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STRONG ASYMPTOTIC STABILITY FOR n-DIMENSIONAL

THERMOELASTICITY SYSTEMS

BY

MOHAMMED AASS ILA (STRASBOURG)

We use a new approach to prove the strong asymptotic stability for
n-dimensional thermoelasticity systems. Unlike the earlier works, our me-
thod can be applied in the case of feedbacks with no growth assumption at
the origin, and when LaSalle’s invariance principle cannot be applied due to
the lack of compactness.

1. Introduction. Consider the nonlinear damped thermoelasticity sys-
tem

(P)











u′′ −∆u+ γ∇θ + g(u′) = 0 in Ω × (0,∞),
θ′ − k∆θ + γ div u′ = 0 in Ω × (0,∞),
u = 0, θ = 0, on Γ × (0,∞),
u(0) = u0, u′(0) = u1, θ(0) = θ0 in Ω,

where Ω is an open set of finite measure in R
n, having a boundary Γ of class

C2, k and γ are two positive constants, and g : Rn → R
n is a continuous

function.
We recall that for u = (u1, . . . , un) ∈ D′(Ω)n and f ∈ D′(Ω) we have

∆u = (∆u1, . . . ,∆un), div u =
n
∑

i=1

∂ui

∂xi
, ∇f =

(

∂f

∂x1
, . . . ,

∂f

∂xn

)

.

For n ≤ 3, problem (P) has its roots in the mathematical description of
a thermoelastic system (see for example [6, pp. 54–67] and [7]); u and θ
denote the displacement and the temperature, respectively.

The following assumptions on the nonlinear function g = (g1, . . . , gn) are
made:

(H1) gi is C
1, strictly increasing and gi(0) = 0;

there exists q ≥ 2 satisfying (n− 2)q ≤ 2n and two positive constants c1, c2
such that

(H2) c1|x| ≤ |gi(x)| ≤ c2|x|q−1 for all |x| ≥ 1, x ∈ R.
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The main goal of this paper is to prove that under the above hypotheses,
the unique global weak solution (u(t), θ(t)) to (P) decays to zero strongly
when t goes to infinity.

The problem of existence, regularity and asymptotic behavior of solu-
tions to thermoelasticity systems has attracted a lot of attention in re-
cent years (see for example [5, 8, 9, 10, 12] and the references therein,
to name just a few). Quite recently, Ouazza [11] has proved that if g(x) :=
(α(x1), . . . , α(xn)) where α : R → R is such that

α(x) =

{

|x|p−1x if |x| ≤ 1,
α(x) = x if |x| > 1,

then the total energy E(t) := 1
2‖(u, u′, θ)‖2

H1

0
(Ω)n×L2(Ω)n×L2(Ω)

has an ex-

ponential decay rate if p = 1 and a polynomial decay rate if p > 1. Ouazza’s
work was marked by the following features:

(a) the domain Ω is bounded;

(b) the dissipative term g is of a preassigned polynomial growth at the
origin.

These assumptions are critically invoked in the proofs in the following
ways:

(a) the boundedness of Ω allows the use of some compact imbedding
theorems (and LaSalle’s invariance principle can then be used to prove the
strong asymptotic stability);

(b) the polynomial growth at the origin of the dissipative term g allows
the construction of a standard Lyapunov function, or the use of some specific
integral inequalities, which are then used to yield the desired decay rates.

Our goal in this paper is to dispense entirely with the above assump-
tions (a)–(b). Indeed, in our formulation Ω is not necessarily bounded, and
no growth assumption at the origin is imposed on g. This results in major
difficulties, which require the development of a new approach in successfully
solving the problem of strong asymptotic stability. This approach, intro-
duced by the author in [1], has already been used in the study of the strong
asymptotic stability of some nonlinear wave equations and some plate mod-
els [1, 2], and for isotropic elasticity systems in [3].

The paper is organized as follows. In Section 2, we state the main result,
and in Section 3 we give its proof.

