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THE GROTHENDIECK GROUP OF GL(F )×GL(G)-EQUIVARIANT
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DETERMINANTAL VARIETIES

BY
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Introduction. Let K be a field and F,G two vector spaces over K of
dimensions m,n respectively. Consider the affine space X = HomK(F,G)
of linear maps from F to G. We identify X with the space F ∗ ⊗ G. The
coordinate ring A of X is naturally identified with the symmetric algebra
A = Sym(F ⊗ G∗). Under this identification, for fixed bases {f1, . . . , fm},
{g1, . . . , gn} of F,G respectively, the tensor fi⊗g∗j corresponds to the (j, i)th
entry function ti,j on X.

For each r with 0 ≤ r ≤ min(m,n) we denote by Xr the determinantal
variety of maps of rank ≤ r:
(1) Xr = {φ : F → G | rankφ ≤ r}.

We denote by Ar the coordinate ring of Xr.
The objective of this paper is the investigation of natural modules with

support in Xr. By a natural module we mean the graded Ar-module with a
GL(F )×GL(G) action compatible with the module structure.

Several families of such modules were constructed and investigated in
[Ar], [B-E], [L]. However, there was no attempt to understand the structure
of modules of that type.

In this paper we investigate the category Cr(F,G) of graded Ar-modules
with the rational GL(F )×GL(G) action compatible with the module struc-
ture, and equivariant degree 0 maps. We denote byK ′0(Ar) the Grothendieck
group of the category Cr(F,G).

The main result is a complete description of K ′0(Ar). We provide three
families of modules, each of which gives the generators of K ′0(Ar), with no
relations. The three families come from three natural desingularizations of
the determinantal variety Xr as the push downs of certain vector bundles
on these desingularizations.
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Similar phenomena seem to occur in more general situations—for ex-
ample for orbit closures in multiplicity free actions. This will be the subject
of a separate paper.

In order to describe the results of the paper in more detail, let us define
the three families of modules.

The variety Xr has two desingularizations Z1 and Z2 (comp. [L]):

Z1 = {(φ,R) ∈ X ×Grass(m− r, F ) | φ|R = 0},(2)

Z2 = {(φ,R) ∈ X ×Grass(r,G) | Im(φ) ⊂ R}.(3)

For i = 1, 2 we denote by qi the projection of Zi onto Xr, and by pi the
projection of Zi onto the corresponding Grassmannian.

We also consider the fibre product Z = Z1×XrZ2 which can be described
as

(4) Z = {(φ,R,R) ∈ X ×Grass(m− r, F )×Grass(r,G) |
φ|R = 0, Im(φ) ⊂ R}.

We denote by q the projection of Z onto Xr, by p the projection of
Z onto the product of two Grassmannians, and by ui the projection of Z
onto Zi.

Throughout the paper we denote by 0 → R → F → Q → 0 the tau-
tological sequence on Grass(m − r, F ), and by 0 → R → G → Q → 0 the
tautological sequence on Grass(r,G).

We construct three families of sheaves over Z1, Z2 and Z.
Let α = (α1, . . . , αm) be an integral weight for GL(F ). We set α′ =

(α1, . . . , αr) and α′′ = (αr+1, . . . , αm). Let β = (β1, . . . , βn) be the integral
weight for GL(G∗). We define β′ = (β1, . . . , βr) and β′′ = (βr+1, . . . , βn).

Let α = (α′, α′′). We assume both α′, α′′ to be dominant. Let β be a
dominant weight. For each such pair (α, β) we define a sheaf

(5) M(α, β) = p∗1(Sα′Q⊗ Sα′′R)⊗ SβG∗ ⊗OZ1

on Z1.
Let α be a dominant weight and β = (β′, β′′) an arbitrary weight (we

assume β′, β′′ to be dominant). For each such pair (α, β) we define a sheaf

(6) N (α, β) = SαF ⊗ p∗2(Sβ′R∗ ⊗ Sβ′′Q∗)⊗OZ2

on Z2.
Finally, let α, β be arbitrary weights (assume that α′, α′′, β′, β′′ are dom-

inant). On the variety Z we consider the sheaves

(7) P(α, β) = p∗1(Sα′Q⊗ Sα′′R)⊗ p∗2(Sβ′R∗ ⊗ Sβ′′Q∗)⊗OZ .

For arbitrary α, β we define

M(α, β) = H0(Z1,M(α, β)),(10)
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N(α, β) = H0(Z2,N (α, β)),(11)

P (α, β) = H0(Z,P(α, β)).(12)

Finally, for q ∈ Z and a graded module M =
⊕

nMn we denote by M(q)
the module M with gradation shifted by q, i.e. M(q)n = Mq+n.

We will prove the following results:

Theorem 1. The group K ′0(Ar) is generated by the classes of the modules
of each of the families M(α, β)(q), N(α, β)(q), P (α, β)(q) where α, β are
both dominant weights and q ∈ Z.

Theorem 1 allows us, in fact, to calculate the group K ′0(Ar) explicitly.
We define, for any module M from Cr(F,G), M =

⊕
i≥dMi, its graded

character :

char(M) := char(M, q)(8)

=
∑
i

char(Mi)q
i ∈ R(GL(F )×GL(G))[[q]][q−1].

This defines a homomorphism of abelian groups

(9) char : K ′0(Ar)→ R(GL(F )×GL(G))[[q]][q−1].

Theorem 2. (a) The group K ′0(Ar) is isomorphic to the additive sub-
group of the ring R(GL(F )×GL(G))[[q]][q−1] generated by the shifted char-
acters of the modules M(α, β) (resp. of N(α, β), P (α, β)).

(b) K ′0(Ar) is isomorphic to the additive group of the ring R(GL(F ) ×
GL(G))[q, q−1].

In the remainder of the paper we work out the transition formulas be-
tween the generators given by each of the three families.

We also describe the degeneration sequence which is an acyclic complex
of graded Ar-modules whose terms have composition series with factors
M(α, β) and whose only homology is isomorphic to the coordinate ring
of Ar−1.

Finally, we strengthen Theorem 1 to the assertion that every module
M from Cr(F,G) has a canonical equivariant filtration whose factors have
resolutions with terms being direct sums of modules of any of the three
families.

The paper is organized as follows. A necessary step in the proof of
Theorem 1 is the investigation of the cohomology of the sheaves M(α, β),
N (α, β), P(α, β) for the weights α, β not necessarily dominant. This is
accomplished in Section 1. In Section 2 we prove Theorems 1 and 2. In Sec-
tion 3 we write down expressions for the classes of the modules M(α, β) and
N(α, β) in terms of the classes of the modules P (α, β), and vice versa.

