FURTHER PROPERTIES OF AN EXTREMAL SET OF UNIQUENESS

Let \mathbb{T} denote the group $[0,1)$ with addition modulo one. In [4] we presented an elementary construction of a countable, compact subset S of \mathbb{T} which could not be expressed as the union of two H-sets, and conjectured that S is not expressible as the union of finitely many H-sets. Here we use a descriptive set theory result of S. Kahane [6] to help show that S cannot be expressed as the union of finitely many Dirichlet sets. For the connection of this problem with that of characterizing sets of uniqueness for trigonometric series on \mathbb{T}, see [7] and [4].

Let \mathbb{Z} denote the integers and \mathbb{N} the nonnegative integers. If x and y are real numbers then by $x \equiv y$ we shall mean $x-y \in \mathbb{Z}$, and in this case we identify x and y with a single point in \mathbb{T}. A subset E of \mathbb{T} is a set of uniqueness if the only trigonometric series $\sum_{n=-\infty}^{\infty} c(n) e^{2 \pi i n x}$ on \mathbb{T} which converges to zero for all x outside E is the zero series: $c(n)=0$ for all n. A compact subset E of \mathbb{T} is an H-set if there exists a nonempty open interval I in \mathbb{T} such that

$$
N(E ; I)=\{n \in \mathbb{Z}: n x \notin I \text { for all } x \in E\}
$$

is infinite; E is a Dirichlet set if $N(E ;(\varepsilon, 1-\varepsilon))$ is infinite for all $\varepsilon>0$. The families of all H-sets and Dirichlet sets in \mathbb{T} will be denoted by H and D, respectively. Every finite subset of \mathbb{T} is a Dirichlet set [3], every Dirichlet set is clearly an H-set, and every H-set is a set of uniqueness [8]. Indeed, any countable union of (compact) H-sets is a set of uniqueness [1].

A family B of compact subsets of \mathbb{T} is hereditary if $E \in B$ implies all compact subsets of E are also in B. It is clear from the definitions that H, D, and the class F, consisting of all finite subsets of \mathbb{T}, are each hereditary families of compact subsets of \mathbb{T}. If B is any hereditary family of compact sets in \mathbb{T} and E is any compact subset of \mathbb{T}, let the B-derivate of $E, d_{B}(E)=$ $d_{B}^{(1)}(E)$, consist of those points x in E such that, for every open interval I containing x, the closure of $E \cap I$ does not belong to the family B.

[^0]For $n>1$, let the nth B-derivate of E be defined inductively by $d_{B}^{(n)}(E)$ $=d_{B}\left(d_{B}^{(n-1)}(E)\right)$; to obtain future economy of expression, we adopt the convention $d_{B}^{(0)}(E)=E$. If there exists a positive integer n such that $d_{B}^{(n)}(E)$ is empty, then we say that E has finite B-rank; in this case, the least such integer n is called the B-rank of E. For the family F of finite sets, observe that $d_{F}(E)$ denotes the set of limit points of E, and that E has finite F rank if and only if the classical Cantor-Bendixson rank of E is finite. For Cantor-Bendixson derivates, we use the classical notation E^{\prime} for $d_{F}(E)$, and $E^{(n)}$ for $d_{F}^{(n)}(E)$. For a connection between the Cantor-Bendixson rank and Dirichlet sets, see [5].

We shall use the following B-rank result of S . Kahane [6].
Proposition 1. Let $n \in \mathbb{N}$, let E be a compact subset of \mathbb{T}, and let B be a hereditary family of compact subsets of \mathbb{T}. If E is the union of n sets from B, then the B-rank of E is at most n.

Given x in \mathbb{T}, let $x=\sum_{k=1}^{\infty} x_{k} 2^{-k}, x_{k} \in\{0,1\}$, denote its binary expansion, and write $x=0 . x_{1} x_{2} x_{3} \ldots$; this expression for x is unique if the terminating expansion is chosen whenever possible. Let $S_{-1}=\{0\}$ and, for each $n \in \mathbb{N}$, let S_{n} signify the set of all $x=0 . x_{1} x_{2} x_{3} \ldots$ in \mathbb{T} such that $\sum_{k=1}^{\infty} x_{k}=n+1$ and $x_{k}=0$ if $1 \leq k \leq n$. Define $S=\bigcup_{n=-1}^{\infty} S_{n}$. Note that a point of \mathbb{T} belongs to S if and only if the number of ones in the binary expansion of x does not exceed the number of its leading zeros by more than one. Clearly, S consists of rational points and hence is countable; it is not hard to see that S is closed (and hence compact) and has infinite Cantor-Bendixson rank ([4], or see Lemma 3 below).

