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We show that any finitely generated variety V of double Heyting alge-
bras is finitely determined, meaning that for some finite cardinal n(V), any
class S ⊆ V consisting of algebras with pairwise isomorphic endomorphism
monoids has fewer than n(V) pairwise non-isomorphic members. This result
complements the earlier established fact of categorical universality of the va-
riety of all double Heyting algebras, and contrasts with categorical results
concerning finitely generated varieties of distributive double p-algebras.

A double Heyting algebra A = (X;∨,∧,→,←, 0, 1) is an algebra of type
(2, 2, 2, 2, 0, 0) such that L = (X;∨,∧, 0, 1) is a distributive (0, 1)-lattice
that admits a binary operation → determined by the requirement that
t ≤ (x→ y) exactly when t ∧ x ≤ y, and also the dually defined binary
operation ←. All double Heyting algebras form a variety which we denote
by 2H.

Regarded as a category, the variety 2H is universal [3]. This means
that any full category of algebras is isomorphic to a full subcategory of 2H
(see [12]) and implies that for every monoid M there exists a proper class
S ⊆ 2H of pairwise non-isomorphic algebras such that the endomorphism
monoid End(D) is isomorphic to M for every D ∈ S. Results of [4] and [3]
show that this is already the case for a certain subvariety of 2H generated
by finitely many subdirectly irreducible algebras, and hence it seems natural
to ask about the existence of finitely generated subvarieties of 2H with the
same property.
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Our present result implies that no such subvariety exists.

To state this result precisely, we say that a variety V is α-determined if
α is the least cardinal such that any class S ⊆ V of pairwise non-isomorphic
and equimorphic algebras—that is, algebras whose endomorphism monoids
are isomorphic—is a set with fewer than α members.

Main Theorem. Any finitely generated variety V of double Heyting
algebras is n-determined for some finite cardinal n = n(V). On the other
hand , for every finite cardinal m there exists a finitely generated variety V
of double Heyting algebras with n(V) ≥ m.

When the operation → of a double Heyting algebra is restricted to a
unary operation given by x 7→ x∗ = x→ 0 and its operation← to x 7→ x+ =
x ← 1, a distributive double p-algebra is obtained. Hence a comparison of
the present results to those about the variety 2P of all distributive double
p-algebras is of some interest.

With the usual notion of a homomorphism, infinitely many finitely gen-
erated subvarieties (called almost regular varieties in [6]) of 2P are n-
determined for some finite n (see [6]) while infinitely many other finitely
generated subvarieties of 2P are universal [5] and hence not α-determined
for any cardinal α. On the other hand, there is a marked similarity between
results on double Heyting algebras and those about distributive double p-
algebras that are regular (that is, forming a variety R ⊂ 2P determined by
the requirement that y ∧ y+ ≤ x ∨ x∗). As in the case of double Heyting
algebras, the variety R is universal (and this also shows that 2H is; see
[3]), while all finitely generated subvarieties of R are n-determined for some
finite n, and the set of these integers is also unbounded. In this sense, the
present paper extends [3] and [6].

Other related results include the fact that Boolean algebras are 2-deter-
mined [7, 8, 13], that distributive (0, 1)-lattices are 3-determined [9], and
so are certain finitely generated varieties of Heyting algebras [2], and that
those varieties of distributive p-algebras which are α-determined for some
cardinal α are already 2-determined or 3-determined [1].

The general approach and the actual method used here are based on our
earlier paper [6] on equimorphy in finitely generated almost regular subva-
rieties of 2P. We work entirely within the framework of Priestley’s duality
appropriate for double Heyting algebras. We describe this framework first,
and then apply it to construct families of idempotent structure-reflecting
endomorphisms of our double Heyting algebras that are recognizable within
any monoid and preserved by any isomorphism Ψ : End(D) → End(D′).
Then we arrange these idempotents into blocks that reflect certain global
features of their underlying algebras. On any given collection S of equimor-
phic algebras, we then define three progressively finer equivalences that have
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only finitely many classes, and conclude by showing that any class of the
finest equivalence consists entirely of pairwise isomorphic algebras.

