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Introduction. A semi-Riemannian manifold (M, g), n = dim M > 3, is
said to be semisymmetric [28] if

(1) R-R=0

holds on M. It is well known that the class of semisymmetric manifolds in-
cludes the set of locally symmetric manifolds (VR = 0) as a proper subset.
Recently the theory of Riemannian semisymmetric manifolds has been pre-
sented in the monograph [1]. It is clear that every semisymmetric manifold
satisfies

(2) R-S=0.

The semi-Riemannian manifold (M, g), n > 3, satisfying (2) is called Ricci-
semisymmetric. There exist non-semisymmetric Ricci-semisymmetric man-
ifolds. However, under some additional assumptions, (1) and (2) are equiv-
alent for certain manifolds. For instance, we have the following statement.

REMARK 1.1. (1) and (2) are equivalent on every 3-dimensional semi-
Riemannian manifold as well as at all points of any semi-Riemannian mani-
fold (M, g), of dimension > 4, at which the Weyl tensor C of (M, g) vanishes
(see e.g. [15, Lemma 2]). In particular, (1) and (2) are equivalent for every
conformally flat manifold.

It is a long standing question whether (1) and (2) are equivalent for hy-
persurfaces of Euclidean spaces; cf. Problem P 808 of [27] by P. J. Ryan,
and references therein. More generally, one can ask the same question for
hypersurfaces of semi-Riemannian space forms. It was proved in [29] that
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(1) and (2) are equivalent for hypersurfaces which have positive scalar cur-
vature in Euclidean space E"*! n > 3. In [26] this result was generalized to
hypersurfaces of E*T1, n > 3, which have non-negative scalar curvature and
also to hypersurfaces of constant scalar curvature. [26] also proves that (1)
and (2) coincide for hypersurfaces of Riemannian space forms with non-zero
constant sectional curvature.

Further, in [24] it was proved that (1) and (2) are equivalent for hypersur-
faces of E"*!, n > 3, under the additional global condition of completeness.
In [4] it was shown that (1) and (2) are equivalent for Lorentzian hyper-
surfaces of a Minkowski space E}™', n > 4. [4] also proves that (1) and
(2) are equivalent for para-Kéhler hypersurfaces of a semi-Euclidean space
E2m+1 m > 2. The problem of equivalence of (1) and (2) was solved in the
4-dimensional case. More precisely, we have the following statement.

THEOREM 1.1 ([3, Theorem 4.1]). (1) and (2) are equivalent for hyper-
surfaces of semi-Riemannian spaces of constant curvature N°(c).

The problem of equivalence of (1) and (2) for hypersurfaces with pseu-
dosymmetric Weyl tensor of semi-Euclidean spaces was considered in [5].

THEOREM 1.2 ([5, Theorem 4.1]). Let M be a Ricci-semisymmetric hy-
persurface of a semi-Euclidean space E'Y of index s, n > 4. If M has
pseudosymmetric Weyl tensor then (1) holds on the set Ug consisting of all
points of M at which the Ricci tensor S of M is not proportional to the
metric tensor of M.

Hypersurfaces with pseudosymmetric Weyl tensor were studied in [7],
[20] and [21]. In particular, the following curvature property of semisym-
metric hypersurfaces was found.

THEOREM 1.3 ([20, Theorem 7.3(ii)]; [21, Theorem 4.1}). Every semisym-
metric hypersurface M isometrically immersed in a semi-Euclidean space
En*L n >4, is a hypersurface with pseudosymmetric Weyl tensor.

Our main result (see Theorem 5.2) is related Theorem 1.2. Namely, we
prove that if (M, g), dim M > 4, is a Riemannian Ricci-semisymmetric man-
ifold with pseudosymmetric Weyl tensor, satisfying

(3) R'R:Q<57R)7

then (1) holds on Ug. Theorem 1.2, in the case when the ambient space is
a Euclidean space, is an immediate consequence of Theorem 5.2. We recall
that every hypersurface M isometrically immersed in a semi-Euclidean space
Er*l n > 3, satisfies (3) ([18, Corollary 3.1]).