In Section 4 we construct the degeneration sequence expressing the class
in K ′0(Ar) of the coordinate ring Ar−1 of the smaller determinantal variety.
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In fact, we show that the expression is a consequence of the exact sequence
resolving Ar−1 as an Ar-module by modules which filter into M(α, β)’s.
Finally, in Section 5 we prove the results on finite resolutions.

I would like to thank Michel Brion, David Buchsbaum and David Eisen-
bud for useful conversations regarding the material of this paper.

1. The sheaves M(α, β), N (α, β), P(α, β) and their cohomology.
We start by stating the results of this section.

Proposition 1. Let α and β be two dominant weights.

(a) Hi(Z1,M(α, β)) = 0 for i > 0.
(b) Hi(Z2,N (α, β)) = 0 for i > 0.
(c) Hi(Z,P(α, β)) = 0 for i > 0.

In the remaining results we assume, unless stated otherwise, that the
characteristic of K equals 0. In order to state our results about cohomology
we need a definition.

For arbitrary α we define the number l(α) as follows. Let % be half the
sum of positive roots of GL(F ). Consider the weight α+ % = (u1, . . . , um).
Then, by reverse induction on s (from s = r to s = 1), define

(11) δs = min{t | t ≥ δs+1,

t+m− s 6∈ {δs+1 +m− s− 1, . . . , δr +m− r, αr+1 +m− r − 1, . . . , αm}}.
By construction the weight (δ1, . . . , δr, αr+1, . . . , αm) + % is not orthog-

onal to any root. By Bott’s theorem there exists a unique l such that
H l(Grass(m− r, F ), SδQ⊗ S′′αR) 6= 0. We define l(α) := l.

The first result about cohomology of the sheaves M(α, β) specifies the
largest i for which Hi(Z1,M(α, β)) does not vanish.

Proposition 2. (a) Hi(Z1,M(α, β)) = 0 for i > l(α).
(b) The cohomology module H l(α)(Z1,M(α, β)) is nonzero.

We show that some of the cohomology groups Hi(Z1,M(α, β)) for 0 <
i < l(α) might be zero. We also describe the support of all the groups
Hi(Z1,M(α, β)).

In order to state these results we need to recall some basic definitions. We
call a permutation σ of m an r-grassmannian permutation if σ(1) > σ(2) >
. . . > σ(r) and σ(r+1) > . . . > σ(m). For each r-grassmannian permutation
σ we denote by Cσ the Weyl chamber of all weights (γ1, . . . , γm) such that
the entries of the sequence (γ1 +m− 1, γ2 +m− 2, . . . , γm−1 + 1, γm) have
no repetitions, and are in the same order as (σ1, . . . , σm).

Then, for each r-grassmannian permutation σ of length i, we define the
Ar-module Hi(Grass(m − r, F ),M(α, β))σ to be the part of the ith coho-
mology group coming from the weights from Cσ.
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We prove the following result:

Proposition 3. Let α be an arbitrary weight and let β be a dominant
weight.

(a) The module Hi(Z1,M(α, β))σ is nonzero if and only if there exists
δ = (δ1, . . . , δr) such that δ ≥ α′ (termwise) and (δ, α′′) ∈ Cσ.

(b) The support of the module Hi(Z1,M(α, β))σ is the determinantal
variety Xs−1 for s = σ(r + 1).

The results analogous to Propositions 2 and 3 are true for the sheaves
N (α, β). Let us just formulate these results.

Proposition 2′. (a) Hi(Z2,N (α, β)) = 0 for i > l(β).
(b) The cohomology module H l(β)(Z2,N (α, β)) is nonzero.

Proposition 3′. Let α be a dominant weight and let β be an arbitrary
weight.

(a) The module Hi(Z2,N (α, β))σ is nonzero if and only if there exists
δ = (δ1, . . . , δr) such that δ ≥ β′ (termwise) and (δ, β′′) ∈ Cσ.

(b) The support of the module Hi(Z2,N (α, β))σ is the determinantal
variety Xs−1 for s = σ(r + 1).

The calculation of cohomology for our three families is based on Bott’s
theorem and a simple spectral sequence argument. Let us deal with the
familyM(α, β). We observe that since p1 is an affine map, Ri(p1)∗OZ1

= 0
for i > 0. One can also see that (p1)∗OZ1

= Sym(Q⊗G∗). Therefore by the
Leray spectral sequence and the projection formula (assuming α arbitrary
and β dominant) we have

(14) Hi(Z1,M(α, β))

= Hi(Grass(m− r, F ), Sα′Q⊗ Sα′′R⊗ Sym(Q⊗G∗))⊗ SβG∗.
Similarly (for α dominant and β arbitrary),

(15) Hi(Z2,N (α, β))

= SαF ⊗Hi(Grass(r,G), Sβ′R∗ ⊗ Sβ′′Q∗ ⊗ Sym(F ⊗R∗))
and (for both α and β arbitrary)

(16) Hi(Z,P(α, β)) = Hi(Grass(m− r, F )×Grass(r,G),

Sα′Q⊗ Sα′′R∗ ⊗ Sβ′R∗ ⊗ Sβ′′Q∗ ⊗ Sym(Q⊗R∗)).
Proof of Proposition 1. The proposition follows from the formulas above

by applying the Cauchy formulas for decomposition of symmetric powers
([MD], Ch. 1), the Littlewood–Richardson rule ([MD], Ch. 1) and Bott’s the-
orem ([J]). The argument can be made characteristic free by using Kempf’s
vanishing theorem ([J]) and good filtrations ([D]), in particular Boffi’s result
[B] that a tensor product of Schur modules has a good filtration.
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Proof of Proposition 2. First of all, we can assume that β = 0 because by
the projection formula tensoring with SβG

∗ commutes with taking cohomol-
ogy. This means that by (14) we are reduced to calculating the cohomology

(17) H∗(Grass(m− r, F ), Sα′Q⊗ Sα′′R⊗ Sym(Q⊗G∗)).
This can be rewritten as

(18)
⊕

δ∈α′⊗γ

H∗(Grass(m− r, F ), SδQ⊗ Sα′′R⊗ SγG∗).

By the Littlewood–Richardson rule every weight δ occurring in α′⊗ γ is
≥ α′ termwise. Also, since dimQ = r ≤ dimG∗, all such δ will occur in the
tensor product of α′ with some γ.

Consider the weight α = (α′, α′′). Let δ0 be the weight constructed in
defining l(α). This is by definition the (termwise) minimal weight such that
Sδ0Q ⊗ Sα′′R has nonzero cohomology. This cohomology occurs in degree
l(α). Also it is clear by Bott’s theorem that for weights δ≥ δ0 termwise the
cohomology of SδQ⊗Sα′′R, if nonzero, has to occur in degrees ≤ l(α). This
proves parts (a) and (b) of the proposition.

