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Introduction. A semi-Riemannian manifold (M, g), n = dimM ≥ 3, is
said to be semisymmetric [28] if

(1) R ·R = 0

holds on M . It is well known that the class of semisymmetric manifolds in-
cludes the set of locally symmetric manifolds (∇R = 0) as a proper subset.
Recently the theory of Riemannian semisymmetric manifolds has been pre-
sented in the monograph [1]. It is clear that every semisymmetric manifold
satisfies

(2) R · S = 0.

The semi-Riemannian manifold (M, g), n ≥ 3, satisfying (2) is called Ricci-
semisymmetric. There exist non-semisymmetric Ricci-semisymmetric man-
ifolds. However, under some additional assumptions, (1) and (2) are equiv-
alent for certain manifolds. For instance, we have the following statement.

Remark 1.1. (1) and (2) are equivalent on every 3-dimensional semi-
Riemannian manifold as well as at all points of any semi-Riemannian mani-
fold (M, g), of dimension ≥ 4, at which the Weyl tensor C of (M, g) vanishes
(see e.g. [15, Lemma 2]). In particular, (1) and (2) are equivalent for every
conformally flat manifold.

It is a long standing question whether (1) and (2) are equivalent for hy-
persurfaces of Euclidean spaces; cf. Problem P 808 of [27] by P. J. Ryan,
and references therein. More generally, one can ask the same question for
hypersurfaces of semi-Riemannian space forms. It was proved in [29] that
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(1) and (2) are equivalent for hypersurfaces which have positive scalar cur-
vature in Euclidean space En+1, n ≥ 3. In [26] this result was generalized to
hypersurfaces of En+1, n ≥ 3, which have non-negative scalar curvature and
also to hypersurfaces of constant scalar curvature. [26] also proves that (1)
and (2) coincide for hypersurfaces of Riemannian space forms with non-zero
constant sectional curvature.

Further, in [24] it was proved that (1) and (2) are equivalent for hypersur-
faces of En+1, n ≥ 3, under the additional global condition of completeness.
In [4] it was shown that (1) and (2) are equivalent for Lorentzian hyper-
surfaces of a Minkowski space En+1

1 , n ≥ 4. [4] also proves that (1) and
(2) are equivalent for para-Kähler hypersurfaces of a semi-Euclidean space
E2m+1
s , m ≥ 2. The problem of equivalence of (1) and (2) was solved in the

4-dimensional case. More precisely, we have the following statement.

Theorem 1.1 ([3, Theorem 4.1]). (1) and (2) are equivalent for hyper-
surfaces of semi-Riemannian spaces of constant curvature N5(c).

The problem of equivalence of (1) and (2) for hypersurfaces with pseu-
dosymmetric Weyl tensor of semi-Euclidean spaces was considered in [5].

Theorem 1.2 ([5, Theorem 4.1]). Let M be a Ricci-semisymmetric hy-
persurface of a semi-Euclidean space En+1

s of index s, n ≥ 4. If M has
pseudosymmetric Weyl tensor then (1) holds on the set US consisting of all
points of M at which the Ricci tensor S of M is not proportional to the
metric tensor of M .

Hypersurfaces with pseudosymmetric Weyl tensor were studied in [7],
[20] and [21]. In particular, the following curvature property of semisym-
metric hypersurfaces was found.

Theorem 1.3 ([20, Theorem 7.3(ii)]; [21, Theorem 4.1]). Every semisym-
metric hypersurface M isometrically immersed in a semi-Euclidean space
En+1
s , n ≥ 4, is a hypersurface with pseudosymmetric Weyl tensor.

Our main result (see Theorem 5.2) is related Theorem 1.2. Namely, we
prove that if (M, g), dimM ≥ 4, is a Riemannian Ricci-semisymmetric man-
ifold with pseudosymmetric Weyl tensor, satisfying

(3) R ·R = Q(S,R),

then (1) holds on US . Theorem 1.2, in the case when the ambient space is
a Euclidean space, is an immediate consequence of Theorem 5.2. We recall
that every hypersurface M isometrically immersed in a semi-Euclidean space
En+1
s , n ≥ 3, satisfies (3) ([18, Corollary 3.1]).

