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ON A LIMIT POINT ASSOCIATED WITH
THE abc-CONJECTURE

BY

MICHAEL F I L A S E T A AND SERGEĬ K O N Y A G I N (MOSCOW)

LetQ(n) denote the squarefree part of n so thatQ(n)=
∏

p|n p. Through-
out, we set a,b, and c to be positive relatively prime integers with c = a+ b.
Define

La,b =
log c

logQ(abc)
.

The abc-conjecture of Masser and Oesterlé asserts that the greatest limit
point of the double sequence {La,b} is 1. Recently, in joint work with
Browkin, Greaves, Schinzel, and the first author [1], it was shown that
the abc-conjecture is equivalent to the assertion that the precise set S of
limit points of {La,b} is the interval [1/3, 1]. Unconditionally, using certain
polynomial identities and a theorem concerning squarefree values of binary
forms, they showed that [1/3, 15/16] ⊆ S. Further polynomial identities of
Greaves and Nitaj (private communication) imply that [1/3, 36/37] ⊆ S. By
considering a = 1 and b = 2n, it is easy to see that {La,b} has a limit point
≥ 1 in the extended real line. The purpose of this note is to establish the
following:

Theorem. S ∩ [1, 3/2) 6= ∅.

In other words, we prove that there is a limit point of {La,b} somewhere
in the interval [1, 3/2).

Before proving the theorem, it is of some value to discuss simpler argu-
ments for two weaker results. First, we observe that the existence of a finite
limit point ≥ 1 can be established as follows. Fix a positive integer k, and
let n ≥ 2 be a squarefree number. Observe that

n ≤ Q(n(nk − 1)) ≤ nk+1.
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Taking a = 1 and b = nk − 1, we deduce that

k

k + 1
≤ La,b ≤ k.

As n varies, we obtain infinitely many such La,b. Suppose S ∩ (1,∞) = ∅.
Then the existence of infinitely many values of La,b in [k/(k+ 1), k] implies
that there must be infinitely many a and b for which

k

k + 1
≤ La,b ≤ 1 +

1

k
.

As this must be true for each positive integer k, we conclude that 1 ∈ S. In
other words, it follows that S ∩ [1,∞) 6= ∅.

Next, we show that S ∩ [1, 2] 6= ∅. Let n be a positive integer, and let t
be the smallest integer > 2n for which

Q(t(t− 1)) ≤ 2t and Q((t+ 1)t) ≥ 2(t+ 1).

The above inequalities can be seen to be possible as the first inequality holds
when t = 2n +1 and the second holds when t+1 is squarefree. Observe that

2(t+ 1) ≤ Q((t+ 1)t) ≤ Q(t(t− 1)(t+ 1))

≤ Q(t(t− 1))(t+ 1) ≤ 2t(t+ 1).

We take a = 1 and b = (t− 1)(t+ 1) so that c = a+ b = t2. As a function
of n (or t), we see from the above inequality that

1 + o(1) ≤ 2 log t

log(2t(t+ 1))
≤ La,b ≤

2 log t

log(2(t+ 1))
≤ 2.

The conclusion that S ∩ [1, 2] 6= ∅ follows.

Our above result that S contains a number in [1, 2] can be viewed as
following from the simple polynomial identity

1 + (x− 1)(x+ 1) = x2.

To establish our main result, we modify the above argument somewhat and,
in particular, replace the use of the above polynomial identity with

(1) x2(x− 9) + 27(x− 1) = (x− 3)3.

It may be possible that other polynomial identities will lead to a further
shortening of the interval in the statement of the theorem. In this regard,
we will also make use of the fact that the polynomial f(x) = x(x−1)(x−3)
is such that f(m) is squarefree for infinitely many positive integers m. This
follows from simple sieve considerations. More is true which may be of value
for future identities of the type given in (1). As first noted by Gouvêa and
Mazur [2], work of Hooley [3] implies that if f(x) ∈ Z[x] with each irreducible
factor of f(x) having degree ≤ 3, then there are infinitely many positive
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integers t for which f(t)/R is squarefree where

R =
∏
pe||D

pe−1 with D = gcd(f(m) : m ∈ Z).

An analogous result for binary forms of degree ≤ 6 can be found in [1].

Proof of Theorem. Fix ε > 0 sufficiently small. Let t be a large positive
integer, say t ≥ t0(ε), with t(t − 1)(t − 3) squarefree (as noted above, such
t exist). Observe that

Q(t(t− 1)(t− 3)) ≥ t2+2ε.

We choose a positive integer m as small as possible such that

Q((3m−1t)(3m−1t− 1)(3m−1t− 3)) ≥ (3m−1t)2+2ε

and

Q((3mt)(3mt− 1)(3mt− 3)) ≤ (3mt)2+2ε.

Such an m exists as the first inequality holds when m = 1 and the second
inequality holds if m is sufficiently large. Combining these two inequalities,
we deduce

(2) (3m−1t)2+2ε ≤ Q((3mt)(3mt− 1)(3mt− 3)(3mt− 9)) ≤ (3mt)3+2ε.

We use the equation (1) with x = 3mt. With this substitution, each of the
three terms appearing in (1) is divisible by 27. As we wish for a and b to be
relatively prime, we set

a = (3m−1t)2(3m−1t− 3) and b = 3mt− 1.

Here c = a+ b = (3m−1t− 1)3, and from (2) we obtain

1

3
(3m−1t)2+2ε ≤ Q(abc) ≤ (3mt)3+2ε.

Recalling that t is large, it is easy to see that

(3)
3

3 + 3ε
≤ La,b ≤

3

2 + ε
.

We finish the proof by supposing that S ∩ (1, 3/2) = ∅ and proving that
1 ∈ S. Since (3) holds for infinitely many different pairs (a, b) (as there are
infinitely many choices for t that give rise to such a pair), S ∩ (1, 3/2) = ∅
implies that there are infinitely many (a, b) for which La,b ∈ [3/(3 + 3ε),
1/(1−ε)]. As this is true for each choice of ε>0 sufficiently small, it follows
that 1 ∈ S, completing the proof.

We end the paper by noting that the interval [1, 3/2) in the theorem can
be shifted to the left. More specifically, a slight modification of the argument
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above gives that

S ∩
[

3

3 + ε
,

3

2 + ε

]
6= ∅

for every ε ∈ (0, 1). Thus, for example, there must be an α ∈ S satisfying

36

37
< 0.98 ≤ α ≤ 147

101
< 1.46

though currently no such α is known.
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