Examples. 1. Take m = 6, r = 3, α′ = (2, 1, 1), α′′ = (5, 4, 4). Then
α + % = (7, 5, 4, 7, 5, 4). We get δ3 = 3, δ2 = 4, δ1 = 4. Therefore (δ, α′′) =
(4, 4, 3, 5, 4, 4) and l(α) = 1. The proposition says that Hi(M(2, 1, 1; 5, 4, 4))
is nonzero for i = 0, 1 and zero for i ≥ 2.

2. Take m = 3, r = 1, α′ = (1), α′′ = (4, 4). Then α+ % = (3, 5, 4). The
result is that H2(M(α, 0) = S(3,3,3)F and the only other nonzero cohomol-
ogy group of M(α, 0) is H0(M(α, 0)). This shows that for 1 ≤ i < l(α)
some of the cohomology groups of M(α, 0) might be zero.

Proof of Proposition 3. Again we can assume that β = 0. Choose an
r-grassmannian permutation σ. We are interested in the support of the co-
homology modules of

(19) M(α, 0)σ =
⊕
γ

⊕
δ∈α′⊗γ, (δ,α′′)∈Cσ

SδQ⊗ Sα′′R⊗ SγG∗.

Let σ(r + 1) = s. Then we can increase δ1, . . . , δs−1 as we please to still
get weights in Cσ. On the other hand, we can increase the indices δs, . . . , δr
only in the limited way if we are to get a weight in Cσ. This shows that the
support of our module is Xs−1.

2. Proof of Theorems 1 and 2. We start with the proof of Theorem 1.
We prove the theorem for the modules M(α, β). The proof for N(α, β)

is symmetric. The proof for P (α, β) will follow, since we will also show that
the class of each M(α, β) in K ′0(Ar) can be expressed through the classes of
the P (α, β).
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We prove the theorem in several steps.

Each equivariant sheaf M on Z1 (corresponding to a graded Sym(Q ⊗
G∗)-module) has Euler characteristic class

χ(M) =
∑
i≥0

(−1)i[Hi(Z1,M)],

which can be treated as an element of K ′0(Ar) because every cohomology
group Hi(Z1,M) is clearly an object of Cr(F,G).

Proposition 4. The Euler characteristic classes χ(M(α′, α′′, β)) gen-
erate K ′0(Ar).

P r o o f. Consider an arbitrary graded Ar-moduleMwith rational GL(F )
×GL(G) action. Then the natural morphism

(20) M → (q1)∗q
∗
1M

has kernel and cokernel supported in Xr−1. It is therefore enough to show
that:

1) The class in K ′0(Ar) of any module supported in Xr−1 is in the sub-
group generated by the classes χ(M(α′, α′′, β)).

2) The class χ(q∗1M) is in that subgroup (we use the fact that higher
cohomology groups Hi(q∗1M) are supported in Xr−1).

To prove 1) it is enough to show that the Euler characteristic of each
module of type M for Xr−1 is in our subgroup of K ′0(Ar). Consider the

grassmannian Grass(m−r+1, F ) with tautological sequence 0→ R̂ → F →
Q̂ → 0. Let us work over the partial flag variety Flag(m−r,m−r+1, F ) :=

GL(F )/P on which all bundles R,Q, R̂, Q̂ are defined. Modules of type

M for Xr−1 will be denoted by M̂. We also give names to the natural
projections

(21) Grass(m−r+1, F )
v2←− Flag(m−r,m−r+1, F )

v1−→ Grass(m−r, F ).

Since in this argument all constructions commute with tensoring by
SβG

∗, we will drop it from our notation, dealing with the modulesM(α′, α′′)

:=M(α′, α′′, 0) and similarly for the modules M̂.

We have, by definition,

(22) M̂(α′1, . . . , α
′
r−1, α

′′
1 , . . . , α

′′
m−r+1)

= v2∗(S(α′1,...,α
′
r−1)
Q̂ ⊗ Sα′′1 (R̂/R)⊗ S(α′′2 ,...,α

′′
m−r+1)

R⊗ Sym(Q̂ ⊗G∗)).

The higher direct images of the tensor product in brackets on the right
hand side vanish.
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This module has a Koszul type resolution on Flag(m− r,m− r + 1, F )
over Sym(Q⊗G∗) with terms

(23) S(α′1,...,α
′
r−1)
Q̂ ⊗ Sα′′1 (R̂/R)

⊗ S(α′′2 ,...,α
′′
m−r+1)

R⊗
∧.

(Ker(Q → Q̂)⊗G∗)⊗ Sym(Q⊗G∗),
which can be rewritten as

(24)
⊕
t

S(α′1,...,α
′
r−1)
Q̂ ⊗ Sα′′1 +t(R̂/R)⊗ S(α′′2 ,...,α

′′
m−r+1)

R⊗
∧t
G∗

⊗ Sym(Q⊗G∗)

because Ker(Q → Q̂) is isomorphic to R̂/R as can be seen from the com-
mutative diagram

0 → R → F → Q → 0
↓ ↓ ↓

0 → R̂ → F → Q̂ → 0

Pushing down the terms of this resolution by v1∗ we get (by the pro-
jection formula; Q⊗G∗ is induced from Grass(m− r, F )) an expression for
each term in the resolution as the Euler characteristic of a module of type
M(γ′, γ′′, δ), possibly with sign. We have thus expressed χ(M̂(α′, α′′)) as a
linear combination in K ′0(Ar) of the Euler characteristics χ(M(γ′, γ′′, δ)).
This proves statement 1).

Remark 5. The same proof shows that if we start with M̂(α′, α′′, β)
where α = (α′, α′′) is dominant , then its Euler characteristic class lies in the
subgroup of K ′0(Ar) generated by the Euler characteristics χ(M(γ′, γ′′, δ))
with γ = (γ′, γ′′) dominant.

P r o o f. Pushing down the terms in the formula (24) on Grass(m− r, F )
means we apply Bott’s theorem to the sequence (α′1, . . . , α

′
r−1, α

′′
1 + t). In

the case when α = (α′, α′′) is dominant we can only get either 0 (meaning
the corresponding Euler characteristic is 0) or weights which, together with
(α′′2 , . . . , α

′′
m−r+1), form dominant weights.

To prove statement 2) we notice that q∗1M is a sheaf of graded Sym(Q⊗
G∗)-modules. We take its finite free GL(Q)×GL(R)×GL(G)-equivariant
resolution. Its terms are up to filtration direct sums of modules of type
M(α′, α′′, β) (or, if charK 6= 0, they are equivalent to a combination of such
terms in the Grothendieck group). Pushing this resolution down we see that
χ(q∗1M) is an alternating sum of the Euler characteristics χ(M(α′, α′′, β)).
This completes the proof of Proposition 4.