The paper is organized as follows. In Section 2 we fix the notations
and give precise definitions of the symbols used. Moreover, we give a short
presentation of classes of semi-Riemannian manifolds satisfying curvature
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conditions of pseudosymmetry type. In Section 3 we give preliminary results.
Finally, in Sections 4 and 5 we present our main results.

2. Certain curvature conditions. Let (M, g) be a connected n-di-
mensional, n ≥ 3, semi-Riemannian manifold of class C∞. We define on M
the endomorphisms R̃(X,Y ) and X ∧ Y by

R̃(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z,

(X ∧ Y )Z = g(Y, Z)X − g(X,Z)Y,

where ∇ is the Levi-Civita connection of (M, g) and X,Y, Z ∈ Ξ(M), Ξ(M)
being the Lie algebra of vector fields on M . Furthermore, we define the
Riemann–Christoffel curvature tensor R and the (0, 4)-tensor G of (M, g)
by

R(X1, X2, X3, X4) = g(R̃(X1, X2)X3, X4),

G(X1, X2, X3, X4) = g((X1 ∧X2)X3, X4).

We denote by S and κ the Ricci tensor and the scalar curvature of (M, g),
respectively. For a (0, k)-tensor field T on M , k ≥ 1, we define the (0, k+2)-
tensors R · T and Q(g, T ) by

(R · T )(X1, . . . , Xk;X,Y ) = (R̃(X,Y ) · T )(X1, . . . , Xk)

= −T (R̃(X,Y )X1, X2, . . . , Xk)− . . .− T (X1, . . . , Xk−1, R̃(X,Y )Xk),

Q(g, T )(X1, . . . , Xk;X,Y ) = ((X ∧ Y ) · T )(X1, . . . , Xk)

= −T ((X ∧ Y )X1, X2, . . . , Xk)− . . .− T (X1, . . . , Xk−1, (X ∧ Y )Xk).

A semi-Riemannian manifold (M, g) is said to be pseudosymmetric ([11],
[30]) if

(∗)1 the tensors R ·R and Q(g,R) are linearly dependent

at every point of M . This is equivalent to the equality

(4) R ·R = LRQ(g,R)

holding on

UR =

{
x ∈M

∣∣∣∣R− κ

n(n− 1)
G 6= 0 at x

}
,

for some function LR on UR. It is clear that every semisymmetric mani-
fold is pseudosymmetric. The condition (∗)1 arose in the study of totally
umbilical submanifolds of semisymmetric manifolds as well as when consid-
ering geodesic mappings of semisymmetric manifolds ([11], [30]). There exist
pseudosymmetric manifolds which are non-semisymmetric. For instance, in
[12, Example 3.1 and Theorem 4.1] it was shown that the warped product
Sp ×F Sn−p, p ≥ 2, n− p ≥ 1, of the standard spheres Sp and Sn−p, with
a certain function F , is such a manifold.
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A semi-Riemannian manifold (M, g) is said to be Ricci-pseudosymmetric
([8], [16]) if

(∗)2 the tensors R · S and Q(g, S) are linearly dependent

at every point of M . Thus (M, g) is Ricci-pseudosymmetric if and only if

(5) R · S = LSQ(g, S)

on

US =

{
x ∈M

∣∣∣∣S − κ

n
g 6= 0 at x

}
,

for some function LS on US . Note that US ⊂ UR. It is clear that
if (∗)1 holds at x then so does (∗)2. The converse is not true. E.g. every
warped product M1×F M2, dimM1 = 1, dimM2 = n−1 ≥ 3, of a manifold
(M1, g) and a non-pseudosymmetric Einstein manifold (M2, g̃) is a non-
pseudosymmetric, Ricci-pseudosymmetric manifold (cf. [16, Remark 3.4] and
[13, Theorem 4.1]).

Remark 2.1. In [10, Theorem 4] it was shown that (∗)1 and (∗)2 are
equivalent on the subset US of a 4-dimensional warped product M1 ×F
M2. In particular, (1) and (2) are equivalent on the subset US of a 4-
dimensional warped product M1×F M2. We also note that there exist non-
semisymmetric Einsteinian 4-dimensional warped products M1 ×F M2, e.g.
the Schwarzschild spacetimes as well as the Kerr spacetimes. Moreover, the
Schwarzschild spacetimes are pseudosymmetric manifolds.