The paper is organized as follows. In Section 2 we fix the notations
and give precise definitions of the symbols used. Moreover, we give a short
presentation of classes of semi-Riemannian manifolds satisfying curvature
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conditions of pseudosymmetry type. In Section 3 we give preliminary results.
Finally, in Sections 4 and 5 we present our main results.

2. Certain curvature conditions. Let (M, g) be a connected n-di-
mensional, n > 3, semi-Riemannian manifold of class C*°. We define on M
the endomorphisms R(X,Y) and X AY by

R(X,Y)Z = [Vx,Vy]|Z - Vixy|Z,
(XAY)Z=g(Y,2)X — g(X,2)Y,

where V is the Levi-Civita connection of (M, g) and X,Y, Z € Z(M), Z(M)
being the Lie algebra of vector fields on M. Furthermore, we define the
Riemann-Christoffel curvature tensor R and the (0,4)-tensor G of (M, g)
by

R(X17 X27 X3a X4) — g(R(le X2)X37 X4)7
G(Xl, XQ, Xg, X4) = g((Xl VAN XQ)Xg, X4)
We denote by S and x the Ricci tensor and the scalar curvature of (M, g),

respectively. For a (0, k)-tensor field T on M, k > 1, we define the (0, k+2)-
tensors R-T and Q(g,T) by

(R-T)(Xy,..., Xp; X,Y) = (R(X,Y) - T)(Xq,...,Xp)

= 7T(R(X7 Y)X17X27 s ,Xk) e T T(Xla s 7Xk—17R(X7 Y)Xk>7
Q(g, T)Xy,...,. Xp; X.YV)=((XAY) - T)(Xq,...,Xk)
— T((XAY)X1, Xoy oo Xi) — oo = T(X1y oy X1y (X A Y)X),

A semi-Riemannian manifold (M, g) is said to be pseudosymmetric ([11],
[30]) if

(%)1 the tensors R - R and (g, R) are linearly dependent
at every point of M. This is equivalent to the equality

(4) R-R=LrQ(gR)

holding on

UR:{xGM‘R—HG#Oatx},
n(n—1)

for some function Lr on Ug. It is clear that every semisymmetric mani-
fold is pseudosymmetric. The condition (x); arose in the study of totally
umbilical submanifolds of semisymmetric manifolds as well as when consid-
ering geodesic mappings of semisymmetric manifolds ([11], [30]). There exist
pseudosymmetric manifolds which are non-semisymmetric. For instance, in
[12, Example 3.1 and Theorem 4.1] it was shown that the warped product
SP xp S"P p>2, n—p>1,of the standard spheres SP and S"P, with
a certain function F, is such a manifold.
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A semi-Riemannian manifold (M, g) is said to be Ricci-pseudosymmetric
(18], [16]) if

(%)2 the tensors R - S and Q(g,S) are linearly dependent

at every point of M. Thus (M, g) is Ricci-pseudosymmetric if and only if
() R-S=LsQ(g,5)

on

US:{xEM'S—Zg#Oata:},

for some function Lg on Usg. Note that Ugs C Ug. It is clear that
if (%) holds at z then so does (x)2. The converse is not true. E.g. every
warped product My X g Mo, dim M; = 1, dim My = n—1 > 3, of a manifold
(My,g) and a non-pseudosymmetric Einstein manifold (Ms,g) is a non-
pseudosymmetric, Ricci-pseudosymmetric manifold (cf. [16, Remark 3.4] and
[13, Theorem 4.1]).

REMARK 2.1. In [10, Theorem 4] it was shown that (x); and ()2 are
equivalent on the subset Ug of a 4-dimensional warped product M; Xpg
M. In particular, (1) and (2) are equivalent on the subset Ug of a 4-
dimensional warped product M; X p Ms. We also note that there exist non-
semisymmetric Einsteinian 4-dimensional warped products M; X p My, e.g.
the Schwarzschild spacetimes as well as the Kerr spacetimes. Moreover, the
Schwarzschild spacetimes are pseudosymmetric manifolds.