1. Preliminaries. We begin with a brief review of Priestley’s duality.

Let (X,≤, τ) be an ordered topological space, that is, let (X, τ) be a
topological space and (X,≤) a partially ordered set. For any Z ⊆ X write

(Z] = {x ∈ X | ∃z ∈ Z x ≤ z} and [Z) = {x ∈ X | ∃z ∈ Z z ≤ x}.

We say that a subset Z of X is decreasing if (Z] = Z, increasing if
[Z) = Z, and convex if (Z]∩[Z) = Z. The set Z is clopen if it is both τ -open
and τ -closed. Any compact ordered topological space (X,≤, τ) possessing a
clopen decreasing set D such that x ∈ D and y 6∈ D for any x, y ∈ X with
x � y is called a Priestley space.

The following is a well-known and useful property of Priestley spaces.

Lemma 1.1. If F0 is a closed subset of a Priestley space (X,≤, τ), then
[F0) and (F0] are closed. If F1 ⊆ X is also closed and F0 ∩ (F1] = ∅, then
there is a clopen decreasing set D ⊆ X such that F1 ⊆ D and F0∩D = ∅.

Let P denote the category of all Priestley spaces and all their continuous
order preserving mappings. Clopen decreasing sets of any Priestley space
form a distributive (0,1)-lattice, and the inverse image map f−1 of any
P-morphism f is a (0,1)-homomorphism of these lattices. This gives rise to
a contravariant functor D : P → D into the category D of all distributive
(0,1)-lattices and all their (0,1)-homomorphisms. Conversely, for any lattice
L ∈ D, let P (L) = (P (L),≤, τ) be the ordered topological space on the set
P (L) of all prime filters of L ordered by the reversed inclusion, and such that
the sets {x ∈ P (L) | A ∈ x} and {x ∈ P (L) | A 6∈ x} with A ∈ L form an
open subbasis of τ . If h : L→ L′ is a morphism in D then h−1 maps P (L′)
into P (L) and, according to [10], this determines a contravariant functor
P : D→ P.

Theorem 1.2 [10, 11]. The composite functors P ◦ D : P → P and
D ◦ P : D → D are naturally equivalent to the identity functors of their
respective domains. Therefore D is a category dually isomorphic to P.

Now we turn to Priestley spaces representing double Heyting algebras.

Definition. A Priestley space (X,≤, τ) is called a dh-space if for every
convex clopen set Z ⊆ X the sets [Z) and (Z] are also clopen. We say
that a mapping f : (X,≤) → (Y,≤) between posets has the dh-property
if [h(x)) = h([x)) and (h(x)] = h((x]) for every x ∈ X. Any continuous
order-preserving mapping between dh-spaces that has the dh-property will
be called a dh-map.
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In what follows, DH will denote the category of all dh-spaces and all
dh-maps. Thus DH is the Priestley dual of the category 2H of all double
Heyting algebras and all their homomorphisms.

Theorem 1.3 (folklore). A Priestley space (X,≤, τ) is the Priestley dual
of a double Heyting algebra if and only if it is a dh-space. A continuous order-
preserving map f : (X,≤, τ) → (Y,≤, σ) of dh-spaces is the Priestley dual
of a double Heyting algebra homomorphism if and only if it is a dh-map.

From [4], for any dh-space (X,≤, τ) and any clopen set A ⊆ X (convex
or not), the sets [A) and (A] are always clopen.

Definition. A subset A of a poset (X,≤) is called a diset if it is both
decreasing and increasing, that is, if A = [A) = (A]. Any diset A which is
minimal with respect to the inclusion is called a component of (X,≤). Thus
any diset is the disjoint union of its components, and each component is a
connected poset.

Theorem 1.3 implies that the image Im(f) of any dh-map f : (X,≤, τ)→
(Y,≤, σ) is a closed diset, and that f(C) is a component of (Y,≤) for any
component C of (X,≤).

Notation. Let X = (X,≤, τ) be a dh-space. Then

• C(X) denotes the set of all components of X,
• CP (X) denotes the set of all components of X isomorphic to a poset

P ,
• χX(P ) = |CP (X)| for a given poset P ,
• K(x) denotes the component of X containing a given x ∈ X.

Given a variety V of double Heyting algebras, let PV denote its dual,
that is, the full subcategory of DH determined by all those dh-spaces which
are the Priestley duals of algebras from V.

