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FURTHER PROPERTIES OF AN EXTREMAL SET OF UNIQUENESS

BY

DAVID E. G R O W AND MATT I N S A L L (ROLLA, MISSOURI)

Let T denote the group [0, 1) with addition modulo one. In [4] we pre-
sented an elementary construction of a countable, compact subset S of T
which could not be expressed as the union of two H-sets, and conjectured
that S is not expressible as the union of finitely many H-sets. Here we use a
descriptive set theory result of S. Kahane [6] to help show that S cannot be
expressed as the union of finitely many Dirichlet sets. For the connection of
this problem with that of characterizing sets of uniqueness for trigonometric
series on T, see [7] and [4].

Let Z denote the integers and N the nonnegative integers. If x and y
are real numbers then by x ≡ y we shall mean x − y ∈ Z, and in this case
we identify x and y with a single point in T. A subset E of T is a set of
uniqueness if the only trigonometric series

∑∞
n=−∞ c(n)e2πinx on T which

converges to zero for all x outside E is the zero series: c(n) = 0 for all n. A
compact subset E of T is an H-set if there exists a nonempty open interval
I in T such that

N(E; I) = {n ∈ Z : nx 6∈ I for all x ∈ E}

is infinite; E is a Dirichlet set if N(E; (ε, 1−ε)) is infinite for all ε > 0. The
families of all H-sets and Dirichlet sets in T will be denoted by H and D,
respectively. Every finite subset of T is a Dirichlet set [3], every Dirichlet set
is clearly an H-set, and every H-set is a set of uniqueness [8]. Indeed, any
countable union of (compact) H-sets is a set of uniqueness [1].

A family B of compact subsets of T is hereditary if E ∈ B implies all
compact subsets of E are also in B. It is clear from the definitions that H,D,
and the class F , consisting of all finite subsets of T, are each hereditary
families of compact subsets of T. If B is any hereditary family of compact
sets in T and E is any compact subset of T, let the B-derivate of E, dB(E) =

d
(1)
B (E), consist of those points x in E such that, for every open interval I

containing x, the closure of E ∩ I does not belong to the family B.
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For n > 1, let the nth B-derivate of E be defined inductively by d
(n)
B (E)

= dB(d
(n−1)
B (E)); to obtain future economy of expression, we adopt the

convention d
(0)
B (E) = E. If there exists a positive integer n such that d

(n)
B (E)

is empty, then we say that E has finite B-rank ; in this case, the least such
integer n is called the B-rank of E. For the family F of finite sets, observe
that dF (E) denotes the set of limit points of E, and that E has finite F -
rank if and only if the classical Cantor–Bendixson rank of E is finite. For
Cantor–Bendixson derivates, we use the classical notation E′ for dF (E), and

E(n) for d
(n)
F (E). For a connection between the Cantor–Bendixson rank and

Dirichlet sets, see [5].
We shall use the following B-rank result of S. Kahane [6].

Proposition 1. Let n ∈ N, let E be a compact subset of T, and let B
be a hereditary family of compact subsets of T. If E is the union of n sets
from B , then the B-rank of E is at most n.

Given x in T, let x =
∑∞
k=1 xk2−k, xk ∈ {0, 1}, denote its binary ex-

pansion, and write x = 0.x1x2x3 . . . ; this expression for x is unique if the
terminating expansion is chosen whenever possible. Let S−1 = {0} and, for
each n ∈ N, let Sn signify the set of all x = 0.x1x2x3 . . . in T such that∑∞
k=1 xk = n + 1 and xk = 0 if 1 ≤ k ≤ n. Define S =

⋃∞
n=−1 Sn. Note

that a point of T belongs to S if and only if the number of ones in the
binary expansion of x does not exceed the number of its leading zeros by
more than one. Clearly, S consists of rational points and hence is countable;
it is not hard to see that S is closed (and hence compact) and has infinite
Cantor–Bendixson rank ([4], or see Lemma 3 below).

Theorem 1. The set S has infinite Dirichlet rank.

Corollary. The set S cannot be expressed as the union of a finite
number of Dirichlet sets.

P r o o f. Proposition 1 implies that if S were a union of n Dirichlet sets,
then the Dirichlet rank of S would not exceed n.

The proof of Theorem 1 will be based on the following three lemmas.

Lemma 1. If y ∈ [0, 1) ∩Q and N ∈ N, then

{y} ∪ {y + 2−m : m ∈ N, m ≥ N}
is not a Dirichlet set.

P r o o f. Without loss of generality, we may assume that N≥2. It suffices
to show that the set JM,N consisting of all nonnegative integers k such that

k{y + 2−m : m ∈ N,m ≥ N} ⊆ [0, 2−M ] ∪ [1− 2−M , 1]

is finite for sufficiently large positive integers M .
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If y = 0, let M be any integer not less than 2. If y 6= 0, then denote by
δ the smallest nonzero element of the finite subgroup

G = {jy : j ∈ Z}
of T. Choose M ∈ N such that 2−M < δ.