For any X,Y € Z(M) we define the endomorphism C(X,Y) by

C(X,Y)=R(X,Y) - r

1 ~ ~
2(X/\SY%—SX/\Y—

n —

XANY |
n—1 >

The Ricci operator S and the Weyl conformal curvature tensor C of (M, g)
are defined by

g(SX,Y)=58(X,Y), C(X1,Xs, X3, X4)=g(C(X1,X3)X5, Xy).
Now we define the (0, 6)-tensor C - C' by

(C ’ C)(X1>X27 X3a X4a X? Y) = (5(X7 Y) : C)(X17 X27 X37 X4)
= —C(C(X,Y)X1, Xo, X3,Xy) — ... — O(Xy1, Xo, X3,C(X,Y) Xy).
A semi-Riemannian manifold (M, g), n > 4, is said to be a manifold with
pseudosymmetric Weyl tensor ([11], [23], [30]) if

(%)3 the tensors C' - C' and Q(g,C) are linearly dependent

at every point of M. The manifold (M, g) has pseudosymmetric Weyl tensor
if and only if
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(6) C-C=LcQy,C)
on

Uc={xeM|C#0 at z},
for some function Lo onUg. It is known that every warped product Myxpg
My, dim My =dim My =2, satisfies (x)3 ([10, Theorem 2]). An example of
a 4-dimensional Riemannian manifold satisfying ()3, which is not a warped
product, was found in [23]. Manifolds satisfying (*); and ()3 were investi-
gated in [23].

For a symmetric (0, 2)-tensor A we define the endomorphism X A4 Y of
E(M) by (X NaY)Z =AY, Z)X — A(X,Z)Y. Furthermore, for a (0, k)-
tensor field T, & > 1, and the tensor field A we define the tensor Q(A,T)
by

QAT (X1,...,. X X, Y)=((XAaY) - T)(Xq,...,Xk)
=-T(XAaY)X1,Xo,...,Xp)— ... = T(X1,..., Xpk—1, (X A2 Y)Xp).

In particular, in this way we obtain the (0, 6)-tensor field Q(S, R).

Semi-Riemannian manifolds satisfying (x), (%)1, (*)2 or ()3 are called
manifolds of pseudosymmetry type ([11], [30]). We finish this section with
some examples of Ricci-pseudosymmetric manifolds.

ExampLE 2.1. It is known that the Cartan hypersurfaces in the sphere
S"*t1(c), n = 3,6,12 or 24, are compact, minimal hypersurfaces with con-
stant principal curvatures —(3¢)¥2 0, (3¢)'/? having the same multiplicity.
More precisely, the Cartan hypersurfaces are the tubes of constant radius
over the standard Veronese embeddings i : FP? — S§3d+1(c) — E34+2 ( =
1,2,4,8, of the projective plane FP? in the sphere S3?*1(c) in E39+2, where
F = R (real numbers), C (complex numbers), Q (quaternions) or O (Cayley
numbers), respectively. The Cartan hypersurfaces satisfy certain curvature
condition of pseudosymmetry type. In [22, Theorem 1] it was shown that ev-
ery Cartan hypersurface in S"*1(c), n = 6,12, 24, is a non-pseudosymmetric,
Ricci-pseudosymmetric manifold with non-pseudosymmetric Weyl tensor
satisfying the relations

R-S= m@(gas)’
_ (n—=2)k
R-R—Q(S,R) = 7n(n+1)Q(970)

on M, where % is the scalar curvature of S"*1(c). The Cartan hypersurface
in S%(c) is a pseudosymmetric manifold satisfying

K
R-R= Qg R).
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3. Preliminary results. Let (M, g), n >3, be a semi-Riemannian man-
ifold covered by a system of coordinate neighbourhoods {U/; 2"}. We denote
by gij, Rhijr, Sij and Ch; i the local components of the tensors g, R, S
and C, respectively. Further, we denote by S% = SipS’jp and S’jk = gksSjS
the local components of the tensor $2 defined by S%(X,Y) = S(SX,Y),
X,Y € E(M), and of the Ricci operator S, respectively.