The second part of the proof of Theorem 1 is

Theorem 6. The classes χ(M(α′, α′′, β)) such that (α′, α′′) is dominant
generate K ′0(Ar).
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P r o o f. We will assume throughout this proof that charK = 0. The
argument can be easily adjusted to the characteristic free case by using
good filtrations (comp. [D]), but we leave it to the reader.

Consider an arbitrary sheaf M(α′, α′′, β). We use induction on s :=
α′′1 − α′r. If s ≤ 0 then (α′, α′′) is dominant and there is nothing to prove.
Suppose that for (γ′, γ′′) with smaller s the corresponding sheaves are in the
subgroup of K ′0(Ar) in question.

We will identify M(α′, α′′, β) with its direct image p1∗M(α′, α′′, β), i.e.

(25) M(α′, α′′, β) = Sα′Q⊗ Sα′′R⊗ Sym(Q⊗G∗).

Consider the subsheaf of M(α′, α′′, β) consisting of all sheaves Sγ′Q ⊗
Sγ′′R⊗SδG∗ such that γ′′1−γ′r is smaller than s. It is clearly a Sym(Q⊗G∗)-
submodule of M(α′, α′′, β). We call it M<s(α

′, α′′, β). We also denote the
factorM(α′, α′′, β)/M<s(α

′, α′′, β) byMs(α
′, α′′, β). By definition we have

an exact sequence of Sym(Q⊗G∗)-modules

0→M<s(α
′, α′′, β)→M(α′, α′′, β)→Ms(α

′, α′′, β)→ 0.

The support of the module Ms(α
′, α′′, β) (or rather of all its cohomol-

ogy groups) is contained in Xr−1. Indeed, if we multiply the representation
Sγ′Q ⊗ Sγ′′R ⊗ SδG

∗ by
∧rQ ⊗ ∧r G∗ corresponding to r × r minors,

we add one to each entry of γ′ without changing γ′′, so we decrease s.
This means that the ideal generated by r × r minors annihilates all the
cohomology groups of Ms(α

′, α′′, β). Therefore, by induction on r and by
Remark 5, the Euler characteristic χ(Ms(α

′, α′′, β)) is contained in our sub-
group of K ′0(Ar).

Now, consider an GL(Q) × GL(R) × GL(G)-equivariant resolution of
M<s(α

′, α′′, β) by free Sym(Q⊗G∗)-modules. Its terms are up to filtration
direct sums of sheaves M(γ′, γ′′, δ) and each term occurring in the reso-
lution has smaller s than (α′, α′′) has. Indeed, the generators of the 0th
syzygy come from M<s(α

′, α′′, β). The generators of the (i + 1)-st syzygy
are contained in M(γ′, γ′′, δ) ⊗ Sym(Q⊗ G∗) where M(γ′, γ′′, δ) is a term
in the ith syzygy, so by the Littlewood–Richardson rule the invariant s
can only decrease. Therefore, by induction on s, the Euler characteristic
χ(M<s(α

′, α′′, β)) lies in our subgroup of K ′0(Ar). This concludes the proof
of Proposition 6.

Theorem 1 is now proven for the families M(α, β) and N(α, β). To con-
clude the proof for P (α, β) we need the following

Proposition 7. The classes of the modules M(α, β) (for α, β dominant)
lie in the subgroup of K ′0(Ar) generated by the classes of the modules P (γ, δ)
(with γ, δ dominant).

Before proving Proposition 7 we prove another useful statement.
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Proposition 8. Let α, β be dominant. Then for every dominant γ the
class in K ′0(Ar) of P (α, β)⊗ SγG∗ is an element of the subgroup generated
by the classes of the modules P (δ, ε) (δ, ε dominant). Similarly , for every
dominant γ the class in K ′0(Ar) of SγF ⊗ P (α, β) is an element of the
subgroup generated by the classes of the modules P (δ, ε) (δ, ε dominant).

P r o o f. Because of symmetry it is enough to prove the first statement.
It is also enough to do the proof for charK = 0 because any equality of
characters involving Schur functors which is true in characteristic 0 is au-
tomatically true in the representation ring R(GL(F )×GL(G)) in arbitrary
characteristic.

Using the Jacobi–Trudi determinantal expression for SγG
∗ as a combi-

nation of tensor products of exterior powers
∧j

G∗ ([MD], Ch. 1, [A], [Z]),

it is enough to show that the class in K ′0(Ar) of P (α, β)⊗
∧j

G∗ is an ele-
ment of the subgroup generated by the classes of the modules P (δ, ε) (δ, ε

dominant). Consider the sheaf P(α, β)⊗
∧j

G∗. It obviously has a filtration
with the associated graded object

(26)
⊕
a+b=j

P(α, β)⊗
∧aR∗ ⊗∧bQ∗.

Using Pieri’s formula ([MD], Ch. 1) we notice that the above sheaf decom-
poses into a direct sum of sheaves of type P(α, ξ) where the weight ξ satisfies
ξ1 ≥ . . . ≥ ξr, ξr+1 ≥ . . . ≥ ξn and ξr ≥ ξr+1−1. We notice that, by the for-
mula (16) and by the Littlewood–Richardson rule the sheaves P(α, ξ) have
no higher cohomology. Therefore to conclude the proof it is enough to show
that the modules H0(Z,P(α, ξ)) are in the subgroup of K ′0(Ar) generated
by the modules P (δ, ε) (δ, ε dominant).

Consider the sheaf P(α, ξ). If ξr≥ξr+1 then the last statement is obvious
since α and ξ are dominant. Therefore, assume ξr = ξr+1 − 1. Recall that
by (16) and the Cauchy formula,

(27) P(α, ξ) = Sα′Q⊗ Sα′′R⊗ Sξ′R∗ ⊗ Sξ′′Q∗ ⊗
(⊕

γ

SγQ⊗ SγR∗
)
.

Using the Littlewood–Richardson rule we see that the weights giving
a nonzero contribution to H0(Z,P(α, ξ)) are those corresponding to the
highest weights ψ = (ψ1, . . . , ψr) of irreducible representations in Sξ′R∗ ⊗
SγR∗ for which ψr > ξr. The span of the coresponding representations
obviously gives a graded GL(F )×GL(G∗)-equivariant subsheaf T of P(α, ξ).
Identifying T with its direct image p∗T we can treat this sheaf as a sheaf of
graded Sym(Q⊗R∗)-modules.

Claim. The sheaf p∗T has a finite graded equivariant resolution with
terms which, up to filtration, are direct sums of terms
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Sα′Q⊗ Sα′′R⊗ SψR∗ ⊗ Sξ′′Q∗ ⊗ Sym(Q⊗R∗)
with weights ψ satisfying ψr > ξr.