We first show that

(1) ky ≡ 0 for all k ∈ JM,N .

If y = 0 then (1) is clear, so suppose y 6= 0. Fix k ∈ JM,N and let p ∈
N∩ [0, δ−1−1] be such that ky ≡ pδ. Since k2−n → 0+ as n→∞, it follows
that

(2) k(y + 2−n)→ pδ+ as n→∞.
Because 2−M < δ, the only element of G contained in [0, 2−M ]∪ [1−2−M , 1]
is 0. But (2) and the facts that p∈N∩ [0, δ−1− 1] and k ∈ JM,N imply that
p = 0, thus establishing (1).

Next, we show that for each k ∈ JM,N ,

(3) k(y + 2−n) ∈ [0, 2−M ] for all n ≥ N.
To see this, fix k ∈ JM,N . Since ky ≡ 0 and 0 < k2−n < 2−M for all n
sufficiently large, it follows that there exists an integer N1 = N1(k) ≥ N
such that

(4) k(y + 2−n) ∈ [0, 2−M ] for all n ≥ N1.

If (3) does not hold, then (4) implies that there exists a largest integer ν ≥ N
such that

(5) k(y + 2−ν) ∈ [1− 2−M , 1];

hence k ∈ JM,N implies

(6) k(y + 2−(ν+1)) ∈ [0, 2−M ].

But from (1) and (5), it follows that

(7) k2−ν = z + r where z ∈ Z and r ∈ [1− 2−M , 1),

and (1) and (6) imply

(8) k2−(ν+1) = y + s where y ∈ Z and s ∈ (0, 2−M ].

Dividing (7) by 2 yields

(9) k2−(ν+1) = (z + r)/2 where r/2 ∈ [2−1 − 2−M−1, 2−1).

If z is even, then (8) and (9) imply s ≡ r/2, clearly a contradiction sinceM ≥
2 implies that (0, 2−M ]∩[2−1−2−M−1, 2−1) is empty. If z is odd, then (8) and
(9) yield s ≡ (1 + r)/2, again a contradiction since (0, 2−M ]∩ [1−2−M−1, 1)
is empty. Therefore (3) is established.
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Finally, we show that JM,N is finite. To this end, fix k ∈ JM,N . By (1)
and (3), we have

(10) k2−N = z + r where z ∈ Z and r ∈ [0, 2−M ].

We shall show that

(11) z2−j ∈ Z for all j ∈ N,

so that z = 0. This will conclude the proof because (10) then implies k =
2Nr ≤ 2N−M .

Note that (10) implies that (11) holds for j = 0. Suppose that (11) holds
for some integer j ≥ 0, but that z2−(j+1) is not an integer. Then

k2−(N+j+1) = (z + r)2−(j+1)

≡ 2−1 + r2−(j+1) ∈ [2−1, 2−1 + 2−(M+j+1)],

in contradiction to (1) and (3). Therefore (11) holds by induction, and the
proof of Lemma 1 is complete.

Lemma 2. Let x = 0.x1x2x3 . . . ∈ S \ {0}, with xJ+1and xJ+K denoting
the first and last nonzero binary digits of x, respectively. If y ∈ S \ {x} and
|y − x| < 2−2(J+K+1) then y > x and yj = xj for all 1 ≤ j ≤ J+K.

P r o o f. Let y = 0.y1y2 . . . yJ+L denote the binary expansion of y. Sup-
pose xj = yj for all j < j0 and xj0 6= yj0 .

Case 1: xj0 > yj0 . Note that this is precisely the case when x > y. If
yj0+1 = 0 then

2−2(J+K+1) > |x− y| ≥ 2−j0 −
J+L∑
j=j0+2

yj2
−j > 2−(j0+1).

Consequently, j0 + 1 > 2(J + K + 1), and hence xj = 1 for some j = j0 >
J + K, a contradiction. If yj0+1 = 1 then, since y ∈ S and y has at most
j0 leading zeros in its binary expansion, it follows that

∑∞
j=1 yj ≤ j0 + 1.

Arguing as when yj0+1 = 0, we have

2−2(J+K+1) > 2−j0 −
J+L∑
j=j0+1

yj2
−j ≥ 2−j0 −

2j0+1∑
j=j0+1

2−j = 2−(2j0+1).

Thus, 2j0 + 1 > 2(J +K + 1) and hence j0 > J +K, a contradiction just as
before. Therefore the case xj0 > yj0 cannot occur.

Case 2: xj0 < yj0 . Note that this is precisely the case when y > x. We
have
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2−2(J+K+1) > |y − x| ≥ 2−j0 −
J+K∑
j=j0+1

xj2
−j .

Since x ∈ S and x has J leading zeros in its binary expansion, it follows
that

∑∞
j=1 xj ≤ J + 1. Therefore

2−j0 −
J+K∑
j=j0+1

xj2
−j ≥ 2−j0 −

j0+J+1∑
j=j0+1

2−j = 2−(j0+J+1).

