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An algebra A of operators on a Hilbert space (or any complex vector
space) H is called reflexive in case no larger algebra of operators on H
induces the same lattice of invariant subspaces as A. In [2] E. A. Azoff and
M. Ptak proved the following theorem that they say “should be regarded as
the main result of [their] paper”.

Theorem A. Suppose A is an operator algebra generated by a commuting
family of nilpotents. Then in order for A to be reflexive it is necessary
that each rank two member of A generate a one-dimensional ideal. If the
underlying space is a finite-dimensional Hilbert space and the generators for
A commute with each other’s adjoints, then this condition is also sufficient.

If A is an algebra of operators on a C-space H, then the action of A in-
duces a faithful module AH whose submodules are the A-invariant subspaces
of H, and if A is generated by a commuting family of nilpotent operators,
then A is a split local commutative C-algebra in the sense that, as C-spaces,
A = C⊕ J with J = J(A) the unique maximal ideal of A.

Let K be an arbitrary field. A module RM over a K-algebra R is called
reflexive (see [6] or [3], for example) if the only K-linear transformations
of M that preserve the submodule lattice of RM are multiplications by
elements of R. Thus, if λ : R → End(KM) is the ring homomorphism
induced by R-scalar multiplication, then λ(R) ∼= R/ann(M) and RM is
reflexive if and only if λ(R) is a reflexive algebra of K-operators on M .
In the terminology of [3], the set of K-linear transformations of M that
preserve the submodule lattice of RM is

alglat(M) = {α ∈ End(KM) | αm ∈ Rm for all m ∈M},
and M is reflexive in case λ(R) = alglat(M).
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Here we improve the first part of Theorem A by showing that: If R is a
split local commutative K-algebra, then in order for a faithful module RM to
be reflexive it is necessary that each a ∈ R such that aM is cyclic generates
a minimal ideal ; and we show that this stronger condition yields a larger
class of reflexive modules (or algebras of operators): If in addition RM is a
finite-dimensional direct sum of cyclic modules, then this condition is also
sufficient.

Assume that R is a (not necessarily finite-dimensional) split local com-
mutative K-algebra with unique maximal ideal J = J(R), and consider
a module RM . An element a 6= 0 in R satisfies JaM = 0 if and only
if λ(a) generates a minimal (i.e., one-dimensional) ideal in λ(R); and if
|aM : K| = 2 (i.e., λ(a) is a rank two member of λ(R)), then aM is either
cyclic or JaM = 0. Thus, as asserted in the preceding paragraph, the fol-
lowing theorem yields a necessary condition for reflexivity that is stronger
than the one of Azoff and Ptak’s Theorem A.

Theorem 1. Let R be a split local commutative K-algebra. If RM is
reflexive, then for a ∈ R, JaM = 0 whenever aM is cyclic.

P r o o f. Assume that 0 6= aM = Rx = Rau, for some x, u ∈M . Then
λ(a) : M → Rau is an R-epimorphism that splits over K, and if L =
Ker(λ(a)) = annM (a), then λ(a)(Ru+ L) = Rau. Thus M = Ru+ L with
u 6∈ L, so there is a subspace U ≤M with

u ∈ U ⊆ Ru and KM = U ⊕ L.

Now we see that

λ(a)|U : U → Rau = Kau⊕ Jau
is a K-isomorphism. Suppose Jau 6= 0 and let

N = {n ∈ U | an ∈ Jau} = (λ(a)|U )−1(Jau),

so that KU = Ku⊕N and

KM = Ku⊕N ⊕ L.

To see that M is not reflexive, define α : M →M via

α(ku+ n+ l) = an.

If k = 0, then α(ku+n+ l) = a(ku+n+ l). If k 6= 0, then k+j is invertible,
where j ∈ J with

an = jau,

and letting

r = (k + j)−1ja
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we see that

r(ku+ n+ l) = (k + j)−1(kjau+ jan)

= (k + j)−1(kan+ jan) = an = α(ku+ n+ l).

Thus α ∈ alglat(M). But, if ru = 0, then since N ⊆ U ⊆ Ru, we would
have rN = 0. But α(N) = aN = Jau 6= 0, so α 6= λ(r).

For a split local algebra R our Theorem 1 maintains that a necessary
condition for reflexivity of RM is that aM is cyclic only if aM is simple
(equivalently, one-dimensional). To show that it is sufficient in case M is a
finite-dimensional direct sum of cyclic modules we use the following lemma,
that appears as Proposition 4.2 in [2], where it is proved in a straightforward
manner.

It will be convenient to employ the following notation from [5]: If λ : S →
HomK(U,X) is a K-vector space homomorphism, we write su = λ(s)(u) and
denote such a system, a so-called S-representation, by S [U,X]. Analogously
to alglat we let

A(S [U,X]) = {α ∈ HomK(U,X) | αu ∈ Su for all u ∈ U}
and we say that S [U,X] is reflexive if λ(S) = A(S [U,X]). An element u ∈ U
is called a separating vector in case su 6= 0 unless s = 0.