P r o o f. We can identify any GL(F ) × GL(G∗)-equivariant sheaf on
Grass(m−r, F )×Grass(r,G) with a rational P ′×P ′′-module (where P ′, P ′′

denote the parabolic subgroups in GL(F ), GL(G∗) respectively correspond-
ing to the two grassmannians). Taking this point of view we see that resolv-
ing p∗T is just resolving the corresponding graded Sym(Q ⊗ R∗)-module.
The only thing we have to worry about is preserving the P ′ × P ′′ action.
Denote by L′, L′′ the Levi subgroups in P ′, P ′′ respectively and by U ′, U ′′

the unipotent radicals. For every P ′ × P ′′-graded Sym(Q⊗R∗)-module its
graded components have canonical filtrations on whose subquotients the rad-
icals U ′, U ′′ act trivially (we filter by the Q-content and by the R∗-content).
Moreover, multiplying by Q⊗R∗ is compatible with those filtrations. This
means that every finitely generated Sym(Q⊗R∗)-module with compatible
P ′×P ′′ action has a finite filtration on whose factors U ′×U ′′ acts trivially.

For a statement in K ′0 it is therefore enough to resolve p∗T as an
L′ × L′′-module. Then, by reductivity of L′ × L′′, a finite, graded equiv-
ariant resolution of any Sym(Q⊗R∗)-module exists. The statement about
weights ψ follows from the fact that all weights in p∗T satisfy the inequality
ψr > ξr, and from the Littlewood–Richardson rule.

The claim implies that all the terms in the resolution have factors of type
P(δ, ε) for δ, ε dominant. Taking the sections of this resolution we deduce
that H0(Z,P(α, ξ)) has a resolution whose terms, up to filtration, are direct
sums of modules P (δ, ε) (δ, ε dominant). This proves the proposition.

Proof of Proposition 7. It follows from Proposition 8 that we can assume
that β = 0, i.e. it is enough to express the class of M(α, 0) through the
classes of P (γ, δ) with γ, δ dominant. On the other hand, it is clear that
M(α, 0) = P (α, 0) by direct calculation of the cohomology groups of the
corresponding sheaves.

Proof of Theorem 2. Part (a) of Theorem 2 is a consequence of the fact
that the characters of the modules M(α, β)(−i) are linearly independent in
R(GL(F )×GL(G))[[q]][q−1].

To prove (b) we define the homomorphism of groups

(28) Ψ : R(GL(F )×GL(G))[q][q−1]→ K ′0(Ar)

by sending [SαF⊗SβG∗]qi to [M(α, β)(−i)]. By Theorem 1, Ψ is an epimor-
phism. It is also a monomorphism because the classes of the shifted modules
M(α, β)(−i) are linearly independent in K ′0(Ar).

3. Transition formulas. In the preceding section we proved that
the group K ′0(Ar) has three sets of generators, the classes of the modules
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M(α, β)(q), N(α, β)(q), P (α, β)(q), each indexed by pairs (α, β) of dominant
weights and integers q. In this section we write down transition formulas al-
lowing one to write an element of each basis as a linear combination of the
elements of another basis. We are dealing only with the classes of M(α, β);
the statements for N(α, β) are symmetric.

We prove all the formulas when charK = 0, but they are true in arbitrary
characteristic because, as already remarked, any equality involving Schur
functors true in characteristic 0 is true in the representation ring R(GL(F )×
GL(G)) in arbitrary characteristic.

We start with the formula expressing the class of P (α, β) through the
classes of modules M(α, β).

Theorem 3. Let α = (α′, α′′) and β = (β′, β′′) be dominant. The class
of the module P (α, β) in K ′0(Ar) can be expressed through the classes of
M(γ, δ)(q) (with γ = (γ′, γ′′), δ = (δ′, δ′′) being dominant) as follows:

(29) [P (α, β)]

=
∑
λ

∑
γ′∈λ̃⊗α′

∑
η′′∈β′′⊗λ, δ=χ(β′,η′′)

(−1)|λ|+ε(β
′,η′′)M(γ′, α′′; δ)(−|λ|).

Here η ∈ µ⊗ν means that we take partitions from the tensor product on
the right with proper multiplicities, and η = χ(µ, ν) means that we apply
Bott’s algorithm to the sequence (µ, ν), writing the appropriate summand

with a proper sign ε(µ, ν) The symbol λ̃ stands for the partition conjugate
to λ.

Example. Take m = n = 4, r = 2, α′ = (1, 0), α′′ = (0, 0), β′ = (1, 1),
β′′ = (0, 0). Then the class of P (1, 0, 0, 0; 1, 1, 0, 0) equals

[M(1, 0; 0, 0; 1, 1; 0, 0)−M(2, 0; 0, 0; 1, 1; 1, 0)−M(1, 1; 0, 0; 1, 1; 1, 0)

+M(3, 0; 0, 0; 1, 1; 1, 1) +M(2, 1; 0, 0; 1, 1; 1, 1)]

with the first summand corresponding to λ = (0, 0), two next ones to λ =
(1, 0), and the last one to λ = (1, 1).

Proof of Theorem 3. The proof is based on the push down of the Koszul
complex. Consider the sheaf p∗P(α, β) as a sheaf on Grass(m − r, F ) ×
Grass(r,G). It is a sheaf of graded Sym(Q ⊗ R∗)-modules. Consider the
Koszul complex

∧.
(Q ⊗ Q∗) resolving Sym(Q ⊗ R∗) as a Sym(Q ⊗ G∗)-

module. Tensoring this complex with Sα′Q ⊗ Sα′′R ⊗ Sβ′R∗ ⊗ Sβ′′Q∗ we
get a resolution of p∗P(α, β) whose terms are sheaves whose push downs on
Grass(m− r, F ) are (up to sign) sheaves of typeM(γ, δ). Using the Cauchy
formula for the decomposition of

∧.
(Q⊗Q∗) and taking Euler characteristics

we get the assertion of Theorem 3.
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Let us give an algorithm for expressing the class of M(α, β) through the
classes of P (γ, δ). We start with the case of β = (1j).

Proposition 9. Let β = (1j) and let α = (α′, α′′) be dominant. Then
the module M(α, β) has a filtration with associated graded object

(30)
⊕

(1n−r)⊃δ′′⊃β′′

⊕
γ′∈α′⊗δ/β

P (γ′, α′′; δ′, δ′′).

P r o o f. The module M(α, β) can be identified with

(31) M(α, β) = H0(Grass(m− r, F )×Grass(r,G),M̂(α, β))

where M̂(α, β) is the sheaf over Grass(m,F ) × Grass(r,G) defined by the
formula

(32) M̂(α, β) = Sα′Q⊗ Sα′′R⊗
∧j
G∗ ⊗ Sym(Q⊗R∗).

