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Answering a 1982 question of Sidney A. Morris, we construct a topolog-
ical group G and a subspace X such that (i) G is algebraically free over X,
(ii) G is relatively free over X, that is, every continuous mapping from X
to G extends to a unique continuous endomorphism of G, and (iii) G is not
a varietal free topological group on X in any variety of topological groups.

0. Introduction. An abstract group G is called relatively free over a
subset X if every map X — G extends to a unique endomorphism G — G.
It is well known [16, Th. 14.5] that a group G is relatively free over a subset
X C G ifand only if G is free over X in a suitable variety of groups. (Equiv-
alently: in the variety generated by G.) Does this result have an analogue
for topological groups? The following has been open for fifteen years.

PROBLEM (S. A. Morris, 1982, P 1254 in [14]). If G is topologically rela-
tively free with free generating space X and G is algebraically relatively free
with free generating set X, is G necessarily F(X,V(QG))?

Here G is topologically relatively free over a subspace X if every continu-
ous map X — G lifts to a unique continuous endomorphism of G. A wariety
of topological groups in the sense of Morris [12-14] is a class of topological
groups closed with respect to forming direct products of arbitrary subfami-
lies equipped with Tikhonov topology, proceeding to topological subgroups,
and topological quotient groups. The symbol V(G) stands for the smallest
variety containing a given topological group G, while F(X,)) denotes the
free topological group in a variety V), that is, F/(X,V) € V is a topological
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group with a distinguished subspace X, and every continuous mapping f
from X to an arbitrary G € V lifts to a unique continuous homomorphism
F(X,V)—G.

The aim of the present note is to answer the problem in the negative
through supplying a counter-example (§4), in which a topological group G
is both relatively and algebraically free over a subspace X, but not topolog-
ically free in the variety generated by G.

All topological spaces are assumed to be Tikhonov, and all topological
groups Hausdorff. Those concepts and elementary results from general topol-
ogy and topological group theory appearing in this article, unless furnished
with exact references, can be found, respectively, in [5] and [6].

1. Universal arrows and free topological groups. In order to give
all the brands of free topological groups featuring in this article a unified
treatment, we invoke a category-theoretic notion of a universal arrow, be-
longing to Samuel [19, 9]. If S : D — C is a covariant functor and ¢ an
object of C, a universal arrow from ¢ to S is a pair (r,u) consisting of an
object r of D and an arrow u : ¢ — Sr of C, such that to every pair (d, f)
with d an object of D and f : ¢ — Sd an arrow of C, there is a unique arrow
fir—dof D with Sf ou=f.

This powerful concept describes a very wide range of mathematical con-
structions. However, we are only interested in a very particular case where
S is the forgetful functor from a full subcategory, {2, of the category TopGr
of all topological groups and continuous homomorphisms to the category
Tikh of all Tikhonov spaces and continuous mappings. The following is a
slight generalization of a concept from [12, 3].

1.1. DEFINITION. Let {2 be a class of topological groups, and let X be a
topological space. We will refer to a pair (G, i), where G € 2 andi: X — G
is continuous, as a free topological group on X in the class {2 whenever (G, 1)
is a universal arrow from X to the forgetful functor 2 — Tikh, where (2 is
viewed as a full subcategory of TopGr. We will denote G by F (X, {2) and
suppress ¢ in our notation provided that i : X <« G is a homeomorphic
embedding.

1.2. EXxAMPLES. 1. If £2 is the class of all topological groups, then F(X, (2)
= F(X) is the Markov free topological group on X [10, 11].

2.1f 2 is the class of all topological abelian groups, then F(X, 2) = A(X)
is the Markov free abelian topological group [15].

3. If 2 = V is a variety of topological groups, then F(X, V) is the varietal
free topological group on X in V [13, 14]. Among the best known examples
of varietal free topological groups are free profinite groups, free precompact
groups, and free nilpotent (or solvable) groups of a given class k.
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4. Free compact groups [7], strictly speaking, are not free varietal groups,
because compact groups do not form a variety (not every topological sub-
group of a compact group is such). The situation can be corrected if we
generalize the concept of a variety by making varieties closed with respect
to a transition to closed topological subgroups only. However, here we are
not interested in this generalization.