Let U and S be the (0, 4)-tensor fields on (M, g) defined by

(7)) U(X1, X2, X3,X4) = g(X71, X4)S(X2, X3) — 9(X1, X3)S(X2, X4)
+ 9(X2, X3)S(X1, X4) — 9(X2, X4)S(X1, X3),
(8)  S(X1,Xo, X3, X4) = S(X1,X4)S(Xo, X3) — S(X1, X3)S(Xo, X4).
LEMMA 3.1. The following identities hold on any semi-Riemannian man-
ifold (M, g), n > 3:
9) Qg U) =-Q(5,G),

(10)  Q(S,0) = ~Qs,5),
(1) Q9.C)=Qle, B) + ——Q(5,6),

1 K

(12) Q(5.C)=Q(S.R) = —5Q(S.U) + (g =5 Q(S,6)
1 — K

(13) Q(5.C) = Q8. R) + . —50Q(6,8) + {355, =5 AS. O

Proof. The identities (9) and (10) are immediate consequences of the
definitions of the tensors G, U and S. (11) was shown in [2, Remark 2.1].
Using the definition of the Weyl tensor C' we easily get (12). Finally, putting
(10) in (12) we obtain (13).

LEMMA 3.2. Let (M, g), n>4, be a semi-Riemannian manifold satisfying

(14) R(S(X),Y,Z, W) = TR(X,Y, W, Z),
where T is a function on M and X,Y,Z,W € Z(M). Then

- T) Q(g,0).

1 1
(15)  C-C=R-R———Q(S.R)+ (

n—2\n—1

Proof. First of all, it is easy to verify that (14) implies
(16) R-S=0,
(17) 5% =r18.
Now, using (16), we get
(18) R-C=R-R.
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Further, we can check that the following identities hold on any semi-Rieman-
nian manifold:

(19) (C - Onijkim = (R - C)nijrim + ni2Q<

K

g — S? C)

n—1 hijklm
1

3 (9118, Cpiji — ghmS;" Chijk

— giSECpnjk + 9imS; " Conjk + 95152 Cpihi

- gjmslpcpkhi - glen:prjhi + gkmslpcpjhi)y

1
1
e (9iSmr. — 9ikSim;)
K
+ CECE)] (9ijSmk — GikSmyj)-
The relation (20), by (14) and (17), turns into
1
(21) S"};Cpijk; = TRmZ'jk - m (Smk:S’L] - Sijz’k:)
T
- n—29 (gijSmk - gikSmj)
K
+ m (gz‘jsmk - gikSmj)-
Applying (18) and (21) in (19) we find
K 1
(22) C-C—R-R—FmQ(g,C)—mQ(S,C)
T 1
e Qg, R) + (n—2)7° Q(g,5)
1 K
+ =2 <n T T>Q(S, G).
This, by making use of (13), gives
1 K
2 .C=R-R— —— .~
(23)  C-C=R-R- =5 QSR+ f—qy0—5 9. 0)
T T
T2 Qg, R) — m Q(S,G),

which, by (11), yields (15). Our lemma is thus proved.

LEmMmA 3.3. If (M,g), n > 4, is a semi-Riemannian Ricci-pseudo-
symmetric manifold then at any point x € Us C M,

(24) (R~ S)nijk = Ls(gnjSik + 9ijSnk — gnkSij — 9ikShj)s
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(25) Sy Rpijie + S;° Rpin + Si” Rping = 0,

(26) (R - 5%Vniji = Ls(gnjSix + 9i5Shr — 9nkSi; — 9ikSis)s
(27) Sithijk + Sz%jsz‘kh + Sgksz‘hj =0,

(28) Ay = Squpijq = SZ»QJ- —nLgSij + KLsgj.