The sheaf M(α, β) can be filtered in such a way that the associated
graded object is

(33)
⊕
a+b=j

Sα′Q⊗ Sα′′R⊗
∧aR∗ ⊗∧bQ⊗ Sym(Q⊗R∗).

No summand in (33) has higher cohomology, and the global sections of
the summand corresponding to the pair (a, b) are easily identified with

(34)
⊕

γ′∈α′⊗1r−a
P (γ′, α′′; (1r), (1b, 0n−r−b))

embedded by tensoring with
∧r−aQ⊗∧r−aR∗. This implies the proposi-

tion, with the sheaf from (34) corresponding to the summand in (30) with
δ′′ = (1b).

The proposition yields a formula for the class of an arbitrary M(α, β)
by applying the Jacobi–Trudi formula expressing the functor SβG

∗ as a
combination of tensor products of exterior powers (comp. [MD], Ch. 1),

provided we give a formula for the class of P (α, β) ⊗
∧j

G∗ in K ′0(Ar).

The bundle p∗
∧j

G∗ can be filtered, so the associated graded object is⊕
a+b=j

∧aR∗ ⊗∧bQ∗. Using this filtration we see that

[P (α, β)⊗
∧j
G∗] =

∑
ξ′∈β′⊗1a, ξ′′∈β′′⊗1b

[P (α, ξ′, ξ′′)].

All the sequences (ξ′, ξ′′) on the right hand side have the property ξ′r ≥ ξ′′1−1.
If the inequality is strict, the corresponding weight is dominant. It therefore
remains to express the class of the module P (α, ξ′, ξ′′) through the classes
of dominant P (α, β) in the case ξ′r = ξ′′1 − 1.

Before we state the result we need some notation.
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For fixed α, ξ′, ξ′′ satisfying ξ′r = ξ′′1 − 1 we define µ to be the partition
(ξ′1 − ξ′r, . . . , ξ′r−1 − ξ′r, 0). Then, for each j ≥ 1, we define µ(j) to be the
partition conjugate to

µ̃(j) = (r, µ̃1 + 1, . . . , µ̃j−1 + 1, µ̃j+1, . . . , µ̃t)

and set sj = |µ(j)/µ|. With this notation we have

Proposition 10. Let α = (α′, α′′) be dominant and let ξ = (ξ′, ξ′′) be
such that ξ′r = ξ′′1 − 1. Then

[P (α, ξ′, ξ′′)] =
∑
j≥1

(−1)j+1
[ ∑
γ′∈α′⊗1sj , γ′′=α′′

∑
δ′s=r+µ(j)s,δ

′′=ξ′′

P (γ, δ)(−sj)
]
.

P r o o f. Consider the sheaf p∗P(α′, α′′, ξ′, ξ′′) on Grass(m − r, F ) ×
Grass(r,G). Let N be the subsheaf of p∗P(α′, α′′, ξ′, ξ′′) consisting of the
subbundles with nonzero sections. We will exhibit an explicit resolution
of N .

We first treat a special case.

Claim. Consider the sheaf of algebras B = Sym(Q ⊗ R∗). Let Mµ ⊂
SµR∗ ⊗ B be the subsheaf consisting of the subbundles SφQ ⊗ SψR∗ such
that ψr ≥ 1. Let Nµ be the factor SµR∗ ⊗ B/Mµ. Then Nµ has a finite
resolution G.,µ over B = Sym(Q⊗R∗) with terms

Gj,µ =
∧sjQ⊗ Sµ(j)R∗ ⊗ B(−sj)

where the partition µ(j) and sj are as above.

P r o o f. We will construct the resolution in question in each fibre. Let us
therefore consider the corresponding affine situation, writing U instead of

Q, V ∗ instead of R̃∗ and B = Sym(U ⊗ V ∗) instead of B. We assume that
dimV ∗ = r but also assume dimU ≥ r. Then we have the obvious analogue
Nµ of the sheaf Nµ.

Notice that Nµ consists of the representations SφU ⊗ SψV ∗ such that
ψr = 0, i.e. of representations which are nonzero when substituting for V
a space of dimension r − 1. Such a module is the push down of a twisted
module on the grassmannian Grass(1, V ∗). If the tautological sequence is
0 → S → V ∗ → T → 0 then the module whose push down is Nµ is SµT ⊗
Sym(U ⊗ T ). The resolution is therefore given by the higher cohomology
groups of SµT ⊗

∧.
(U⊗S) which by Bott’s theorem give the terms provided

in the claim.

Now we apply the claim to finish the proof of Proposition 10. Consider
the sheaf p∗P(α′, α′′, ξ′, ξ′′) on Grass(m−r, F )×Grass(r,G) and its subsheaf
N constructed above. Take µ = (ξ′1 − ξ′r, . . . , ξ′r−1 − ξ′r, 0). Then it is clear
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that N has a resolution with terms

Gj,µ ⊗ Sα′Q⊗ Sα′′R⊗
∧rR∗⊗ξ′r ⊗ Sξ′′Q∗

for j ≥ 1. Taking sections of this resolution we get the assertion.

Remark 11. One might hope that a stronger version analogous to Propo-
sition 9 is true for arbitrary β. This is, however, not the case, as the
following example shows. Take m = n = 4, r = 3. Consider the class
[M(0, 0, 0, 0; 2, 2, 0, 0)]. It equals

[P (0, 0, 0, 0; 2, 2, 0, 0) + P (1, 1, 0, 0; 2, 2, 1, 1)(−2)

− P (1, 1, 1, 0; 2, 2, 2, 1)(−3) + P (2, 2, 0, 0; 2, 2, 2, 2)(−4)].

Since one of the coefficients is negative, this module does not have a filtration
with factors of type P (γ, δ).

4. The degeneration sequence. According to Theorem 1 the class of
any graded Ar-module with rational GL(F )⊗GL(G) action can be expressed
as a linear combination of the classes of modules M(α, β). In this section we
deal with a formula for the class of the coordinate ring Ar−1 of the smaller
determinantal variety.

Proposition 12. The class of Ar−1 in K ′0(Ar) is given by the formula

(35) [Ar−1] = [Ar]−
n−r∑
i=0

[M((i+ 1, 1r−1), (1r+i, 0n−r−i))].

P r o o f. Let A denote the graded algebra of sheaves A := Sym(Q⊗G∗)
over Grass(m− r, F ). Consider the relative Eagon–Northcott complex over
A,

(36) 0→ En−r → En−r−1 → . . .→ E1 → E0 → A,
where

(37) Ei = DiQ⊗
∧rQ⊗∧nG∗ ⊗A(−i− r).