For any X,Y ∈ Ξ(M) we define the endomorphism C̃(X,Y ) by

C̃(X,Y ) = R̃(X,Y )− 1

n− 2

(
X ∧ S̃Y + S̃X ∧ Y − κ

n− 1
X ∧ Y

)
.

The Ricci operator S̃ and the Weyl conformal curvature tensor C of (M, g)
are defined by

g(S̃X,Y ) = S(X,Y ), C(X1, X2, X3, X4) = g(C̃(X1, X2)X3, X4).

Now we define the (0, 6)-tensor C · C by

(C · C)(X1, X2, X3, X4;X,Y ) = (C̃(X,Y ) · C)(X1, X2, X3, X4)

= −C(C̃(X,Y )X1, X2, X3, X4)− . . .− C(X1, X2, X3, C̃(X,Y )X4).

A semi-Riemannian manifold (M, g), n ≥ 4, is said to be a manifold with
pseudosymmetric Weyl tensor ([11], [23], [30]) if

(∗)3 the tensors C · C and Q(g, C) are linearly dependent

at every point of M . The manifold (M, g) has pseudosymmetric Weyl tensor
if and only if
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(6) C · C = LCQ(g, C)

on

UC = {x ∈M | C 6= 0 at x},
for some function LC onUC . It is known that every warped product M1×F
M2, dimM1 = dimM2 = 2, satisfies (∗)3 ([10, Theorem 2]). An example of
a 4-dimensional Riemannian manifold satisfying (∗)3, which is not a warped
product, was found in [23]. Manifolds satisfying (∗)1 and (∗)3 were investi-
gated in [23].

For a symmetric (0, 2)-tensor A we define the endomorphism X ∧A Y of
Ξ(M) by (X ∧A Y )Z = A(Y,Z)X − A(X,Z)Y . Furthermore, for a (0, k)-
tensor field T , k ≥ 1, and the tensor field A we define the tensor Q(A, T )
by

Q(A, T )(X1, . . . , Xk;X,Y ) = ((X ∧A Y ) · T )(X1, . . . , Xk)

= −T ((X ∧A Y )X1, X2, . . . , Xk)− . . .− T (X1, . . . , Xk−1, (X ∧A Y )Xk).

In particular, in this way we obtain the (0, 6)-tensor field Q(S,R).

Semi-Riemannian manifolds satisfying (∗), (∗)1, (∗)2 or (∗)3 are called
manifolds of pseudosymmetry type ([11], [30]). We finish this section with
some examples of Ricci-pseudosymmetric manifolds.

Example 2.1. It is known that the Cartan hypersurfaces in the sphere
Sn+1(c), n = 3, 6, 12 or 24, are compact, minimal hypersurfaces with con-
stant principal curvatures −(3c)1/2, 0, (3c)1/2 having the same multiplicity.
More precisely, the Cartan hypersurfaces are the tubes of constant radius
over the standard Veronese embeddings i : FP 2→ S3d+1(c)→ E3d+2, d =
1, 2, 4, 8, of the projective plane FP 2 in the sphere S3d+1(c) in E3d+2, where
F = R (real numbers), C (complex numbers), Q (quaternions) or O (Cayley
numbers), respectively. The Cartan hypersurfaces satisfy certain curvature
condition of pseudosymmetry type. In [22, Theorem 1] it was shown that ev-
ery Cartan hypersurface in Sn+1(c), n = 6, 12, 24, is a non-pseudosymmetric,
Ricci-pseudosymmetric manifold with non-pseudosymmetric Weyl tensor
satisfying the relations

R · S =
κ̃

n(n+ 1)
Q(g, S),

R ·R−Q(S,R) = − (n− 2)κ̃

n(n+ 1)
Q(g, C)

on M , where κ̃ is the scalar curvature of Sn+1(c). The Cartan hypersurface
in S4(c) is a pseudosymmetric manifold satisfying

R ·R =
κ̃

12
Q(g,R).
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3. Preliminary results. Let (M, g), n≥3, be a semi-Riemannian man-
ifold covered by a system of coordinate neighbourhoods {U ;xh}. We denote
by gij , Rhijk, Sij and Chijk the local components of the tensors g,R, S
and C, respectively. Further, we denote by S2

ij = SipS
p
j and S k

j = gksSjs

the local components of the tensor S2 defined by S2(X,Y ) = S(S̃X,Y ),

X,Y ∈ Ξ(M), and of the Ricci operator S̃, respectively.