Theorem 1. The set S has infinite Dirichlet rank.
Corollary. The set S cannot be expressed as the union of a finite number of Dirichlet sets.

Proof. Proposition 1 implies that if S were a union of n Dirichlet sets, then the Dirichlet rank of S would not exceed n.

The proof of Theorem 1 will be based on the following three lemmas.
Lemma 1. If $y \in[0,1) \cap \mathbb{Q}$ and $N \in \mathbb{N}$, then

$$
\{y\} \cup\left\{y+2^{-m}: m \in \mathbb{N}, m \geq N\right\}
$$

is not a Dirichlet set.
Proof. Without loss of generality, we may assume that $N \geq 2$. It suffices to show that the set $J_{M, N}$ consisting of all nonnegative integers k such that

$$
k\left\{y+2^{-m}: m \in \mathbb{N}, m \geq N\right\} \subseteq\left[0,2^{-M}\right] \cup\left[1-2^{-M}, 1\right]
$$

is finite for sufficiently large positive integers M.

If $y=0$, let M be any integer not less than 2 . If $y \neq 0$, then denote by δ the smallest nonzero element of the finite subgroup

$$
G=\{j y: j \in \mathbb{Z}\}
$$

of \mathbb{T}. Choose $M \in \mathbb{N}$ such that $2^{-M}<\delta$.
We first show that

$$
\begin{equation*}
k y \equiv 0 \quad \text { for all } k \in J_{M, N} \tag{1}
\end{equation*}
$$

If $y=0$ then (1) is clear, so suppose $y \neq 0$. Fix $k \in J_{M, N}$ and let $p \in$ $\mathbb{N} \cap\left[0, \delta^{-1}-1\right]$ be such that $k y \equiv p \delta$. Since $k 2^{-n} \rightarrow 0^{+}$as $n \rightarrow \infty$, it follows that

$$
\begin{equation*}
k\left(y+2^{-n}\right) \rightarrow p \delta^{+} \quad \text { as } n \rightarrow \infty \tag{2}
\end{equation*}
$$

Because $2^{-M}<\delta$, the only element of G contained in $\left[0,2^{-M}\right] \cup\left[1-2^{-M}, 1\right]$ is 0 . But (2) and the facts that $p \in \mathbb{N} \cap\left[0, \delta^{-1}-1\right]$ and $k \in J_{M, N}$ imply that $p=0$, thus establishing (1).

Next, we show that for each $k \in J_{M, N}$,

$$
\begin{equation*}
k\left(y+2^{-n}\right) \in\left[0,2^{-M}\right] \quad \text { for all } n \geq N \tag{3}
\end{equation*}
$$

To see this, fix $k \in J_{M, N}$. Since $k y \equiv 0$ and $0<k 2^{-n}<2^{-M}$ for all n sufficiently large, it follows that there exists an integer $N_{1}=N_{1}(k) \geq N$ such that

$$
\begin{equation*}
k\left(y+2^{-n}\right) \in\left[0,2^{-M}\right] \quad \text { for all } n \geq N_{1} \tag{4}
\end{equation*}
$$

If (3) does not hold, then (4) implies that there exists a largest integer $\nu \geq N$ such that

$$
\begin{equation*}
k\left(y+2^{-\nu}\right) \in\left[1-2^{-M}, 1\right] \tag{5}
\end{equation*}
$$

hence $k \in J_{M, N}$ implies

$$
\begin{equation*}
k\left(y+2^{-(\nu+1)}\right) \in\left[0,2^{-M}\right] \tag{6}
\end{equation*}
$$

But from (1) and (5), it follows that

$$
\begin{equation*}
k 2^{-\nu}=z+r \quad \text { where } z \in \mathbb{Z} \text { and } r \in\left[1-2^{-M}, 1\right) \tag{7}
\end{equation*}
$$

and (1) and (6) imply

$$
\begin{equation*}
k 2^{-(\nu+1)}=y+s \quad \text { where } y \in \mathbb{Z} \text { and } s \in\left(0,2^{-M}\right] \tag{8}
\end{equation*}
$$