2. Statement of the main theorem. The problem (P) is well posed
and dissipative. Indeed, one can write it in the first order form

{

U ′ +AU + BU = 0,
U(0) = U0,
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where U = (u, u′, θ), U0 = (u0, u1, θ0) and the operators A and B are given
by

A(u, u′, θ) = (−u′,−∆u+ γ∇θ,−k∆θ + γ div u),

B(u, u′, θ) = (0, g(u′), 0),

D(A) = (H2(Ω) ∩H1
0 (Ω))n ×H1

0 (Ω)n × (H2(Ω) ∩H1
0 (Ω)),

D(B) = H1
0 (Ω)n × L2(Ω)n × L2(Ω).

We can easily verify (for details see Ouazza [11], Muñoz Rivera [10],
Ball [4]) that there exists a global weak solution (u, θ) such that

u ∈ C(R+,H
1
0 (Ω)n) ∩C1(R+, L

2(Ω)n), θ ∈ C(R+, L
2(Ω))

for all given initial data (u0, u1, θ0) ∈ H1
0 (Ω)n × L2(Ω)n × L2(Ω).

Moreover, if (u0, u1, θ0) ∈ D(A) then we have the following regularity
property:

u ∈ C(R+, (H
2(Ω) ∩H1

0 (Ω))n) ∩ C1(R+,H
1
0 (Ω)n) ∩ C2(R+, L

2(Ω)n),

θ ∈ C(R+,H
2(Ω) ∩H1

0 (Ω)) ∩ C1(R+, L
2(Ω));

we say in this case that (u, θ) is a strong solution.

We define the energy of the solutions by the formula

E(t) :=
1

2

\
Ω

(|u′(t)|2 + |∇u(t)|2 + θ(t)2) dx.

If (u, θ) is a strong solution, then by a simple computation we have

E(S)− E(T ) =

T\
S

\
Ω

(k|∇θ|2 + u′ · g(u′)) dx for all 0 ≤ S < T < ∞.

This identity remains valid for all mild solutions by an easy density argu-
ment. By (H1) we deduce that E(t) is nonincreasing. Our main result is
the following

Main Theorem. We have E(t) → 0 as t → ∞ for every weak solution

of (P).

3. Proof of the main theorem. For the proof we need the following
two lemmas (we use the summation convention for repeated indices):

Lemma 1. We have

t\
0

\
Ω

uigi(u
′
i) dx ds = o(t), t → ∞.
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Lemma 2. We have

t\
0

\
Ω

u′
iu

′
i dx ds = o(t), t → ∞.

Proof of Lemma 1. By (H1), we see that |gi(x)| ≤ c|x| for |x| ≤ 1 (here
and in the sequel c denotes various positive constants which may be different
at different occurrences). Then\

|u′

i
|≤1

|uigi(u
′
i)| dx ≤ c

\
|u′

i
|≤1

(u′
igi(u

′
i))

1/2|ui| dx

≤ c
( \

Ω

u′
igi(u

′
i) dx

)1/2

‖u‖L2(Ω)n .

Similarly, by (H2) we have\
|u′

i
|>1

|uigi(u
′
i)| dx ≤ c

( \
Ω

u′
igi(u

′
i) dx

)1/q′

‖u‖Lq(Ω)n

where q′ = q/(q − 1) is the Hölder conjugate of q.

Then from Hölder’s inequality we obtain

t\
0

\
Ω

uigi(u
′
i) dx ds ≤ c

(

t\
0

\
Ω

u′
igi(u

′
i) dx ds

)1/2√
t sup
[0,t]

‖u(s)‖L2(Ω)n

+ ct1/q
(

t\
0

\
Ω

u′
igi(u

′
i) dx ds

)1/q′

sup
[0,t]

‖u(s)‖Lq(Ω)n .

Using the Hölder, Sobolev and Poincaré inequalities we have

‖u(s)‖L2(Ω)n ≤ c‖u(s)‖Lq(Ω)n ≤ cE(s)1/2 ≤ cE(0)1/2 for all s ≥ 0.

From these estimates, it follows that

t\
0

\
Ω

uigi(u
′
i) dx ds ≤ ct1/2 + ct1/q = o(t), t → ∞.