Let U and S be the (0, 4)-tensor fields on (M, g) defined by

U(X1, X2, X3, X4) = g(X1, X4)S(X2, X3)− g(X1, X3)S(X2, X4)(7)

+ g(X2, X3)S(X1, X4)− g(X2, X4)S(X1, X3),

S(X1, X2, X3, X4) = S(X1, X4)S(X2, X3)− S(X1, X3)S(X2, X4).(8)

Lemma 3.1. The following identities hold on any semi-Riemannian man-
ifold (M, g), n ≥ 3:

Q(g, U) = −Q(S,G),(9)

Q(S,U) = −Q(g, S),(10)

Q(g, C) = Q(g,R) +
1

n− 2
Q(S,G),(11)

Q(S,C) = Q(S,R)− 1

n− 2
Q(S,U) +

κ

(n− 1)(n− 2)
Q(S,G),(12)

Q(S,C) = Q(S,R) +
1

n− 2
Q(g, S) +

κ

(n− 1)(n− 2)
Q(S,G).(13)

P r o o f. The identities (9) and (10) are immediate consequences of the
definitions of the tensors G, U and S. (11) was shown in [2, Remark 2.1].
Using the definition of the Weyl tensor C we easily get (12). Finally, putting
(10) in (12) we obtain (13).

Lemma 3.2. Let (M, g), n≥4, be a semi-Riemannian manifold satisfying

(14) R(S̃(X), Y, Z,W ) = τR(X,Y,W,Z),

where τ is a function on M and X,Y, Z,W ∈ Ξ(M). Then

(15) C · C = R ·R− 1

n− 2
Q(S,R) +

1

n− 2

(
κ

n− 1
− τ
)
Q(g, C).

P r o o f. First of all, it is easy to verify that (14) implies

R · S = 0,(16)

S2 = τS.(17)

Now, using (16), we get

(18) R · C = R ·R.
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Further, we can check that the following identities hold on any semi-Rieman-
nian manifold:

(C · C)hijklm = (R · C)hijklm +
1

n− 2
Q

(
κ

n− 1
g − S,C

)
hijklm

(19)

− 1

n− 2
(ghlS

p
mCpijk − ghmS

p
l Cpijk

− gilS p
mCphjk + gimS

p
l Cphjk + gjlS

p
mCpkhi

− gjmS p
l Cpkhi − gklS

p
mCpjhi + gkmS

p
l Cpjhi),

S p
mCpijk = S p

mRpijk −
1

n− 2
(SmkSij − SmjSik)(20)

− 1

n− 2
(gijS

2
mk − gikS2

mj)

+
κ

(n− 1)(n− 2)
(gijSmk − gikSmj).

The relation (20), by (14) and (17), turns into

S p
mCpijk = τRmijk −

1

n− 2
(SmkSij − SmjSik)(21)

− τ

n− 2
(gijSmk − gikSmj)

+
κ

(n− 1)(n− 2)
(gijSmk − gikSmj).

Applying (18) and (21) in (19) we find

C · C = R ·R+
κ

(n− 1)(n− 2)
Q(g, C)− 1

n− 2
Q(S,C)(22)

− τ

n− 2
Q(g,R) +

1

(n− 2)2
Q(g, S)

+
1

(n− 2)2

(
κ

n− 1
− τ
)
Q(S,G).

This, by making use of (13), gives

C · C = R ·R− 1

n− 2
Q(S,R) +

κ

(n− 1)(n− 2)
Q(g, C)(23)

− τ

n− 2
Q(g,R)− τ

(n− 2)2
Q(S,G),

which, by (11), yields (15). Our lemma is thus proved.