5. Relatively free topological groups G are exactly topological groups of
the form G = F(X,{G}).

For a survey of some constructions of the above type, as well as similar
constructions in functional analysis and Lie theory, see [18].

Comfort and van Mill have shown in [4] that the mere existence of free
topological groups cannot be guaranteed in a most general situation where
(2 is just any full subcategory of TopGr. (A similar phenomenon was already
observed by Morris [12] who worked with a somewhat more restricted con-
cept.) Still, there is no reason why one should limit oneself to considering
free topological groups in the varieties only, and indeed the present investi-
gation demonstrates a potential usefulness of those topological groups free
in classes other than varieties.

We will need the following easily proved statement [3].

1.3. ASSERTION AND DEFINITION. Every class, {2, of topological groups
is contained in the unique smallest variety of topological groups, V(£2). One
says that V(£2) is generated by 2. If {2 consists of a single topological group
G, then V(£2) is denoted by V(G) and called a singly generated variety.

It is also helpful to keep in mind the following simple fact.

1.4. ASSERTION. For a topological group G and a subspace X the follow-
ing are equivalent:

(i) G is free on X in some variety of topological groups;
(ii) G is free on X in the variety of topological groups generated by G.

Proof. While < is trivial, assume (i) and letV be a variety of topological
groups with G=F (X, V). In particular, GEV. Let f: X - HeV(G) be a
continuous mapping. Taking into account that V(G) CV and G = F(X,V),
one concludes that f lifts to a unique continuous homomorphism f : G — H.
Since obviously G € V(G), we conclude that (ii) holds. m

2. Two background results on zero-dimensional groups. We say
that a space X is zero-dimensional if X has a base consisting of sets that
are both open and closed. (Using notation of dimension theory, ind X =0.)
While it is well known and easily proved that the Tikhonov product
of any family of zero-dimensional spaces, as well as any subspace of a
zero-dimensional space, are again such, zero-dimensionality is destroyed by
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quotient mappings. Indeed, every Tikhonov space is the image of a zero-
dimensional space (with a plethora of additional properties) under a con-
tinuous open surjection. (See [8] or [2], Coroll. in Sect. 7.) For topological
groups the following important result was obtained by Arkhangel’skii in
1981.

2.1. THEOREM (Arkhangel’skii [1, 2]). Every topological group H is a quo-
tient group of a zero-dimensional topological group G. More precisely, given
a topological group H, there exist a topological space Z and a continuous open
onto homomorphism f : F(Z) — H such that F(Z) is zero-dimensional. m

Let © stand for the class of all zero-dimensional topological groups. The
following is immediate.

2.2. COROLLARY. The variety V(©) generated by © is the class of all
topological groups. m

The finest point of Arkhangel’skii’s proof of Theorem 2.1 is choosing a
zero-dimensional space Z admitting a quotient map onto X and such that
the free topological group F(Z) is zero-dimensional. Indeed, it was shown
by the second author (D.B.S.) [20] that the free topological group on a zero-
dimensional space is not necessarily such. Two of the main ingredients of this
subtle result are the so-called Dowker space [5] and a topological description
of the subspace of the free topological group formed by all words of reduced
length < 2 obtained by the first author (V.G.P.) [17].

2.3. THEOREM (Shakhmatov [20]). There exists a zero-dimensional space
Y such that the free topological group F(Y') is not zero-dimensional. m

An alternative proof of a somewhat more general result than 2.3 can be
found in Theorem 4.5 and Corollaries 4.6 and 4.7 of [21].

3. Free zero-dimensional topological groups. Here is probably the
most natural example of a topological group free in a class that fails to form
a variety in a most spectacular fashion. (Cf. Corollary 2.2.) The following
is well known in the topological folklore, though it has hardly ever been
published by anyone.