Proposition 1.4 (folklore). The following properties are equivalent for
any dh-space X:

(1) X is the dual of a finite subdirectly irreducible double Heyting algebra,
(2) X is the dual of a finite simple double Heyting algebra,
(3) X is finite and order connected.

The description below of the dual of a finitely generated variety of double
Heyting algebras follows easily from Jónsson’s Lemma, Proposition 1.4, and
the results of [4].

Theorem 1.5 [4]. For any finitely generated variety V of double Heyting
algebras there exists a finite set PV of finite connected posets that contains all
dh-quotients of any of its members, and with the property that a dh-space X
belongs to PV if and only if P ∈ PV for every poset P with CP (X) 6= ∅.



EQUIMORPHY IN VARIETIES 45

This characterization leads to the definition below.

Definition. Let FG denote the full subcategory of DH formed by all
dh-spaces X for which CP (X) 6= ∅ only for finitely many finite posets P .

Thus FG is the union of the duals PV of all finitely generated varieties
V ⊆ 2H.

2. Idempotents with finite images. To build a supply of idempotent
endomorphisms of a given dh-space X ∈ FG, we begin with the following
claim about its partial dh-maps. In algebraic terms, it says that any sub-
directly irreducible homomorphic image of any double Heyting algebra D
from a finitely generated variety V must be a retract of some direct factor
of D.

Lemma 2.1. For every X ∈ FG and for every C ∈ C(X) there exists
a clopen diset Y ⊆ X with C ⊆ Y and a dh-map f : Y → C such that
f(c) = c for every c ∈ C.

P r o o f. Since C is finite, for every x ∈ C there exists a clopen set Ax

such that Ax ∩ C = {x} and Ax ∩ Ay = ∅ whenever x, y ∈ X are distinct.
Then C ⊆ A and A =

⋃
x∈C Ax is clopen because C is finite. Thus X \ A

is clopen. Since X ∈ FG, and because the sets [W ) and (W ] are clopen for
any clopen W ⊆ X, the set B = K(X \A) is also clopen.

Set Bx = Ax \B. Then Bx is clopen, Bx ∩C = {x} for every x ∈ C and
Bx ∩By = ∅ whenever x, y ∈ C are distinct. We claim that K(

⋃
z∈C Bz) =⋃

z∈C Bz. Indeed, if a ∈ K(
⋃

z∈C Bz), then a 6∈ B and so K(a) ⊆ A =⋃
z∈C Az. Thus a ∈ Ax for some x ∈ C and hence a ∈ Bx. Thus

⋃
z∈C Bz

is a clopen diset.
Next we set D =

⋃
x∈C(X \K(Bx)) and Dx = Bx \D. Then D is clopen

and D ∩ C = ∅. It is clear that Dx is clopen, Dx ∩ C = {x} for every
x ∈ C, and Dx ∩ Dy = ∅ whenever x, y ∈ C are distinct. Suppose that
a ∈ Dz for some z ∈ C. Then a 6∈ D and, since D ⊆ X is a diset, this
means that a ∈ K(Bx), and therefore a ∈ K(Dx) for any x ∈ C. But then
K(Dx) =

⋃
z∈C Dz for any x ∈ C.

For every x ∈ C we now define Lx = ([Dx) ∩ (Dx]) \ Dx. Then Lx is
clopen and Lx∩C = ∅ for every x ∈ C. Moreover, the diset L =

⋃
x∈C K(Lx)

is clopen and L ∩ C = ∅. For any x∈C, write Ex = Dx \ L. Then the set
Ex is clopen, Ex ∩ C = {x} and K(Ex) =

⋃
z∈C Ez for every x ∈ C, and

Ex ∩ Ey = ∅ for x, y ∈ C with x 6= y. We claim that Ex is convex for
any x ∈ C. Indeed, if a, b ∈ Ex and a ≤ d ≤ b then a, b ∈ Dx and thus
a, b, d ∈ [Dx) ∩ (Dx]. Further, a, b 6∈ L and hence d 6∈ L. So d ∈ Dx, and
d ∈ Ex follows.