Lemma 3.3. If (M, g), n ≥ 4, is a semi-Riemannian Ricci-pseudo-
symmetric manifold then at any point x ∈ US ⊂M ,

(R · S)hijk = LS(ghjSik + gijShk − ghkSij − gikShj),(24)
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S p
h Rpijk + S p

j Rpikh + S p
k Rpihj = 0,(25)

(R · S2)hijk = LS(ghjS
2
ik + gijS

2
hk − ghkS2

ij − gikS2
hj),(26)

S2
phR

p
ijk + S2

pjR
p
ikh + S2

pkR
p
ihj = 0,(27)

Aij = SpqRpijq = S2
ij − nLSSij + κLSgij .(28)

Moreover , if (3) is satisfied at x then

(29) S2
ij = λSij + ((n− 1)LS − κ)LSgij , λ ∈ R,

holds at x.

P r o o f. (24) is an immediate consequence of (5). Summing cyclically
(24) in h, j, k and using the identity

(30) (R · S)hijk = S p
h Rpijk + S p

i Rphjk,

we obtain (25). We note that

(R · S2)hijk = S p
h (S a

p Raijk + S a
i Rapjk) + S p

i (S a
p Rahjk + S a

h Rapjk),

whence

(R · S2)hijk = S p
h (R · S)pijk + S p

i (R · S)phjk.

Substituting here (24) we easily get (26). (27) follows from (26). Contracting
(24) with ghk and using (30) we obtain (28). From (28) we get

(R · S)pqhkR
p q
ij + Spq(R ·R)pijqhk = (R · S2)ijhk − nLS(R · S)ijhk.

Substituting here (3), (5), (24), (26) and

Q(S,R)pijqhk = SphRkijq + SihRpkjq + SjhRpikq + SqhRpijk(31)

− SpkRhijq − SikRphjq − SjkRpihq − SqkRpijh,
we obtain

LS(SkpR
p
jih + SkpR

p
ijh − ShpR

p
jik − ShpR

p
ijk)

− S2
kpR

p
jih − S

2
kpR

p
ijh + S2

hpR
p
jik + S2

hpR
p
ijk

+ SihAjk + SjhAik − SikAjh − SjkAih

= LS(gihS
2
jk + gjhS

2
ik − gikS2

jh − gjkS2
ih)

− nL2
S(gihSjk + gjhSik − gikSjh − gjkSih).

Applying (25) and (27) we find

−LS(R · S)ijhk + (R · S2)ijhk + SihAjk + SjhAik − SikAjh − SjkAih
= LS(gihS

2
jk + gjhS

2
ik − gikS2

jh − gjkS2
ih)

− nL2
S(gihSjk + gjhSik − gikSjh − gjkSih),

which, by making use of (24), (26) and (28), turns into
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LS((n− 1)LS − κ)(gihSjk + gjhSik − gikSjh − gjkSih)

= SikS
2
jh + SjkS

2
ih − SihS2

jk − SjhS2
ik.

The last equality can be rewritten as

Sjh(S2
ik − ((n− 1)LS − κ)LSgik) + Sih(S2

jk − ((n− 1)LS − κ)LSgjk)

− Sjk(S2
ih − ((n− 1)LS − κ)LSgih)

− Sik(S2
jh − ((n− 1)LS − κ)LSgjh) = 0,

or briefly

Q(S, S2 − ((n− 1)LS − κ)LSg) = 0,

from which, in view of Lemma 2.4(i) of [18], we get (29), completing the
proof.

4. Ricci-semisymmetric manifolds with κ = 0

Proposition 4.1. If (M, g), n ≥ 4, is a semi-Riemannian Ricci-pseudo-
symmetric manifold satisfying (3) then, at any point x ∈ US ⊂M ,

(nLS−κ)S p
mRpijk = κLS(gmkSij−gjmSik) + nL2

S(gijSkm−gkiSjm)(32)

+ (κLS − tr(S2))Rmijk − κL2
SGmijk

+ nLS(SkmSij − SjmSik).

P r o o f. From (3) we have (R ·R)hijklq = Q(S,R)hijklq, i.e.

RpijkR
p
hlq −RphjkR

p
ilq +RpkhiR

p
jlq −RpjhiR

p
klq

= ShlRqijk + SilRhqjk + SjlRhiqk + SklRhijq

− ShqRlijk − SiqRhljk − SjqRhilk − SkqRhijl.
Transvecting this with S q

m we obtain

RpijkR
p
hlqS

q
m −RphjkR

p
ilqS

q
m +RpkhiR

p
jlqS

q
m −RpjhiR

p
klqS

q
m

= ShlS
q
mRqijk + SilS

q
mRhqjk + SjlS

q
mRhiqk + SklS

q
mRhijq

− S2
hmRlijk − S2

imRhljk − S2
jmRhilk − S2

kmRhijl.