3.1. THEOREM. For every zero-dimensional Tikhonov space X there ex-
ists a (unique up to isomorphism) free zero-dimensional topological group
G = F(X,0). The mapping i : X — G is a homeomorphic embedding, and
as an abstract group, G is freely generated by X.

Proof. For the sake of completeness we prove the result. Let T* be the
topology of X. Denote by F the family of all zero-dimensional (not necessar-
ily Hausdorff) group topologies, T, on the abstract free group F'(X) having
the property T|x C T*, where T|x is the subspace topology induced on X
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by ¥. Let ¥, be the supremum of all the topologies from F, i.e. the topol-
ogy generated by |JF as a base. It is clear that T, is a zero-dimensional
group topology on F'(X) and ¥,|x C ¥. Being zero-dimensional, X admits
a homeomorphic embedding, j : X — {—1,1}", into a Cantor cube of the
same weight, 7, as X. If we think of {—1, 1} as a multiplicative topological
subgroup of R, then {—1,1}" becomes a zero-dimensional compact abelian
topological group. Denote by j : F(X) — {—1,1}" the group homomor-
phism extending j. Since {—1,1}7 is a zero-dimensional topological group,
T = {:77*1(U ) : U is open in {—1,1}"} is a zero-dimensional group topology
on F(X) with ¥'|x = T*. Thus ' € F and finally T,|x = T*.

We claim that ¥, is Hausdorff. Let g € F(X) be arbitrary with g # e.
Let g = x7'x5? ... 25" be an irreducible word decomposition, where n > 1,
g; = £1, xi41 # x; for all 4, and Y = {x1,...,2,} € X. Since X is
zero-dimensional and Hausdorff, we may choose open-and-closed subsets
Up,...,U, € X sothat ; € U; and U; = Uj if z; = 5 and U; NU; = 0
whenever x; # x;. The map f : X — F({z1,...,2,}) determined by
fU;) = {z;}, i = 1,....n, and f(X \ U;_,U;) C {e} is continuous if
the free group F(Y') is equipped with the discrete topology. Since clearly
ind(F(Y)) = 0, the group homeomorphism f : (F(X),%.) — F(Y) extend-
ing f is continuous. The image f(g) = f(z1)%! f(x2)%2 ... f(x,)"" is different
from the identity in F(Y'), since n > 1, ¢; = £1, and f(z;4+1) # f(=z;) for
all i. As a consequence, f_l(e) is an open neighbourhood of the identity
not containing g, and the result follows. m

3.2. REMARK. A similar result holds for free abelian zero-dimensional
topological groups.

We finish this section with two rather obvious remarks. Say that a topo-
logical subgroup, H, of a topological group G is a topological group retract
of G if there exists a continuous group endomorphism r : G — G (a topo-
logical group retraction of G onto H) with r(G) = H and r? = Idy. (The
last condition can be replaced with 7|y = Idgy.)

3.3. LEMMA. Let r : G — G be a topological group retraction from a
topological group G onto its subgroup H. Then r : G — H 1is an open group
homomorphism; in particular, H is a topological factor group of G.

Proof. Since a topological group retraction r : G — H is in particular
a retraction of topological spaces, it is a quotient map. Now recall that a
continuous homomorphism of topological groups is open if and only if it is
quotient. m

3.4. LEMMA. Let X =Y ® Z be the disjoint sum of two zero-dimensional
spaces. Then the topological subgroup of the free zero-dimensional group
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F(Y,0), generated by Y, is (i) canonically isomorphic to the free zero-
dimensional group F(Y,0), and (ii) a topological group retract of F(Y,O).

Furthermore, let ¢ : X — F(X,0) be the mapping determined by p|z =
{e} and ¢|y = Idy, and let p : F(X,0) — F(X,0) be a unique group
homomorphism extending ¢. Then ¢ is a topological group retraction of

F(X,0) onto F(Y,©) witnessing (ii).