For any x, y ∈ C with x ≤ y we now set S(x, y) = (Ex\(Ey])∪(Ey\[Ex)).
Since X is a dh-space, the set S(x, y) is clopen and hence the diset S =
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⋃
{K(S(x, y)) | x, y ∈ C and x ≤ y} is clopen as well. For any x ≤ y we

have C ∩ S(x, y) = ∅, and hence also S ∩ C = ∅. Write Fx = Ex \ S for
each x ∈ C. Then Fx ∩ C = {x}, the set Fx is clopen and convex, and
K(Fx) =

⋃
z∈C Fz for all x ∈ C. It is also clear that Fx ∩ Fy = ∅ for all

x, y ∈ C with x 6= y.

Let x, y ∈ C be such that x ≤ y. Let a ∈ Fx. Thus a ∈ Ex and, since
a 6∈S, also a 6∈S(x, y). This means that a ≤ b for some b ∈ Ey. Since S is a
diset, it follows that b 6∈ S, and hence b ∈ Fy. Analogously, for every b ∈ Fy

there exists some a ∈ Fx with a ≤ b. Thus Fx ⊆ (Fy] and Fy ⊆ [Fx).

For x, y ∈ C with x 6≤ y define T (x, y) = [Fx) ∩ Fy. Then T (x, y) is
clopen and T (x, y) ∩ C = ∅. Set T =

⋃
{K(T (x, y)) | x, y ∈ C and x 6≤ y}.

Clearly, the diset T is clopen and T ∩ C = ∅. Write Gx = Fx \ T for every
x ∈ C. Again, Gx ∩ C = {x}, the set Gx is clopen and convex, satisfies
K(Gx) =

⋃
z∈C Gz for all x ∈ C, and Gx ∩ Gy = ∅ for all x, y ∈ C with

x 6= y. As before, Gx ⊆ (Gy] and Gy ⊆ [Gx) for all x, y ∈ C with x ≤ y.
Suppose that a ∈ Gx and b ∈ Gy with x, y∈ C are such that a ≤ b. Then
b 6∈ T . Since b ∈ [Fx)∩Fy, the set T (x, y) is not defined, for else b ∈ T . Thus
x ≤ y. This shows that [Gx) ∩Gy 6= ∅ for some x, y ∈ C only when x ≤ y.

Finally, write Y =
⋃

x∈C Gx. Then Y is a clopen diset. For every y ∈ Y
there exists an x ∈ C with y ∈ Gx. Since the sets Gx with x ∈ C are pairwise
disjoint, setting f(y) = x produces a surjective mapping f : Y → C. Each
of the finitely many sets Gx is clopen, and hence f is continuous. If a ≤ b in
Y , then a ∈ Gf(a) and b ∈ Gf(b) and b ∈ [Gf(a))∩Gf(b). Hence f(a) ≤ f(b),
and f preserves the order.

To show that f has the dh-property, let a ∈ Y and x = f(a). Then
f((a]) ⊆ (f(a)] and f([a)) ⊆ [f(a)) because f preserves order. Suppose that
y ∈ (x] = (f(a)]. Then Gx ⊆ [Gy), and hence there exists some b ∈ Gy

with b ≤ a. But then f(b) = y, and f((a]) = (f(a)] follows. Analogously, if
y ∈ [x) = [f(a)), then Gx ⊆ (Gy] and therefore there exists some b ∈ Gy

with a ≤ b. Now f(b) = y implies f([a)) = [f(a)).

Altogether, f : Y → C is a surjective dh-map, and f(x) = x follows from
Gx ∩ C = {x} for every x ∈ C.

Definition. We say that a diset Y ⊆ X in a dh-space X ∈ FG is a plot
of X if for every poset P ,

CP (Y ) 6= ∅ if and only if CP (X) 6= ∅.

We say that a plot Y of X is minimal when

χP (Y ) = 1 if and only if CP (X) 6= ∅.

It is clear that any X ∈ FG has a finite plot, and hence also a minimal
plot, and that any two minimal plots of X are finite and isomorphic.
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Theorem 2.2. Let Y be a finite plot of X ∈ FG. Then for any finite
diset Z ⊆ X disjoint from Y , and for any dh-map ϕ : Z → Y , there exists
an idempotent f ∈ End(X) with Im(f) = Y and f�Z = ϕ.