Symmetrizing in l,m and using (24) we get

LS(ghlS
p
mRpijk + ghmS

p
l Rpijk − gilS

p
mRphjk − gimS

p
l Rphjk

+ gjlS
p
mRpkhi + gjmS

p
l Rpkhi − gklS

p
mRpjhi − gkmS

p
l Rpjhi

− ShmRlijk − ShlRmijk + SimRlhjk + SilRmhjk

− SjmRlkhi − SjlRmkhi + SkmRljhi + SklRmjhi)

= SjlS
p
mRpkhi + SjmS

p
l Rpkhi − SklS

p
mRpjhi − SkmS

p
l Rpjhi

− S2
hmRlijk − S2

hlRmijk − S2
imRhljk − S2

ilRhmjk

− S2
jmRhilk − S2

jlRhimk − S2
kmRhijl − S2

klRhijm.
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Further, contracting with glh and applying (25), (24) and (27), we find

(33) LS(nS p
mRpijk − gmjAik + gmkAij − κRmijk

+ SjmSik − SkmSij − gjmSik − gijSmk + gmkSij + gikSmj)

= κS p
mRpijk + LS(SjmSik + gijS

2
mk − SmkSij − gikS2

mj)

− SjmAik + SkmAij + SikS
2
jm − SijS2

km

− tr(S2)Rmijk − S2
ipR

p
mjk − S

2
mpR

p
ijk.

We note that (28), by (29), turns into

(34) Aij = (λ− nLS)Sij + (n− 1)L2
Sgij .

Substituting (29) and (34) into (33) we get (30), completing the proof.

Proposition 4.2. Let (M, g), n ≥ 4, be a semi-Riemannian Ricci-
pseudosymmetric manifold. If

(35) βR = nL2
SU − κL2

SG+ nLSS, β ∈ R,

at a point x ∈ US ⊂M , then, at x,

(36) β(R ·R− LSQ(g,R)) = 0.

P r o o f. First of all we note that (35) implies

(37) βR ·R = nL2
SR · U + nLSR · S.

We now prove that, at x,

R · U = LSQ(g, U),(38)

R · S = LSQ(g, S).(39)

We have

(R · U)hijklm = gij(R · S)hklm − ghj(R · S)iklm

+ ghk(R · S)ijlm − gik(R · S)jhlm

= LS(gij(ghlSkm + gklShm − ghmSkl − gkmShl)
− ghj(gilSkm + gklSim − gimSkl − gkmSil)
+ ghk(gilSjm + gjlSim − gimSjl − gjmSil)
− gki(ghlSjm + gjlShm − ghmSjl − gjmShl))

= − LSQ(S,G)hijklm,

or, briefly,

(40) R · U = −LSQ(S,G).
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Applying (9) in (40) we get (38). Furthermore, we have

(R · S)hijklm = Sij(R · S)hklm − Shj(R · S)iklm

+ Shk(R · S)ijlm − Sik(R · S)jhlm

= LS(Sij(ghlSkm + gklShm − ghmSkl − gkmShl)
− Shj(gilSkm + gklSim − gimSkl − gkmSil)
+ Shk(gilSjm + gjlSim − gimSjl − gjmSil)
− Ski(ghlSjm + gjlShm − ghmSjl − gjmShl))

= LSQ(g, S)hijklm,

i.e. (39) holds at x. Applying now (38) and (39) in (37) we get

βR ·R = nL2
S(LSQ(g, U) +Q(g, S)).

But on the other hand, from (35) we also obtain

βQ(g,R) = nL2
SQ(g, U) + nLSQ(g, S).

The last two relations complete the proof of our proposition.

Theorem 4.1. Let (M, g), n ≥ 4, be a semi-Riemannian manifold and
let x ∈ US ⊂M .

(i) If (M, g) is a Ricci-pseudosymmetric manifold satisfying (3) then
(32) is satisfied on US.