Dividing (7) by 2 yields

$$
\begin{equation*}
k 2^{-(\nu+1)}=(z+r) / 2 \quad \text { where } r / 2 \in\left[2^{-1}-2^{-M-1}, 2^{-1}\right) \tag{9}
\end{equation*}
$$

If z is even, then (8) and (9) imply $s \equiv r / 2$, clearly a contradiction since $M \geq$ 2 implies that $\left(0,2^{-M}\right] \cap\left[2^{-1}-2^{-M-1}, 2^{-1}\right)$ is empty. If z is odd, then (8) and (9) yield $s \equiv(1+r) / 2$, again a contradiction since $\left(0,2^{-M}\right] \cap\left[1-2^{-M-1}, 1\right)$ is empty. Therefore (3) is established.

Finally, we show that $J_{M, N}$ is finite. To this end, fix $k \in J_{M, N}$. By (1) and (3), we have

$$
\begin{equation*}
k 2^{-N}=z+r \quad \text { where } z \in \mathbb{Z} \text { and } r \in\left[0,2^{-M}\right] . \tag{10}
\end{equation*}
$$

We shall show that

$$
\begin{equation*}
z 2^{-j} \in \mathbb{Z} \quad \text { for all } j \in \mathbb{N}, \tag{11}
\end{equation*}
$$

so that $z=0$. This will conclude the proof because (10) then implies $k=$ $2^{N} r \leq 2^{N-M}$.

Note that (10) implies that (11) holds for $j=0$. Suppose that (11) holds for some integer $j \geq 0$, but that $z 2^{-(j+1)}$ is not an integer. Then

$$
\begin{aligned}
k 2^{-(N+j+1)} & =(z+r) 2^{-(j+1)} \\
& \equiv 2^{-1}+r 2^{-(j+1)} \in\left[2^{-1}, 2^{-1}+2^{-(M+j+1)}\right],
\end{aligned}
$$

in contradiction to (1) and (3). Therefore (11) holds by induction, and the proof of Lemma 1 is complete.

Lemma 2. Let $x=0 . x_{1} x_{2} x_{3} \ldots \in S \backslash\{0\}$, with x_{J+1} and x_{J+K} denoting the first and last nonzero binary digits of x, respectively. If $y \in S \backslash\{x\}$ and $|y-x|<2^{-2(J+K+1)}$ then $y>x$ and $y_{j}=x_{j}$ for all $1 \leq j \leq J+K$.

Proof. Let $y=0 . y_{1} y_{2} \ldots y_{J+L}$ denote the binary expansion of y. Suppose $x_{j}=y_{j}$ for all $j<j_{0}$ and $x_{j_{0}} \neq y_{j_{0}}$.

Case 1: $x_{j_{0}}>y_{j_{0}}$. Note that this is precisely the case when $x>y$. If $y_{j_{0}+1}=0$ then

$$
2^{-2(J+K+1)}>|x-y| \geq 2^{-j_{0}}-\sum_{j=j_{0}+2}^{J+L} y_{j} 2^{-j}>2^{-\left(j_{0}+1\right)} .
$$

Consequently, $j_{0}+1>2(J+K+1)$, and hence $x_{j}=1$ for some $j=j_{0}>$ $J+K$, a contradiction. If $y_{j_{0}+1}=1$ then, since $y \in S$ and y has at most j_{0} leading zeros in its binary expansion, it follows that $\sum_{j=1}^{\infty} y_{j} \leq j_{0}+1$. Arguing as when $y_{j_{0}+1}=0$, we have

$$
2^{-2(J+K+1)}>2^{-j_{0}}-\sum_{j=j_{0}+1}^{J+L} y_{j} 2^{-j} \geq 2^{-j_{0}}-\sum_{j=j_{0}+1}^{2 j_{0}+1} 2^{-j}=2^{-\left(2 j_{0}+1\right)} .
$$

Thus, $2 j_{0}+1>2(J+K+1)$ and hence $j_{0}>J+K$, a contradiction just as before. Therefore the case $x_{j_{0}}>y_{j_{0}}$ cannot occur.