Lemma 2. Given Si [Ui, Xi] with separating vectors ui and KT ≤S1⊕ . . .
. . .⊕ Sl, let

Ti = {ti ∈ T | tiUj = 0 for all j 6= i}.
Then T [U1 ⊕ . . .⊕Um, X1 ⊕ . . .⊕Xl] is reflexive if and only if Ti

[Ui, Xi] is
reflexive for all i = 1, . . . , l.

From this lemma we glean the following proposition that is one key to
our sufficiency theorem.

Proposition 3. Let R be any (not necessarily local) commutative
algebra, and suppose M1, . . . ,Ml are cyclic R-modules with annihilators
annR(Mi) = Ai, respectively. Let M = M1 ⊕ . . . ⊕Ml and Ii =

⋂
j 6=iAj.

Then RM is reflexive if and only if Ii [Mi,Mi] is reflexive for i = 1, . . . , l.

P r o o f. Assume, as we may, that M is faithful, and let Si = R/Ai with
representation Si

[Mi,Mi] which has a separating vector the R-generator
mi ∈Mi. Let

T = {(r +A1, . . . , r +Al) ∈ S1 ⊕ . . .⊕ Sl | r ∈ R}.
Then the action of T on M is induced by canonical isomorphism R ∼= T ,
and Ii ∼= (Ii +Ai)/Ai

∼= Ti canonically, so Lemma 2 applies.

The next two lemmas can be found in [4, Proposition 3.3(b) and
Lemma 2.3]; the first of them had appeared earlier in [1, Proposition 5.4].



118 K. R. FULLER

Lemma 4. If dim(KS) ≤ 1, then S [U,X] is reflexive.

Lemma 5. If S =
∑n

j=1 Sj is a sum of subspaces such that the sum∑n
j=1 SjU is direct , then S [U,X] is reflexive if and only if each Sj

[U,X] is
reflexive.

These lemmas yield the second key to our sufficiency theorem.

Proposition 6. If I is a finitely generated semisimple ideal in a com-
mutative split algebra S, then I [S, S] is reflexive.

P r o o f. By hypothesis I =
⊕n

j=1Wj with the Wj one-dimensional ide-

als, and clearly
∑n

j=1WjS =
⊕n

j=1Wj .

Finally, we are ready to complete our characterization of reflexive finite-
dimensional direct sums of cyclic modules over split local algebras.

Theorem 7. Suppose R is a commutative finite-dimensional split local
K-algebra, and that RM = M1⊕ . . .⊕Ml is a faithful module with each Mi

cyclic. If Ra is simple whenever aM is cyclic, then M is reflexive.

P r o o f. Let Ai, Si =R/Ai and Ii be as in Proposition 3. Since M is
faithful, Ii ∩Ai = 0, so we may assume Ii ⊆ Si, and Si

Mi
∼= Si

Si since Si
Mi

is cyclic and faithful. Thus Ii [Mi,Mi] is reflexive if and only if Ii [Si, Si] is
reflexive. To prove the latter, according to Proposition 6, we need only show
that Ii is semisimple. Now if 0 6= a ∈ Ii and Mi = Rmi, then aM = aMi =
Rami is cyclic, so by hypothesis, Sia ∼= Ra is simple (i.e., one-dimensional).
Thus Ii is a semisimple. Finally, M is reflexive by Proposition 3.

Remarks. 1. If one wishes to eschew the faithful hypothesis in Theo-
rem 7, the condition “Ra is simple” must be replaced by “aM is simple”.

2. A major portion of the proof of the sufficiency part [2, Theorem 5.7]
of Azoff and Ptak’s Theorem A, namely [2, Propositions 5.4, 5.5 and 5.6],
is devoted to proving that the finite-dimensional Hilbert space V over the
(necessarily local split) algebraA(a) generated by a set of doubly commuting
nilpotent linear transformations (matrices) {a1, . . . , aN} in the hypothesis
of their Theorem 5.7 is a direct sum of local-colocal (i.e., cyclic with a
unique minimal submodule) A(a)-modules. It is in fact rather rare that a
cyclic module over a local (C-)algebra is colocal. Thus our Theorem 7 is
applicable to a significantly larger class of modules. The following example
illustrates this fact.

Example. Let R = K[x, y]/I, the ring of polynomials in x, y modulo the
ideal I generated by {x3, x2y, xy2, y3}, the monomials of degree 3. Thus, we
may assume R has a multiplicative basis {1, a, a2, b, b2, c} with ab = c = ba.
Also, R is a split local K-algebra with maximal ideal J = Ra+Rb. Let

M = R/Rb2 ⊕R/Ra⊕R/(Ra2 +Rb)
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and

N = R/Rb2 ⊕R/Ra⊕R/(Ra+Rb2).

Then aN has basis {a, a2, c}, and is isomorphic to the cyclic module R/J2,
so N is not reflexive by Theorem 1. On the other hand, M is reflexive by
Theorem 7, because the only elements r ∈ R that have rN cyclic belong
to J2.

Since RM is not a direct sum of cyclic-cocyclic modules, and dim(rN) 6=2
unless r ∈ J2, Azoff and Ptak’s Theorem A does not apply here. To obtain
their introductory example of direct sums of local-colocal modules that il-
lustrates their theorem, simply factor the ideal generated by a2 out of R.
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