(ii) If the conditions: (32) and nLS − κ 6= 0 are satisfied at x then
R · S = LSQ(g, S) at x.

(iii) If the conditions: (32) and nLS−κ = 0 are satisfied at x then, at x,(
tr(S2)− κ2

n

)
(R ·R− LSQ(g,R)) = 0.

P r o o f. The proof of (i) is presented in Lemma 3.2. Next, (32), by sym-
metrization in m, i, implies (5). Finally, (iii) is a consequence of Proposi-
tion 4.2.

As an immediate consequence of Theorem 4.1(iii) we have the following.

Theorem 4.2. Let (M, g), n ≥ 4, be a Riemannian Ricci-semisymmetric
manifold satisfying (3). If the scalar curvature κ of the manifold (M, g)
vanishes on US ⊂M then R ·R = 0 on US.

5. Ricci-semisymmetric manifolds with κ 6= 0. Let (M, g),
dimM ≥ 3, be a semi-Riemannian manifold. We denote by Uκ the set of
all points of M at which the scalar curvature κ of (M, g) is non-zero. We
note that if (M, g), dimM ≥ 4, is a Ricci-semisymmetric manifold satisfying
(3) then, in view of Lemma 3.3 and Proposition 4.1, (29) and (32) take on
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US ∩ Uκ the forms

S2 = τS,(41)

R(S̃(X), Y, Z,W ) = τR(X,Y, Z,W ),(42)

respectively, where X,Y, Z,W ∈ Ξ(M) and

(43) τ =
tr(S2)

κ
.

Now Lemma 3.2 yields immediately the following.

Proposition 5.1. If (M, g), n ≥ 4, is a semi-Riemannian Ricci-semi-
symmetric manifold satisfying (3) then

(44) C · C =
n− 3

n− 2
R ·R+

1

n− 2

(
κ

n− 1
− τ
)
Q(g, C)

on US ∩ Uκ.

Theorem 5.1. Let (M, g), n ≥ 4, be a semi-Riemannian Ricci-semi-
symmetric manifold satisfying (3). If (M, g) has pseudosymmetric Weyl
tensor then R ·R = 0 on US ∩ Uκ.

P r o o f. Let x ∈ M . If x ∈ M − UC then our assertion follows from
Remark 1.1. Let x ∈ US ∩ Uκ ∩ UC . Thus (44), by (6), turns into

(45) R ·R = µQ(g, C),

which, by (2), gives

(46) R · C = µQ(g, C),

where

µ = LC −
1

n− 2

(
κ

n− 1
− τ
)
.

We consider two cases.

I. First we assume that dim M ≥ 5. Now (46), in view of [14, Theorem 1],
implies R ·R = µQ(g,R), whence

(47) R · S = µQ(g, S).

But this, by (2), yields µQ(g, S) = 0. Since x ∈ US , the last relation gives
µ = 0, which reduces (47) to (1).

II. We now assume that dim M = 4. It is well known that the follow-
ing identity is satisfied for every 4-dimensional semi-Riemannian manifold
(M, g) ([25]):

0 = ghmClijk + glmCihjk + gimChljk + ghjClikm + gljCihkm(48)

+ gijChlkm + ghkClimj + glkCihmj + gikChlmj .
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From this we get immediately

0 = ghm(R · C)lijkab + glm(R · C)ihjkab + gim(R · C)hljkab(49)

+ ghj(R · C)likmab + glj(R · C)ihkmab + gij(R · C)hlkmab

+ ghk(R · C)limjab + glk(R · C)ihmjab + gik(R · C)hlmjab,

which, in virtue of (46), turns into

0 = µ(ghmQ(g, C)lijkab + glmQ(g, C)ihjkab + gimQ(g, C)hljkab(50)

+ ghjQ(g, C)likmab + gljQ(g, C)ihkmab + gijQ(g, C)hlkmab

+ ghkQ(g, C)limjab + glkQ(g, C)ihmjab + gikQ(g, C)hlmjab).

But on the other hand, (45), by (3), gives

(51) Q(S,R) = µQ(g, C).

