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An algebra A of operators on a Hilbert space (or any complex vector
space) H is called reflexive in case no larger algebra of operators on H
induces the same lattice of invariant subspaces as A. In [2] E. A. Azoff and
M. Ptak proved the following theorem that they say “should be regarded as
the main result of [their| paper”.

THEOREM A. Suppose A is an operator algebra generated by a commuting
family of nilpotents. Then in order for A to be reflexive it is mecessary
that each rank two member of A generate a one-dimensional ideal. If the
underlying space is a finite-dimensional Hilbert space and the generators for
A commute with each other’s adjoints, then this condition is also sufficient.

If A is an algebra of operators on a C-space H, then the action of A in-
duces a faithful module 4H whose submodules are the A-invariant subspaces
of H, and if A is generated by a commuting family of nilpotent operators,
then A is a split local commutative C-algebra in the sense that, as C-spaces,
A=Co® J with J = J(A) the unique maximal ideal of A.

Let K be an arbitrary field. A module pM over a K-algebra R is called
reflezive (see [6] or [3], for example) if the only K-linear transformations
of M that preserve the submodule lattice of gM are multiplications by
elements of R. Thus, if A\ : R — End(xM) is the ring homomorphism
induced by R-scalar multiplication, then A(R) = R/ann(M) and pM is
reflexive if and only if A(R) is a reflexive algebra of K-operators on M.
In the terminology of [3], the set of K-linear transformations of M that
preserve the submodule lattice of M is

alglat(M) = {o € End(xk M) | am € Rm for all m € M},
and M is reflexive in case A(R) = alglat(M).
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Here we improve the first part of Theorem A by showing that: If R is a
split local commutative K -algebra, then in order for a faithful module R M to
be reflexive it is necessary that each a € R such that aM is cyclic generates
a minimal ideal; and we show that this stronger condition yields a larger
class of reflexive modules (or algebras of operators): If in addition rpM is a
finite-dimensional direct sum of cyclic modules, then this condition is also
sufficient.

Assume that R is a (not necessarily finite-dimensional) split local com-
mutative K-algebra with unique maximal ideal J = J(R), and consider
a module M. An element a # 0 in R satisfies JaM = 0 if and only
if A(a) generates a minimal (i.e., one-dimensional) ideal in A(R); and if
laM : K| =2 (i.e., M(a) is a rank two member of A\(R)), then aM is either
cyclic or JaM = 0. Thus, as asserted in the preceding paragraph, the fol-
lowing theorem yields a necessary condition for reflexivity that is stronger
than the one of Azoff and Ptak’s Theorem A.

THEOREM 1. Let R be a split local commutative K-algebra. If pM is
reflexive, then for a € R, JaM = 0 whenever aM 1is cyclic.

Proof. Assume that 0 # aM = Rz = Rau, for some z,u € M. Then
Aa) : M — Rau is an R-epimorphism that splits over K, and if L =
Ker(A(a)) = annys(a), then A(a)(Ru + L) = Rau. Thus M = Ru + L with
u ¢ L, so there is a subspace U < M with

ueUCRuy and gM=U®¢&L.
Now we see that
Aa)|ly : U = Rau = Kau & Jau
is a K-isomorphism. Suppose Jau # 0 and let
N={necU|an € Jau} = (\a)|y) ' (Jau),

so that kU = Ku & N and

kM =Ku® N L.
To see that M is not reflexive, define a: M — M via

alku+n+1) = an.

If £k =0, then a(ku+n+I1) = a(ku+n+I1). If k # 0, then k+j is invertible,
where 7 € J with

an = jau,
and letting
r=(k+j)""ja
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we see that
r(ku+n+1) = (k+j) '(kjau + jan)
= (k+ 7)Y (kan + jan) = an = a(ku +n +1).

Thus « € alglat(M). But, if ru = 0, then since N C U C Ru, we would
have rN = 0. But a(N) =aN = Jau#0,s0 a # A(r). m

For a split local algebra R our Theorem 1 maintains that a necessary
condition for reflexivity of g M is that aM is cyclic only if aM is simple
(equivalently, one-dimensional). To show that it is sufficient in case M is a
finite-dimensional direct sum of cyclic modules we use the following lemma,
that appears as Proposition 4.2 in [2], where it is proved in a straightforward
manner.

It will be convenient to employ the following notation from [5]: If A : S —
Hompg (U, X) is a K-vector space homomorphism, we write su = A(s)(u) and
denote such a system, a so-called S-representation, by s[U, X]. Analogously
to alglat we let

A(s|U, X]) = {a € Homg (U, X) | au € Su for all u € U}

and we say that g[U, X] is reflexive if A\(S) = A(s[U, X]). An element v € U
is called a separating vector in case su # 0 unless s = 0.