Combining the last pair of displayed inequalities gives j0 + J + 1 > 2(J +
K + 1), and hence j0 > J +K. This completes the proof of Lemma 2.

Definition. Let x be a nonzero element of T with binary expansion
x = 0.x1x2x3 . . . (Recall that if x has two binary expansions, we agree to
consider only the terminating expansion.) Suppose that xj = 0 if j ≤ J and
xJ+1 = 1. Define the deficiency of x by

def(x) = 1 + J −
∞∑
j=1

xj .

Furthermore, define def(0) =∞.

The following properties of the deficiency are clear:

(a) def(x) > −∞ if and only if x is a binary rational number;

(b) def(x) ≥ 0 if and only if x ∈ S.

Lemma 3. Let n ∈ N and x ∈ S. Then x ∈ S(n) if and only if def(x) ≥ n.

P r o o f. The proof is by induction. The case n=0 is property (b) above.
Suppose the result holds for n ≥ 0. If x ∈ S(n+1), then there exists a
sequence {y(m)}∞m=1 from S(n)\{x} such that y(m)→x as m→∞. By the
induction hypothesis, def(y(m)) ≥ n for all m ≥ 1. Lemma 2 implies that
def(x) > def(y(m)) for m sufficiently large. Hence def(x)≥n+1. Conversely,
suppose def(x) ≥ n+ 1. For sufficiently large m, say m ≥ N , we have

def(x+ 2−m) = def(x)− 1 ≥ n.

The induction hypothesis implies that the sequence {x + 2−m}∞m=N is
contained in S(n) \ {x}, and hence x ∈ S(n+1).

Proof of Theorem 1. By Lemma 3, we have 0 ∈ S(n) for all n ∈ N.

Therefore it suffices to show that for each n ∈ N, we have S(n) ⊆ d
(n)
D (S);

for this we use induction. For n = 0 the inclusion is clear. Suppose the

inclusion S(n) ⊆ d(n)D (S) holds for n ≥ 0. Then
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d
(n+1)
D (S) = dD(d

(n)
D (S))

= {x ∈ d(n)D (S): if I is an open interval containing x,

then I ∩ d(n)D (S) is not a Dirichlet set}
⊇ {x ∈ S(n) : if I is an open interval containing x,

then I ∩ S(n) is not a Dirichlet set}
= dD(S(n)).

To finish the proof, it therefore is enough to show that S(n+1)⊆ dD(S(n)).
Let x ∈ S(n+1); by Lemma 3, we have def(x) ≥ n+1. Lemma 2 then implies
that for sufficiently largem, saym ≥ N , we have def(x+2−m) = def(x)−1 ≥
n. Thus {x+ 2−m}∞m=N is contained in S(n) by Lemma 3. If I is any open

interval containing x, Lemma 1 then implies that I ∩ {x+ 2−m}∞m=N ⊆
I ∩ S(n) is not a Dirichlet set. Hence S(n+1) ⊆ dD(S(n)), and the proof of
Theorem 1 is complete.

The question as to whether the set S is expressible as the union of finitely
many H-sets cannot be answered so easily, as demonstrated by the next two
results. A simple compactness argument yields the first assertion.

Proposition 2. Let E ⊆ T be compact and let B be a hereditary family
of compact subsets of T. If the B-rank of E is 1 then E can be expressed as
the union of finitely many B-sets.

Theorem 2. The H-rank of the set S is 2.

The following lemma will be used to establish Theorem 2.

Lemma 4. For every J ∈ N, S ∩ [2−J−1, 1− 2−J−1] is an H-set.

P r o o f. If y ∈ S∩ [2−J−1, 1−2−J−1], then y has at most J leading zeros
in its binary expansion, and consequently has at most J + 1 ones. Thus, for
all j ∈ N, we have 2jy ≡ x where

0 ≤ x ≤
J+1∑
k=1

2−k = 1− 2−(J+1).

Therefore 2j(S ∩ [2−J−1, 1 − 2−J−1]) misses the interval (1 − 2−J−1, 1) for
all j ∈ N.

Proof of Theorem 2. It suffices to show that dH(S) = {0}. Suppose that
y ∈ S \ {0}, and choose J ∈ N such that 2−J−1 < y < 1 − 2−J−1. Then
I = (2−J−1, 1 − 2−J−1) is an open interval containing y, and Lemma 4
implies that S ∩ I is an H-set. Thus dH(S) ⊆ {0}.

To show the reverse inclusion, suppose by way of contradiction that
0 6∈dH(S). Then there is an open interval I containing 0 such that Si∩I is an
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H-set.Choose J ∈ N such that T is the union of I and

IJ = [2−J−1, 1− 2−J−1].

Another application of Lemma 4 shows that S = (S ∩ I) ∪ (S ∩ IJ) is the
union of two H-sets, contradicting the Theorem of [4]. Thus dH(S) = {0}.
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