Moreover, if (3) is satisfied at x then

(29) S% =ASij+ ((n—1)Ls — k)Lsgij, A€ER,
holds at x.

Proof. (24) is an immediate consequence of (5). Summing cyclically
(24) in h, j, k and using the identity

(30) (R S)nijr = Sy’ Rpij + ;" Rpnj,
we obtain (25). We note that
(R - S)nijk = Sy’ (Sp" Raiji + S; " Rapjk) + ;" (S Ranjk + Sy Rapj);
whence
(R - S*)niji = S, (R - S)piji + ;" (R - S)phj-

Substituting here (24) we easily get (26). (27) follows from (26). Contracting
(24) with ¢"* and using (30) we obtain (28). From (28) we get

(R~ 8)pgniRY3; " + SPU(R - R)pijqn = (R - S%)ijnr, — nLs(R - S)ijnk-
Substituting here (3), (5), (24), (26) and
(31) Q(Sa R)pithk = Sthki]’q + Sithqu + thRpikq + thRpijk
— SpkRhijq — SikRphjq — SjkRping — Sqk Rpijh
we obtain

Ls(SkpRp~

i + Sk — Snp Ry — SupRY3j1.)

ijk

- S/%pRpjz’h - Si%pRpijh + S%pRpjik + S%LpRpijk:

+ SinAjr + SinAir — SikAjn — SjpAin
= Ls(9inSix + 9n St — 9ixS7h — 9i15i)

—nL%(ginSjk + 9inSik — 9irSin — gikSin)-
Applying (25) and (27) we find

—Ls(R-S)ijnk + (RS ijnk + SinAjr + SjnAir — SirAjn — SjrAin

= Ls(9inSix + 9in St — 9inSin — x5
— nL%(9inSik + 95nSik — 9ikSin — 9i1Sin),

which, by making use of (24), (26) and (28), turns into
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Ls((n —1)Ls — £)(ginSjk + ginSik — gir-Sin — 9jxSin)
= SitS3, + SikSh — SinSi — SinSi-
The last equality can be rewritten as
Sin(Si — (n—1)Lg — k) Lsgir) + Sin(S3, — ((n —1)Ls — K)Lsg;)
- jk(Sizh —((n—1)Ls — k) Lsgin)

= Sit(S5h — ((n = 1)Ls — r)Lsg;n) = 0,
or briefly
Q(S,5% = ((n—1)Ls — x)Lsg) =0,
from which, in view of Lemma 2.4(i) of [18], we get (29), completing the
proof.

4. Ricci-semisymmetric manifolds with x =0

PROPOSITION 4.1. If (M, g), n > 4, is a semi-Riemannian Ricci-pseudo-
symmetric manifold satisfying (3) then, at any point x € Us C M,

(32)  (nLs—k)S,ERpiji = £Ls(gmrSi; —GimSik) + nLE(9ij Skm—gkiSjm)
+ (kLg — tr(SQ))RmZ—jk - mL%Gmijk
+nLg(SkmSij — SjmSik)-

Proof. From (3) we have (R - R)nijriq = Q(S, R)hijkig, i-€.
Rpiijphlq - Rphijpuq + RpkhiRpqu - RpjhiRpqu
= SuRgijr + SuRngjr + SjiRuigk + SkiRhijq
— ShqRiiji — SigBRuijr — SiqRnitk — SkqRniji-
Transvecting this with S, we obtain
Rpiijphquan — RpnjkRY,, St + Rpkni R, S, — Rpjh,-RpquSan