Proof. The mapping ¢ : X — F(X,0) is continuous (since Y is
open-and-closed in X) and therefore ¢ : F(X,0) — F(X,0) is contin-
uous as well. Using the algebraic freeness of the group F(X,©) over its
subset X, it is easy to conclude that the image of @ coincides with the (al-
gebraically free) subgroup F(Y,©). Since the restriction of @ to F(Y,O)
is the identity map, one concludes that ¥ is a topological retraction of
F(X,0) onto F(Y,0), proving (ii). To establish (i), for every continuous
map ¢ : X = F(X,0)let ¢ : F(X,0) — F(X,0) denote a unique continu-
ous group homomorphism extending ). Now observe that every continuous
map f:Y — G € O extends in a unique fashion to a continuous homomor-
phism f : @(F(X, @)) — G, where f = fo gp(F(X, 8))’X’¢(F(X79))' ]

4. Construction. Let a zero-dimensional space Y be as in Theorem 2.3
above. Using Arkhangel’skii’s Theorem 2.1, choose a Tikhonov space Z such
that the free topological group F(Y) is a topological factor-group of the free
topological group F(Z), and in addition the latter group is zero-dimensional.

The space X =Y @ Z is zero-dimensional. Let G = F(X, ©) be the free
zero-dimensional topological group on X (Th. 3.1).

4.1. CLAaM. The group G is algebraically free over X.
Proof. Follows from Theorem 3.1. m
4.2. CLAIM. The topological group G is topologically relatively free over X.

Proof. Since G € O, any continuous mapping f : X — G lifts to a
unique continuous homomorphism f: G = F(X,0) - G. u

4.3. CLAIM. The free topological group F(Z) is canonically isomorphic
with F(Z,0).

Proof. The desired canonical isomorphism, ¢, is a unique extension to
F(Z) of the identity map Idz, the inverse to ¢ being the unique continuous
homomorphism F(Z,0) — F(Z) extending the same identity map Idz and
existing because F(Z) € ©. n

4.4. CLAIM. The free topological group F(Y') is contained in the variety
of topological groups, V = V(G), generated by G.

Proof. According to Lemmas 3.4 and 3.3, F/(Z, ©) is a topological factor
group of G = F(X,0) and therefore F(Z,0) € V(G). Using Claim 4.3, we
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conclude that F(Y), being a topological factor group of the free topological
group F(Z) = F(Z,0), is in V(G), too. =

4.5. CLAIM. The topology of the free topological group F(Y) is strictly
finer than the topology of the free zero-dimensional topological group F(Y, ).

Proof. According to a well-known property of free topological groups
[2], the topology of F(Y) is the finest group topology inducing the initial
topology on Y. Therefore, it contains the topology of F(Y,©). Assuming
the two coincide, one would conclude that F(Y') is zero-dimensional, a con-
tradiction with our choice of Y. m

4.6. CLAIM. The topological group G is not free over X in the variety of
topological groups, V(G), generated by G.

Proof. Let f : X =Y @& Z — F(Y) be the mapping determined by
flz = {e} and f|y = Idy, and let f : F(X) — F(Y) be a unique group
homomorphism extending f. Note that f is continuous because Y is both
open and closed in X. Assume G is free on X in the variety V=V(G). Since
F(Y) € V by Claim 4.4, it then follows that f : F(X,0) — F(Y) must be
continuous. According to Lemma 3.4, f =i o, where i : F(Y,0)— F(Y)
is an algebraic isomorphism. Since 3 : FI(X,0) — F(Y,0) is a topological
group retraction (Lemma 3.4), it is an open map (Lemma 3.3). From con-
tinuity of f = i o @ it now follows that i must be continuous as well. But
according to Claim 4.5, 7 is discontinuous, which is a contradiction. m

Combining Claims 4.1, 4.2, 4.6 and Assertion 1.4, we deduce the principal
result of this article.

4.7. MAIN THEOREM. There exists a topological group G that is relatively
free over a topological subspace X and algebraically free over X, yet not free
over X in the variety of topological groups generated by G (therefore in any
variety of topological groups). m

5. Open question. It would be interesting to construct a topological
group G that is topologically relatively free and algebraically free over a
subspace X, but at the same time is not the free topological group in the
variety generated by G over any subspace Y C G. Such an example would
have further strengthened the main result of the present article.
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