This is a sheaf resolution of a sheaf B of algebras. The sheaf B can be
written, up to filtration, as

(38) [B] =
⊕

λ=(λ1,...,λr−1)

SλQ⊗ SλG∗.

Therefore its higher cohomology vanishes by Kempf’s vanishing theorem and
the sections are equal to Ar−1. In characteristic 0 the proof is thus finished
because we observe that Ei = M((i + 1, 1r−1), (1r+i, 0n−r−i)). In positive
characteristic the proof follows by the general principle stated several times
above (we could also say that in arbitrary characteristic we have χ(Ei) =
M((i+ 1, 1r−1), (1r+i, 0n−r−i)).
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Remark 13. The above result is even stronger in characteristic 0 than
in positive characteristic. Taking sections of (36) we actually get the exact
sequence

(39) 0→ En−r → En−r−1 → . . .→ E1 → E0 → Ar

with

(40) Ei = M((i+ 1, 1r−1), (1r+i, 0n−r−i))(−r − i)
which is a resolution of Ar−1.

This sequence is not characteristic free. We can get its characteristic free
analogue by replacing the Eagon–Northcott complex by a nonminimal free
resolution of the determinantal ideal of r×r minors of an r×n matrix, each
term of which has a good filtration by Schur modules. Such a complex, of
length n− r + 1, was constructed by David Buchsbaum in [B]. We need its
relative version which is

(41) 0→ Ên−r → Ên−r−1 → . . .→ Ê1 → Ê0 → A
where

Êi =
⊕

j1>0,...,ji>0, ji+1=r

∧j1Q⊗ . . .⊗∧ji+1Q(42)

⊗
∧j1+...+ji+1G∗ ⊗A(−j1 − . . .− ji+1).

The modules occurring in the terms of (41) do not have higher cohomol-
ogy by Kempf’s vanishing theorem. The tensor product of exterior powers
has a good filtration by [Bo]. This means that by pushing down (41) we get
a characteristic free resolution of Ar−1 of length n−r+1 by modules which,
up to filtration, are direct sums of modules of type M(α, β).

It would be interesting to investigate whether this construction could
lead to some nice nonminimal resolutions of determinantal ideals.

5. Canonical filtrations of equivariant modules over determi-
nantal rings. In this section we assume that the characteristic of K is 0.
We strengthen our results and prove that every module M from Cr(F,G) has
a canonical filtration whose factors have finite free resolutions by modules
of type M(α, β) (resp. N(α, β), P (α, β)).

Let M be a module from Cr(F,G). For each pair (α, β) of weights we
denote by Mα,β the isotypic component of M corresponding to SαF⊗SβG∗.

Let γ′′ be a partition with m− r parts. We define

(43) Ml≥γ′′ =
⊕

α′′≥γ′′
Mα,β .

This is obviously an equivariant Ar-submodule of M . The submodules
Ml≥γ′′ define a filtration on M , called the canonical left filtration on M .
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Similarly, for a partition δ′′ with n− r parts we define the submodule

(44) Mr≥δ′′ =
⊕
β′′≥δ′′

Mα,β .

It is obviously an equivariant Ar-submodule of M . The submodules Mr≥δ′′

define a filtration on M which is called the canonical right filtration on M .
Similarly we define the canonical two-sided filtrations on M .

Theorem 4. The factors of the left (resp. right , two-sided) canonical
filtration have finite resolutions by modules of type M(α, β) (resp. N(α, β),
P (α, β)).

P r o o f. We give the proof only for the left filtrations and modules
M(α, β). The proofs in the other two cases are analogous. The result follows
at once from the following lemma.

Lemma 14. Fix a partition γ′′ with m − r parts. Let M be a module
from Cr(F,G) such that for every nonzero isotypic component Mα,β we have
α′′ = γ′′. Then M has a finite resolution with terms of type M(α, β) (with
α′′ = γ′′).

P r o o f. Consider the sheaf G of Sym(Q⊗G∗)-modules modelled after M
by writing Sα′Q⊗Sα′′R instead of SαF . Such a sheaf exists because of the
condition on M . It is of the formH⊗Sα′′R whereH is a sheaf involving only
representations of Q. The sheaf G has a finite resolution by Sym(Q⊗G∗)-
modules with terms M(γ′, α′′; δ). Taking sections of this resolution we get
the assertion of lemma.

This concludes the proof of Theorem 4.

6. The depth of modules M(α, β) and N(α, β). In this section
we give a formula for the depth of modules from the families M(α, β) and
N(α, β). We deal only with the family M(α, β) because the results for the
other family are symmetric. For most of the section we assume that the
characteristic of the fieldK is zero. We conclude the section with an example
showing that the depth of modules M(α, β) and even their being Cohen–
Macaulay depends on the characteristic of the base field.

Let K be a field of characteristic 0.

Since M(α, β) = M(α, 0)⊗SβG∗ the depth of M(α, β) does not depend
on β, so we can assume that β = 0. We will denote M(α, 0) by M(α).

Let us start with α = (α′, α′′). In fact, we will not assume that α is
dominant; we will just assume that the sheaf

p1∗M(α′, α′′) = Sα′Q⊗ Sα′′R⊗ Sym(Q⊗G∗)

does not have higher cohomology.
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Proposition 15. The sheaf M(α′, α′′) does not have higher cohomology
if and only if α′r ≥ α′′1 − t where t is such that α′′1 = α′′2 = . . . = α′′t > α′′t+1.

P r o o f. Let δ1, . . . , δr be the numbers defined in the proof of Proposi-
tion 2. The condition above is clearly equivalent to the fact that δr ≥ α′′1
and that means that l(α) = 0.

We assume therefore that the condition of Proposition 15 is satisfied
and, in order to study the depth of M(α′, α′′), we look at its free resolution
which is given (because of the vanishing) by the push down of the Koszul
complex

(45) Sα′Q⊗ Sα′′R⊗
∧.

(R⊗G∗)⊗OX×Grass(m−r,F ).

We want to calculate the projective dimension of M(α′, α′′) over A =
Sym(F ⊗G∗) because, by the Auslander–Buchsbaum Theorem, depthM +
pdAM = mn for every A-module M .

In order to find the length of the push down of the complex (45) we
recall that its ith term Fi(α) is given by the formula

(46) Fi(α)

=
⊕
j≥0

Hj(Grass(m− r, F ), Sα′Q⊗ Sα′′R⊗
∧i+j

(R⊗G∗)⊗A(−i− j)).

In order to study the top of the resolution, we start with the last term
of the Koszul complex. The corresponding GL(F ) weight is

t(α) = (α′1, . . . , α
′
r, α
′′
1 + n, . . . , α′′m−r + n).

