the group [M(Z2m , 2n − 1),Σ(M(Z2k , n − 1) ∧
M(Z2l , n− 1))] for 1 ≤ k ≤ l and m ≥ 1. Namely the following result holds.

Theorem 3.3. Let 1 ≤ k ≤ l and X = Σ(M(Z2k , n− 1)∧M(Z2l , n− 1))
for n ≥ 2. Then

[M(Z2m , 2n− 1), X]

=

{Z2 ⊕ Z2, 1 = k = l = m;
Z4 ⊕ Z2, 1 = k < l, m = 1 or 1 = k = l, m > 1;
Z2 ⊕ Z2min(k,m) ⊕ Z2min(k,m) , otherwise.

P r o o f. First observe that for m > 1, by Corollary 2.2 and Proposi-
tion 3.2, we get
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[M(Z2m , 2n− 1), X] = Ext(Z2m , π2n(X))⊕Hom(Z2m ,Z2k)

=

{
Z4 ⊕ Z2, 1 = k = l;
Z2 ⊕ Z2min(k,m) ⊕ Z2min(k,m) , 1 ≤ k ≤ l, l > 1.

Now let 1 = k = l = m and i : M(Z2, 2n−1)→ X be the inclusion map.
Then we obtain a commutative diagram

0 Ext(Z2,Z2) [M(Z2, 2n− 1),M(Z2, 2n− 1)] Hom(Z2,Z2) 0

0 Ext(Z2,Z4) [M(Z2, 2n− 1), X] Hom(Z2,Z2) 0

//

i′∗
��

//

i∗

��

η //

i′′∗
��

//

// // η′ // //

Observe that the map i′′∗ : Hom(Z2,Z2) = Z2 → Hom(Z2,Z2) = Z2 is an
isomorphism. However, i′∗ : Ext(Z2,Z2) = Z2 → Ext(Z2,Z4) = Z2 is trivial.
In the light of [4], [7, Chapter 12] we have [M(Z2, 2n−1),M(Z2, 2n−1)] = Z4

so it is easy to deduce that [M(Z2, 2n− 1), X] = Z2 ⊕ Z2.
If now 1 ≤ k ≤ l and 1 < l then by Theorem 3.2 we have X =

M(Z2k , 2n − 1) ∨ M(Z2k , 2n). But the inclusion map M(Z2k , 2n − 1) ∨
M(Z2k , 2n) → M(Z2k , 2n − 1) × M(Z2k , 2n) is a (4n − 2)-homotopy iso-
morphism so

[M(Z2, 2n− 1), X] = [M(Z2, 2n− 1),M(Z2k , 2n− 1)]

⊕ [M(Z2, 2n− 1),M(Z2k , 2n)].

By the Universal Coefficient Theorem for homotopy groups [M(Z2, 2n− 1),
M(Z2k , 2n)] = Ext(Z2,Z2k) = Z2 and by [4], [7, Chapter 12] we have

[M(Z2, 2n− 1),M(Z2k , 2n− 1)] =

{
Z4, k = 1;
Z2 ⊕ Z2, otherwise

and this completes the proof.

We close the paper with the following problem.

Problem 3.4. For n ≥ 2 and any abelian groups A and B, describe the
group [M(B, 2n− 1),Σ(M(A, n− 1) ∧M(A, n− 1))].
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87-100 Toruń, Poland 05315-970 São Paulo, Brasil
E-mail: marek@mat.uni.torun.pl E-mail: dlgoncal@ime.usp.br

Received 21 January 1997;
revised 28 May 1997 and 21 August 1997