ilg~m jlg=m
= ShSp Ryiji + SiSpi Rhgjk + SjtSyt Rniqk + Sk1:S ) Rhijq
— SE o Riijk — Si. Ruijk — S?mRhuk — 82, Ruiji-
Symmetrizing in [, m and using (24) we get
Ls(9nS,FRpijk + 9hmS," Rpijk — 9t Sy Rpnjk — GimS;” Rpnjk
+ 915, Rpkhi + 9imS;” Rpkhi — GkiSyk Rpjini — GkmS;” Rpjni
— ShmBiijk — SniBmijk + SimBinjr + Sulmnjk
— SimRikhi — SjiRmkni + SkmRijni + SkiRmjni)
= 818, Rpkni + SjmS," Rpkhi — SkiSyt Rpjni — SkmS,” Rpjni
— 83 Riijk — St Rmiji — Sin Ruijr — Sz Rhmijk

2 2 2 2
— S5 Bhitk — S5 Rhimk — Sk Bhiji — Sk Rhijm.-
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Further, contracting with g'* and applying (25), (24) and (27), we find
(33)  Ls(nS,PRpijk — gmjAix + gmrAij — ERmijk
+ SimSik — SkmSij — 9imSik — 9ijSmk + 9mkSij + GikSmj)
= KS,PRpiji + Ls(SjmSik + 9ijSmr — SmkSij — gitSim;)
— Sijik + SkmAij + Siksjzm — Sijszm
—t1(S%)Ronijr — S?pRpmjk - SﬁlpRpijk.
We note that (28), by (29), turns into
(34) Aij = (A —nLg)Sij + (n — 1)Lggi;-
Substituting (29) and (34) into (33) we get (30), completing the proof.

PROPOSITION 4.2. Let (M,g), n > 4, be a semi-Riemannian Ricci-
pseudosymmetric manifold. If

(35) BR=nL3iU — kL3G +nLsS, PBER,
at a point x € Ug C M, then, at x,
(36) B(R-R—LsQ(g,R)) = 0.
Proof. First of all we note that (35) implies
(37) BR-R=nLiR-U +nLsR-S.
We now prove that, at x,
(38) R-U=LsQ(g,U),
(39) R-S=LsQ(y,5).
We have
(R-U)nijkim = 9i5 (R - S)nkim — gnj (R - S)ikim
+ gnk(R - S)ijim — git (R - S) jhim
= Ls(9ij(9n1Skm + 9riShm — GhmSki — JkmShi)
— 95 (Gi1Skm + gr1Sim — Gim Skl — GemSit)
+ 9nk(9i1Sjm + 9515im — GimSjt — GjmSit)
— 9ki(9r1Sim + 9j1Shm — 9rhmSji — 9jmShi))
= — LsQ(S, G)nijkim,
or, briefly,

(40) R-U=—LsQ(S,G).



RICCI-SEMISYMMETRY AND SEMISYMMETRY 289

Applying (9) in (40) we get (38). Furthermore, we have

(R S)nijrim = Sij (R S)hkim — Shj (R S)ikim
+ Spi(R - S)ijim — Sik(R - S) jhim
= Ls(Sij(gniSkm + 9r1Shm — 9hmSki — GkmShi)
— Snj(9itSkm + griSim — Gim Skt — GkmSit)
+ Shi(gitSjm + 9j1Sim — GimSjt — 9jmSit)
— Ski(9n1Sjm + 9j1Shm — Ghm St — GjmShi))
= LsQ(9,S)nijkim:
i.e. (39) holds at z. Applying now (38) and (39) in (37) we get
BR-R=nL%(LsQ(g,U) + Q(g,9)).
But on the other hand, from (35) we also obtain

BQ(g, R) =nL%Q(g,U) +nLsQ(g,S).

The last two relations complete the proof of our proposition.

THEOREM 4.1. Let (M,g), n > 4, be a semi-Riemannian manifold and
let xeUgs C M.

(i) If (M,g) is a Ricci-pseudosymmetric manifold satisfying (3) then
(32) is satisfied on Usg.
(ii) If the conditions: (32) and nLs — k # 0 are satisfied at x then
R-S=1LsQ(g,S) at =.
(iii) If the conditions: (32) and nLs— kK = 0 are satisfied at x then, at x,
2

(157 - 5 ) (- R~ L5Q0. ) = .