Applying (51) in (50) we obtain

0 = ghmQ(S,R)lijkab + glmQ(S,R)ihjkab + gimQ(S,R)hljkab(52)

+ ghjQ(S,R)likmab + gljQ(S,R)ihkmab + gijQ(S,R)hlkmab

+ ghkQ(S,R)limjab + glkQ(S,R)ihmjab + gikQ(S,R)hlmjab.

Further, using the definition of the tensor Q(S,R) and (41) and (42), we
can easily check the following identities on US ∩ Uκ:

S p
c Q(S,R)pijkab = τQ(S,R)cijkab,(53)

S p
c Q(S,R)hijkap = τQ(S,R)hijkac.(54)

Transvecting now (52) with S h
p and using (53) and (54) we get

0 = SpmQ(S,R)lijkab + SpjQ(S,R)likmab + SpkQ(S,R)limjab(55)

+ τ(glmQ(S,R)ihjkab + gimQ(S,R)hljkab + gljQ(S,R)ihkmab

+ gijQ(S,R)hlkmab + glkQ(S,R)ihmjab + gikQ(S,R)hlmjab).

Subtracting (52) we find

(Spm − τgpm)Q(S,R)lijkab + (Spj − τgpj)Q(S,R)likmab

+ (Spk − τgpk)Q(S,R)limjab = 0.

From this, by transvection with S m
c and making use of (41) and (53), we

obtain

τ((Spj − τgpj)Q(S,R)likcab + (Spk − τgpk)Q(S,R)licjab) = 0.

Further, transvecting this with S j
d and using again (41) and (53), we find

τ2(Spk − τgpk)Q(S,R)licdab = 0,

or, briefly,

τ2(S − τg)Q(S,R) = 0.
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Since x ∈ US , this reduces to

(56) τQ(S,R) = 0.

If τ is non-zero at a point x ∈ US ∩ Uκ then (56) implies Q(S,R) = 0 and
by (3) we get (1). If τ = 0 at x then (41), (42), (53) and (54) reduce to

S2
ij = 0,(57)

S p
mRpijk = 0,(58)

S p
a Q(S,R)pijklm = 0,(59)

S p
a Q(S,R)hijkpm = 0,(60)

respectively. Further, from (51) we have

(61) Q(S,R)hijklm = µQ(g, C)hijklm.

Transvecting this with S l
c and using (60) we get

(62) µS p
a Q(g, C)hijkpm = 0.

If µ vanishes at x then (61) reduces to Q(S,R) = 0. Thus (3) implies again
(1). If µ is non-zero at x then (62) yields

S p
a Q(g, C)hijkpm = 0,

whence we obtain

0 = SahCmijk − SaiCmhjk + SajCmkhi − SakCmjhi
− gmhS l

a Clijk + gmiS
l
a Clhjk − gmjS l

a Clkhi + gmkS
l
a Cljhi.

Contracting this with gah we find

0 = κCmijk + S p
i Cpmjk + S p

j Cpimk − S
p
k Cpimj(63)

− S l
mClijk + gmjS

pqCpkiq − gmkSpqCpjiq.
Since τ = 0, (21) reduces to

Tmijk = S p
mCpijk = − 1

n− 2
(SmkSij − SmjSik)(64)

+
κ

(n− 1)(n− 2)
(gijSmk − gikSmj).

Contracting this with gmk and using (57) we obtain

(65) Pij = SpqCpijq = − nκ

(n− 1)(n− 2)
Sij +

κ2

(n− 1)(n− 2)
gij .

Let T and P be the tensors with local components Tmijk and Pij defined
by (64) and (65), respectively. From (64) and (65), in virtue of (2), we obtain
R ·T = 0 and R ·P = 0, respectively. Applying the last two relations in (63)
we find κR · C = 0, and by the assumption that κ 6= 0, we have R · C = 0,
which reduces (46) to µQ(g, C) = 0. Evidently, if µ 6= 0 then Q(g, C) = 0,
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which, in view of Lemma 1.1 of [6], implies C = 0, a contradiction. Thus we
have µ = 0. Now (45) completes the proof.

Finally, using Theorems 4.2 and 5.1 we get our main result.

Theorem 5.2. Let (M, g), n≥4, be a Riemannian Ricci-semisymmetric
manifold satisfying (3). If (M, g) is a manifold with pseudosymmetric Weyl
tensor then R ·R = 0 on US ⊂M .
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