CASE 2: $x_{j_{0}}<y_{j_{0}}$. Note that this is precisely the case when $y>x$. We have

$$
2^{-2(J+K+1)}>|y-x| \geq 2^{-j_{0}}-\sum_{j=j_{0}+1}^{J+K} x_{j} 2^{-j} .
$$

Since $x \in S$ and x has J leading zeros in its binary expansion, it follows that $\sum_{j=1}^{\infty} x_{j} \leq J+1$. Therefore

$$
2^{-j_{0}}-\sum_{j=j_{0}+1}^{J+K} x_{j} 2^{-j} \geq 2^{-j_{0}}-\sum_{j=j_{0}+1}^{j_{0}+J+1} 2^{-j}=2^{-\left(j_{0}+J+1\right)} .
$$

Combining the last pair of displayed inequalities gives $j_{0}+J+1>2(J+$ $K+1$), and hence $j_{0}>J+K$. This completes the proof of Lemma 2 .

Definition. Let x be a nonzero element of \mathbb{T} with binary expansion $x=0 . x_{1} x_{2} x_{3} \ldots$ (Recall that if x has two binary expansions, we agree to consider only the terminating expansion.) Suppose that $x_{j}=0$ if $j \leq J$ and $x_{J+1}=1$. Define the deficiency of x by

$$
\operatorname{def}(x)=1+J-\sum_{j=1}^{\infty} x_{j} .
$$

Furthermore, $\operatorname{define~} \operatorname{def}(0)=\infty$.
The following properties of the deficiency are clear:
(a) $\operatorname{def}(x)>-\infty$ if and only if x is a binary rational number;
(b) $\operatorname{def}(x) \geq 0$ if and only if $x \in S$.

Lemma 3. Let $n \in \mathbb{N}$ and $x \in S$. Then $x \in S^{(n)}$ if and only if $\operatorname{def}(x) \geq n$.
Proof. The proof is by induction. The case $n=0$ is property (b) above. Suppose the result holds for $n \geq 0$. If $x \in S^{(n+1)}$, then there exists a sequence $\left\{y^{(m)}\right\}_{m=1}^{\infty}$ from $S^{(n)} \backslash\{x\}$ such that $y^{(m)} \rightarrow x$ as $m \rightarrow \infty$. By the induction hypothesis, $\operatorname{def}\left(y^{(m)}\right) \geq n$ for all $m \geq 1$. Lemma 2 implies that $\operatorname{def}(x)>\operatorname{def}\left(y^{(m)}\right)$ for m sufficiently large. Hence $\operatorname{def}(x) \geq n+1$. Conversely, suppose $\operatorname{def}(x) \geq n+1$. For sufficiently large m, say $m \geq N$, we have

$$
\operatorname{def}\left(x+2^{-m}\right)=\operatorname{def}(x)-1 \geq n .
$$

The induction hypothesis implies that the sequence $\left\{x+2^{-m}\right\}_{m=N}^{\infty}$ is contained in $S^{(n)} \backslash\{x\}$, and hence $x \in S^{(n+1)}$.

Proof of Theorem 1. By Lemma 3, we have $0 \in S^{(n)}$ for all $n \in \mathbb{N}$. Therefore it suffices to show that for each $n \in \mathbb{N}$, we have $S^{(n)} \subseteq d_{D}^{(n)}(S)$; for this we use induction. For $n=0$ the inclusion is clear. Suppose the inclusion $S^{(n)} \subseteq d_{D}^{(n)}(S)$ holds for $n \geq 0$. Then

$$
\begin{aligned}
d_{D}^{(n+1)}(S)= & d_{D}\left(d_{D}^{(n)}(S)\right) \\
& =\left\{x \in d_{D}^{(n)}(S): \text { if } I \text { is an open interval containing } x\right. \\
& \left.\quad \text { then } \overline{I \cap d_{D}^{(n)}(S)} \text { is not a Dirichlet set }\right\} \\
& \supseteq\left\{x \in S^{(n)} \quad\right. \\
& \quad \text { if } I \text { is an open interval containing } x \\
& \left.\quad \text { then } \overline{I \cap S^{(n)}} \text { is not a Dirichlet set }\right\} \\
& =d_{D}\left(S^{(n)}\right) .
\end{aligned}
$$

To finish the proof, it therefore is enough to show that $S^{(n+1)} \subseteq d_{D}\left(S^{(n)}\right)$. Let $x \in S^{(n+1)}$; by Lemma 3, we have $\operatorname{def}(x) \geq n+1$. Lemma 2 then implies that for sufficiently large m, say $m \geq N$, we have $\operatorname{def}\left(x+2^{-m}\right)=\operatorname{def}(x)-1 \geq$ n. Thus $\left\{x+2^{-m}\right\}_{m=N}^{\infty}$ is contained in $S^{(n)}$ by Lemma 3. If I is any open interval containing x, Lemma 1 then implies that $\overline{I \cap\left\{x+2^{-m}\right\}_{m=N}^{\infty}} \subseteq$ $\overline{I \cap S^{(n)}}$ is not a Dirichlet set. Hence $S^{(n+1)} \subseteq d_{D}\left(S^{(n)}\right)$, and the proof of Theorem 1 is complete.