LEMMA 2. Given g,[U;, X;| with separating vectors u; and xT <S5, @ ...
DSy, let
TZ:{tZET|tZU]:OfO?”dll];él}
Then p[U1 & ... 0 Un, X1 & ...35 X1 is reflexive if and only if 1,[Us;, Xi] is
reflexive for all i =1,...,1.

From this lemma we glean the following proposition that is one key to
our sufficiency theorem.

PROPOSITION 3. Let R be any (not necessarily local) commutative
algebra, and suppose My, ..., M; are cyclic R-modules with annihilators
anng(M;) = A;, respectively. Let M = M; @ ...® M, and I; = ﬂ#i Aj.
Then gM is reflexive if and only if 1, [M;, M;] is reflexive fori=1,... 1.

Proof. Assume, as we may, that M is faithful, and let S; = R/A; with

representation g, [M;, M;] which has a separating vector the R-generator
m; € M;. Let

T={(r+4,....t+A) €S ®...05 |re R}

Then the action of T on M is induced by canonical isomorphism R = T,
and I; = (I; + A;)/A; = T; canonically, so Lemma 2 applies. m

The next two lemmas can be found in [4, Proposition 3.3(b) and
Lemma 2.3]; the first of them had appeared earlier in [1, Proposition 5.4].
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LEMMA 4. If dim(gS) <1, then g[U, X] is reflexive.

LEMMA 5. If § = 2?21 S; is a sum of subspaces such that the sum

Z?Zl S;U is direct, then s[U, X] is reflexive if and only if each s,[U, X] is
reflexive.

These lemmas yield the second key to our sufficiency theorem.

PRrOPOSITION 6. If I is a finitely generated semisimple ideal in a com-
mutative split algebra S, then 1S, S] is reflexive.

Proof. By hypothesis I = @?:1 W; with the W; one-dimensional ide-
als, and clearly 37| W;S = @j_, W;. =

Finally, we are ready to complete our characterization of reflexive finite-
dimensional direct sums of cyclic modules over split local algebras.

THEOREM 7. Suppose R is a commutative finite-dimensional split local
K-algebra, and that gM = M1 ® ...® M; is a faithful module with each M;
cyclic. If Ra is simple whenever aM 1is cyclic, then M 1is reflexive.

Proof. Let A;, S;=R/A; and I; be as in Proposition 3. Since M is
faithful, I; N A; = 0, so we may assume [; C S;, and g, M; = g,5; since g,M;
is cyclic and faithful. Thus ;, [M;, M;] is reflexive if and only if 7,[S;, S;] is
reflexive. To prove the latter, according to Proposition 6, we need only show
that I; is semisimple. Now if 0 # a € I; and M; = Rmy;, then aM = aM; =
Ram; is cyclic, so by hypothesis, S;a & Ra is simple (i.e., one-dimensional).
Thus I; is a semisimple. Finally, M is reflexive by Proposition 3. =

REMARKS. 1. If one wishes to eschew the faithful hypothesis in Theo-
rem 7, the condition “Ra is simple” must be replaced by “aM is simple”.

2. A major portion of the proof of the sufficiency part [2, Theorem 5.7]
of Azoff and Ptak’s Theorem A, namely [2, Propositions 5.4, 5.5 and 5.6],
is devoted to proving that the finite-dimensional Hilbert space V over the
(necessarily local split) algebra A(a) generated by a set of doubly commuting
nilpotent linear transformations (matrices) {ai,...,ax} in the hypothesis
of their Theorem 5.7 is a direct sum of local-colocal (i.e., cyclic with a
unique minimal submodule) A(a)-modules. It is in fact rather rare that a
cyclic module over a local (C-)algebra is colocal. Thus our Theorem 7 is
applicable to a significantly larger class of modules. The following example
illustrates this fact.

EXAMPLE. Let R = K|[z,y]/I, the ring of polynomials in z, y modulo the
ideal I generated by {3, 2%y, ry?, ¥°}, the monomials of degree 3. Thus, we
may assume R has a multiplicative basis {1,a, a?,b,b?, ¢} with ab = ¢ = ba.
Also, R is a split local K-algebra with maximal ideal J = Ra + Rb. Let

M = R/Rb* ® R/Ra ® R/(Ra® + RbD)
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and

N = R/RbV> ® R/Ra ® R/(Ra + Rb?).
Then aN has basis {a,a?, ¢}, and is isomorphic to the cyclic module R/J?,
so N is not reflexive by Theorem 1. On the other hand, M is reflexive by
Theorem 7, because the only elements r € R that have rN cyclic belong
to J2.

Since g M is not a direct sum of cyclic-cocyclic modules, and dim(rN) #2
unless r € J2, Azoff and Ptak’s Theorem A does not apply here. To obtain
their introductory example of direct sums of local-colocal modules that il-
lustrates their theorem, simply factor the ideal generated by a? out of R.
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