Consider the weight

t(α) + %

= (α′1 +m,α′2 +m−1, . . . , α′r +m−r, α′′1 +n+m−r−1, . . . , α′′m−r +n+1).

Write
t(α) + % = (a1, . . . , ar, b1, . . . , bm−r).

For j = 1, . . . ,m − r define the sequences tj(α) by induction on j, as
follows:

tj(α) + % = (a1, . . . , ar, d1, . . . , dj , bj+1, . . . , bm−r)

where dj+1 is defined by

dj+1 = max{t | t ≤ bj+1, t < dj , t 6∈ {a1, . . . , ar}}.
Notice that in this definition the condition t < dj could be skipped,

because each bj is essentially lowered to the first possible number that is
not one of the ai’s or previous dk’s.

Let us also define the numbers

qj = n− (bj − dj), pj = qj − ]{i | ai < dj}
for j = 1, . . . ,m− r.
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Lemma 16. For every j = 1, . . . ,m− r we have pj ≥ n− r.

P r o o f. Let us imagine that we construct sequences tj(α) by the fol-
lowing process. We look at bj and start lowering it by 1 until we reach the
number that is not equal to any ai or dk for k < j. Then every lowering by 1
accounts for some ai satisfying dj +1 ≤ ai ≤ bj or by some dk (which comes
from some previous ak > bj). This means that we have a set of bj − dj ak’s
which is disjoint from the set {i | ai < dj}. Therefore

pj = n− (bj − dj)− ]{i | ai < dj} ≥ n− r.

This concludes the proof of the lemma.

Theorem 5. Let K be a field of characteristic 0. Let (α′, α′′) satisfy
the condition of Proposition 15. Then the projective dimension of M(α′, α′′)
over A equals

∑m−r
j=1 pj.

P r o o f. Decomposing the terms of the complex (45) using the Cauchy
formula and the Littlewood–Richardson rule, we find that the terms of the
resolution F.(α) have GL(F ) weights which are of type (α′, δ′′) with δ′′

containing α′′ such that the difference of the corresponding terms does not
exceed n. Also, all such weights do occur. For such weights we need to
find the supremum of the numbers |δ′′/α′′| − l(w) where w is a permutation
ordering the weight (α′, δ′′) + %. It is clear that the top number is obtained
from the sequence tm−r(α).

We need therefore to find in which Fi(α) the corresponding term occurs.
The homogeneous degree is, however,

∑m−r
j=1 (n − (bj − dj)) and the length

of w is l(w) =
∑m−r
j=1 ]{i | ai < dj}, and the statement of the theorem

follows.

Corollary 17. Let (α′, α′′) satisfy the condition of Proposition 15.
The depth of the module M(α′, α′′) is equal to mn −

∑r
j=1 pj. The mod-

ule M(α′, α′′) is a maximal Cohen–Macaulay module over Ar if and only if
every pj is equal to n− r.

Let us look more closely at the weights giving maximal Cohen–Macaulay
modules. Let us look at the process of getting sequences tj(α) by lowering
the numbers bj to dj . However, now at each stage we will modify the se-

quence (a1, . . . , ar) as follows. We define inductively the sets {a(j)1 , . . . , a
(j)
r }

by setting

{a(0)1 , . . . , a(0)r } = {a1, . . . , ar},

{a(j)1 , . . . , a(j)r } =

{
{a(j−1)1 , . . . , â

(j−1)
i , . . . , a

(j−1)
r , dj} if bj = a

(j−1)
i ;

{a(j−1)1 , . . . , a
(j−1)
r } otherwise.



262 J. WEYMAN

Now, pj = n − r for j = 1, . . . ,m − r if and only if we have bj ≥
max{a(j−1)1 , . . . , a

(j−1)
r } for each j = 1, . . . ,m − r. Indeed, each ai either

induces a number between bj and dj + 1 or is smaller than dj so the overall
number by which the projective dimension decreases at the jth stage is n−r.
Let us state this result as

Corollary 18. Let (α′, α′′) satisfy the condition of Proposition 15.

Define the sets {a(j)1 , . . . , a
(j)
r } as above. Then M(α′, α′′) is maximal Cohen–

Macaulay if and only if for every j = 1, . . . ,m− r we have

bj ≥ max{a(j−1)1 , . . . , a(j−1)r }.

We now show an example of a module of type M(α) with a characteristic
free presentation such that each graded component of M(α) is characteristic
free and M(α) is Cohen–Macaulay when charK 6= 2 but fails to be Cohen–
Macaulay when charK = 2. The interesting feature of the example is that
the projective dimension of M(α) over A equals 2 whenever charK 6= 2.

Example. Take r = 2, m = 3, n = 4. Consider the module M(2, 0, 0).
It consists of the sections of the sheaf

M(2, 0, 0) = S2Q⊗ Sym(Q⊗G∗)

over Grass(1, F ).

It follows from the Cauchy formula, Kempf’s vanishing theorem and the
fact that the tensor product of Schur functors has a good filtration that
the higher cohomology groups of M(2, 0, 0) vanish and that each graded
component of M(2, 0, 0) has a good filtration as a GL(F )×GL(G∗)-module,
and therefore is characteristic free.

Let us analyze the free resolution of M(2, 0, 0) over A, assuming that K
has characteristic 0. The resolution consists of cohomology groups of sheaves
occurring in

S2Q⊗
∧.

(R⊗G∗).
In this case dimR = 1, so for each i with 0 ≤ i ≤ 4 we are dealing with the
cohomology groups of S2Q⊗ SiR, tensored with

∧i
G∗.

In characteristic 0 the terms of the resolution of M(2, 0, 0) are clearly

0→ S2,2,1F ⊗
∧3
G∗ ⊗A(−3)→ S2,2,1F ⊗

∧2
G∗ ⊗A(−2)→ S2F ⊗A.

In fact, this complex is exact whenever the characteristic of K is not 2.
Otherwise, the bundle S2Q⊗ S4R has nonzero cohomology, in fact

H1(Grass(1, F ), S2Q⊗ S4R) = H2(Grass(1, F ), S2Q⊗ S4R) = S2,2,2F.

This is one of the first counterexamples to Bott’s theorem in positive
characteristic.
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This makes the resolution of M(α) in characteristic 2 look like this:

0→ S2,2,2F ⊗
∧4
G∗ ⊗A(−4)

→ S2,2,2F ⊗
∧4
G∗ ⊗A(−4)⊕ S2,2,1F ⊗

∧3
G∗ ⊗A(−3)

→ S2,2,1F ⊗
∧2
G∗ ⊗A(−2)→ S2F ⊗A.

The resolution is so small that it can be calculated explicitly by the program
Macaulay.
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