Proof. The proof of (i) is presented in Lemma 3.2. Next, (32), by sym-
metrization in m, i, implies (5). Finally, (iii) is a consequence of Proposi-
tion 4.2.

As an immediate consequence of Theorem 4.1(iii) we have the following.

THEOREM 4.2. Let (M, g), n > 4, be a Riemannian Ricci-semisymmetric
manifold satisfying (3). If the scalar curvature k of the manifold (M, g)
vanishes on Ug C M then R- R =0 on Ug.

5. Ricci-semisymmetric manifolds with « # 0. Let (M,g),
dim M > 3, be a semi-Riemannian manifold. We denote by U, the set of
all points of M at which the scalar curvature s of (M, g) is non-zero. We
note that if (M, g), dim M > 4, is a Ricci-semisymmetric manifold satisfying
(3) then, in view of Lemma 3.3 and Proposition 4.1, (29) and (32) take on
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Us N U, the forms

(41) S? =18,
(42) R(S(X),Y,Z,W) =7R(X,Y, Z,W),
respectively, where X,Y, Z, W € = (M) and
2
(43) .l
K

Now Lemma 3.2 yields immediately the following.

PROPOSITION 5.1. If (M,g), n > 4, is a semi-Riemannian Ricci-semi-
symmetric manifold satisfying (3) then

(44) c.c=""2p gy (”r)@(g,(l)

n—2 n—2\n—1
on Us NU,.
THEOREM 5.1. Let (M,g), n > 4, be a semi-Riemannian Ricci-semi-

symmetric manifold satisfying (3). If (M,g) has pseudosymmetric Weyl
tensor then R- R =0 on Us NU,.

Proof. Let z € M. If x € M — Ug then our assertion follows from
Remark 1.1. Let z € Us N U, N Uq. Thus (44), by (6), turns into

(45) R-R=puQ(g,0),
which, by (2), gives

(46) R-C=pQ(g,0),
where

1 K
=Lc — -7
K © n—2<n—1 T>

We consider two cases.
I. First we assume that dim M > 5. Now (46), in view of [14, Theorem 1],
implies R+ R = uQ(g, R), whence

(47) R-S=pQ(g,5).
But this, by (2), yields uQ(g,S) = 0. Since = € Ug, the last relation gives
p = 0, which reduces (47) to (1).

II. We now assume that dim M = 4. It is well known that the follow-
ing identity is satisfied for every 4-dimensional semi-Riemannian manifold

(M, g) (25]):
(48) 0= 9mmClijk + 9tmCinjk + 9imChijk + 9n;Crikm + 91;Cinkm
+ 9iiChitem + 9ukClimj + 9ixCinms + 9itChimy -
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From this we get immediately

(49) 0= grm(R- Cijab + gim(R - C)injkab + gim (R - C)nijkab
+ 91 (R - C)iikmab + 915 (R - C)inkmab + 9ij (R - C)nikmab
+ gnk(R - C)timjab + g1k (R - C)inmgab + gik (R - C)nimjab,

which, in virtue of (46), turns into

(50) 0 = p(gnmQ(g, C)iijkab + GimQ(g, Clinjkab + gimQ(g: C)nijkab

+ 91 Q(9: C)tikmab + 91;Q(9, C)inkmab + 9i5Q(9, C) hikmab

+ 9nkQ(9, C)timjab + 91k Q(9, C)inmjab + 9ik Q9> C)nimjab)-
But on the other hand, (45), by (3), gives
(51) QS R) = pQ(yg, C).
Applying (51) in (50) we obtain
(52) 0= gnmQ(S, R)tijrab + gimQ(S, R)injkab + gimQ(S, R)nijkab