The question as to whether the set S is expressible as the union of finitely many H-sets cannot be answered so easily, as demonstrated by the next two results. A simple compactness argument yields the first assertion.

Proposition 2. Let $E \subseteq \mathbb{T}$ be compact and let B be a hereditary family of compact subsets of \mathbb{T}. If the $B-r a n k$ of E is 1 then E can be expressed as the union of finitely many B-sets.

Theorem 2. The H-rank of the set S is 2 .
The following lemma will be used to establish Theorem 2.
Lemma 4. For every $J \in \mathbb{N}$, $S \cap\left[2^{-J-1}, 1-2^{-J-1}\right]$ is an H-set.
Proof. If $y \in S \cap\left[2^{-J-1}, 1-2^{-J-1}\right]$, then y has at most J leading zeros in its binary expansion, and consequently has at most $J+1$ ones. Thus, for all $j \in \mathbb{N}$, we have $2^{j} y \equiv x$ where

$$
0 \leq x \leq \sum_{k=1}^{J+1} 2^{-k}=1-2^{-(J+1)}
$$

Therefore $2^{j}\left(S \cap\left[2^{-J-1}, 1-2^{-J-1}\right]\right)$ misses the interval $\left(1-2^{-J-1}, 1\right)$ for all $j \in \mathbb{N}$.

Proof of Theorem 2. It suffices to show that $d_{H}(S)=\{0\}$. Suppose that $y \in S \backslash\{0\}$, and choose $J \in \mathbb{N}$ such that $2^{-J-1}<y<1-2^{-J-1}$. Then $I=\left(2^{-J-1}, 1-2^{-J-1}\right)$ is an open interval containing y, and Lemma 4 implies that $\overline{S \cap I}$ is an H-set. Thus $d_{H}(S) \subseteq\{0\}$.

To show the reverse inclusion, suppose by way of contradiction that $0 \notin d_{H}(S)$. Then there is an open interval I containing 0 such that $\overline{S i \cap I}$ is an
H-set.Choose $J \in \mathbb{N}$ such that \mathbb{T} is the union of I and

$$
I_{J}=\left[2^{-J-1}, 1-2^{-J-1}\right] .
$$

Another application of Lemma 4 shows that $S=\overline{(S \cap I)} \cup\left(S \cap I_{J}\right)$ is the union of two H-sets, contradicting the Theorem of [4]. Thus $d_{H}(S)=\{0\}$.

REFERENCES

[1] N. Bary, Sur l'unicité du développement trigonométrique, Fund. Math. 9 (1927), 62-118.
[2] G. Cantor, Über die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen, Math. Ann. 5 (1872), 123-132.
[3] G. Lejeune Dirichlet, Werke, Vol. 1, Chelsea, New York, 1969, p. 635.
[4] D. Grow and M. Insall, An extremal set of uniqueness?, Colloq. Math. 65 (1993), 61-64.
[5] -, 一, A structure problem regarding a set of uniqueness, in: Proc. Fifth Internat. Workshop in Analysis and Its Applications, to appear.
[6] S. Kahane, Finite union of H-sets and countable compact sets, Colloq. Math. 65 (1993), 83-86.
[7] A. Kechris and A. Louveau, Descriptive Set Theory and the Structure of Sets of Uniqueness, Cambridge Univ. Press, Cambridge, 1987.
[8] A. Rajchman, Sur l'unicité du développement trigonométrique, Fund. Math. 3 (1922), 287-302.
[9] D. Salinger, Sur les ensembles indépendants dénombrables, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A786-A788.

Department of Mathematics and Statistics
University of Missouri
Rolla, Missouri 65401
U.S.A.

E-mail: grow@umr.edu
insall@umr.edu

[^0]: 1991 Mathematics Subject Classification: 43A46, 42A63.