Proof of Lemma 2. Let ε be an arbitrarily small real and set

Mi(ε) := sup{x/gi(x) : |x| ≥
√

ε/|Ω|} and M(ε) := max
i=1,...,n

Mi(ε).

By hypotheses (H1)–(H2), we have M(ε) < ∞.

Clearly, \
|u′

i
|<
√

ε/|Ω|

u′
iu

′
i dx ≤ nε.
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On the other hand,\
|u′

i
|≥
√

ε/|Ω|

u′
iu

′
i dx =

\
|u′

i
|≥
√

ε/|Ω|

u′
i

gi(u′
i)
u′
i gi(u

′
i) dx

≤ M(ε)
\
Ω

u′
igi(u

′
i) dx.

As \
|u′

i
|≥
√

ε/|Ω|

u′
iu

′
i dx ≤

√

2E(0)
( \

|u′

i
|≥
√

ε/|Ω|

u′
iu

′
i dx

)1/2

,

we deduce that\
Ω

u′
iu

′
i dx ≤ nε+

√

2E(0)M(ε)
( \

Ω

u′
igi(u

′
i) dx

)1/2

and then by the Hölder inequality

t\
0

\
Ω

u′
iu

′
i dx ds ≤ cεt+ c

√

2E(0)M(ε)
√
t
(

t\
0

\
Ω

u′
igi(u

′
i) dx ds

)1/2

≤ cεt+ cE(0)
√

2M(ε)
√
t = o(t), t → ∞.

Proof of the main theorem. We multiply the first equation in (P) with u
and integrate over (0, t) ×Ω to obtain

0 =

t\
0

\
Ω

u · (u′′ −∆u+ g(u′) + γ∇θ) dx ds

=
[ \
Ω

u · u′ dx
]t

0
+

t\
0

\
Ω

(|∇u|2 − |u′|2 + u · g(u′) + γu · ∇θ) dx ds.

Hence

[ \
Ω

u · u′
]t

0
=

t\
0

\
Ω

(2|u′|2 − u · g(u′))− 2

t\
0

E(s) ds +

t\
0

\
Ω

(θ2 − γu · ∇θ).

Let ε > 0 be a small real number to be chosen later. We have\
Ω

(θ2 − γu · ∇θ) dx ≤
\
Ω

(c|∇θ|2 + ε|u|2 + c(ε)|∇θ|2) dx

≤ c(ε)
\
Ω

|∇θ|2 dx+ cε
\
Ω

|∇u|2 dx

≤ −c(ε)E′ + cεE.
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After integration over (0, t), we obtain

t\
0

\
Ω

(θ2 − γu · ∇θ) dx ds ≤ −c(ε)

t\
0

E′(s) ds+ cε

t\
0

E(s) ds

≤ c(ε)E(0) + cε

t\
0

E(s) ds.

We deduce that
[ \
Ω

u · u′
]t

0
≤

t\
0

\
Ω

(2|u′|2 − u · g(u′))− (2− cε)

t\
0

E(s) ds+ c(ε)E(0).

By choosing ε = 1/c, we conclude that

(3.1)
[ \
Ω

u · u′ dx
]t

0
≤

t\
0

\
Ω

(2|u′|2 − u · g(u′)) dx ds −
t\
0

E(s) ds + cE(0).

Assume that, contrary to our claim, l := limt→∞ E(t) > 0. Then putting
Φ(t) =

T
Ω
u · u′ dx we have from (3.1),

Φ(t)− Φ(0) ≤ −lt+ o(t) + cE(0), t → ∞;

we have used the lemmas in the last step.
It follows that Φ(t) → −∞ as t → ∞. But this is impossible because
∣

∣

∣

\
Ω

u · u′ dx
∣

∣

∣
≤ 1

2

\
Ω

(|u|2 + |u′|2) dx ≤ c
\
Ω

(|∇u|2 + |u′|2) dx ≤ cE(0).

We conclude that limt→∞ E(t) = 0.
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Département de Mathématique
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