+ gn;Q(S, R)tikmab + g1;Q(S, R)inkmab + 9i;Q(S, R)nikmab

+ gnkQ(S, R)timjab + gikQ(S, R)inmjab + 9ikQ(S; R) himjab-
Further, using the definition of the tensor Q(S, R) and (41) and (42), we
can easily check the following identities on Ug N U,:
(53) Sch(S7 R)pijkab = TQ(Sv R)Cijkaba
(54> SC;DQ(Sa R)hijkap = TQ(‘Sv R)hijk:ac-
Transvecting now (52) with S, and using (53) and (54) we get
(65) 0= SpmQ(S, R)iijkab + SpiQ(S, R)tikmab + SprQ(S, R)timjab

+ 7(gimQ(S, R)injrab + 9imQ(S, R)nijrab + 915 Q(S; R)inkman
+ 9i;Q(S, R)nikmab + 9ixQ(S, R)inmjap + 9ikQ(S; R) himjab)-
Subtracting (52) we find
(Spm - Tgpm)Q(Sv R)lijkab + (Spj - Tgpj)Q(Sa R)likmab
+ (Spk - Tgpk)Q(S’ R)limjab

=0.
From this, by transvection with S, and making use of (41) and (53), we
obtain

T((Spj - Tgpj)Q(Sa R)lik:cab + (Spk: - Tgpk)Q(Sa R)licjab) = 0.
Further, transvecting this with S dj and using again (41) and (53), we find
72(Spk = T9pk)Q(S, R)iicdab = 0,

or, briefly,
72(8 —79)Q(S, R) = 0.
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Since x € Ug, this reduces to
(56) TQ(S, R) = 0.
If 7 is non-zero at a point € Ug N U, then (56) implies Q(S, R) = 0 and

by (3) we get (1). If 7 =0 at x then (41), (42), (53) and (54) reduce to
(57) S% =0,

(58) S,PRpijr =0,

(59) SLQ(S, R)pijim = 0,

(60) S"Q(S, R)nijkpm = 0,

respectively. Further, from (51) we have

(61) Q(S, R)nijkim = pQ(g: C)nijhim-

Transvecting this with S,! and using (60) we get

(62) MSapQ(gv O)hijkpm =0.

If 11 vanishes at = then (61) reduces to Q(S, R) = 0. Thus (3) implies again
(1). If p is non-zero at = then (62) yields

S Q9 Cnijrpm = 0,
whence we obtain
0 = SanCmiji — SaiCmnjk + SajCmini — SakCmjni
— S Ciji + 9miSa Cingk — GmjSa Cukchi + GmkSq' Cijni-
Contracting this with ¢** we find
(63) 0 = KCrmij. + S;" Cpmjr + S, Cpimk — Sy Cpimg
— S, Cliji + 9miSPICprig — Gmk ST Chjig-

Since 7 = 0, (21) reduces to

1
(64) Trnijke = S Cpijk = — m(smksij — Sm;jSik)
K
D) ) 99 Sk~ GikSmg)

Contracting this with ¢™* and using (57) we obtain

nk K2
(n—1)(n—2) (n—1)(n—2)7"

Let T" and P be the tensors with local components T},;;, and P;; defined
by (64) and (65), respectively. From (64) and (65), in virtue of (2), we obtain
R-T =0and R-P = 0, respectively. Applying the last two relations in (63)
we find kR - C' = 0, and by the assumption that x # 0, we have R - C =0,
which reduces (46) to uQ(g,C) = 0. Evidently, if x # 0 then Q(g,C) = 0,

(65) Pij = S5P1Cpijq = —

Sij +
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which, in view of Lemma 1.1 of [6], implies C' = 0, a contradiction. Thus we
have yu = 0. Now (45) completes the proof.

Finally, using Theorems 4.2 and 5.1 we get our main result.

THEOREM 5.2. Let (M, g), n>4, be a Riemannian Ricci-semisymmetric

manifold satisfying (3). If (M, g) is a manifold with pseudosymmetric Weyl
tensor then R-R=0 on Ug C M.
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