P r o o f. Define D = C(Y ) and E = C(Z). Then C = D ∪ E ⊆ C(X) is
finite, and Lemma 2.1 implies the existence of a family {ZC | C ∈ C} of
disjoint clopen disets such that C ⊆ ZC for every C ∈ C, and of idempotent
dh-maps gC ∈ End(ZC) with Im(gC) = C for every C ∈ C.

For any C ∈ E , let ϕC = ϕ�C.
The diset W = X \ (

⋃
{ZC | C ∈ C}) is clopen in X, and hence compact.

Thus W ∈ FG and, again by Lemma 2.1, for every D ∈ C(W ) there exists
an idempotent dh-map gD : ZD → ZD with Im(gD) = D defined on a
clopen diset ZD ⊆W . Since the set W =

⋃
{ZD | D ∈ C(W )} is closed and

hence compact, we may assume that W =
⋃
{ZC | C ∈ F} for some finite

F ⊆ C(W ) ⊆ C(X). Clearly F ∩ C = ∅. Since the sets ZC with C ∈ F are
clopen, we may also assume that they are pairwise disjoint. Since Y is a plot
of X, for each C ∈ F we may choose some dh-map ϕC : C → Y . Then a
mapping f : X → X defined by

f(y) =

{
gC(y) for all y ∈ ZC with C ∈ D,
ϕCgC(y) for all y ∈ ZC with C ∈ E ∪ F ,

is the required idempotent dh-map.

We conclude with a simple but useful observation.

Observation 2.3. Let X ∈ FG, and let f ∈ End(X) be idempotent. If
C ∈ C(X), then Im(f) ∩ C 6= ∅ exactly when C ⊆ Im(f).

P r o o f. If x ∈ Im(f) ∩ C and y ∈ C, then there exists a finite sequence
x = x0, x1, . . . , xn = y such that xi is comparable to xi+1 for every i =
0, . . . , n− 1. The dh-property of f implies that xi ∈ Im(f) for every such i,
and hence also y ∈ Im(f).

3. Recognizable idempotents

Notation. For idempotent maps f, g ∈ End(X) we write f ≤ g if and
only if Im(f) ⊆ Im(g); it is clear that this is also equivalent to gf = f. We
write f ∈ [g] if f ≤ g ≤ f ; this means that Im(f) = Im(g), and we say that f
and g are equivalent . If f 6∈ [g] then we say that f and g are non-equivalent .
If f ≤ g and f 6∈ [g] then we write f < g; this means that Im(f) is properly
contained in Im(g).

Definition. Let X ∈ FG. An idempotent f ∈ End(X) is

• an rh-map of X if, for any poset P ,

(r) χIm(f)(P ) =

{
1 if CP (X) 6= ∅,
0 if CP (X) = ∅,
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• a 2rh-map of X if there exists a poset Pf such that χIm(f)(Pf ) = 2,
and (r) holds for any poset P 6∼= Pf .

We note that, for any X ∈ FG, the image of any rh-map f ∈ End(X) is
a minimal plot of X, and that the image of any 2rh-map contains exactly
two minimal plots of X.

The claim below shows that any minimal plot of X is, in fact, the image
of an rh-map, and gives an abstract characterization of these maps.

Statement 3.1. Let X ∈ FG. Then:

(1) if C ⊆ C(X) is any set such that C∩CP (X) is a single component for
every poset P with CP (X) 6= ∅, then there exists an rh-map f ∈ End(X)
with Im(f) =

⋃
C,

(2) an idempotent f ∈ End(X) is an rh-map if and only if it is a
maximal one with the property that any idempotents g0, g1 ∈ End(X) with
g0, g1 ≤ f and gig1−i = gi for i = 0, 1 must coincide.

P r o o f. By the hypothesis, the set Y =
⋃
C with C ⊆ C(X) from (1) is a

finite plot of X. Hence, by Theorem 2.2, there is an idempotent f ∈ End(X)
with Im(f) = Y . It is clear that f is an rh-map.

To prove (2), suppose first that f ∈ End(X) is an rh-map, and let
g0, g1 ≤ f be idempotents satisfying g0g1 = g0 and g1g0 = g1. Choose an
x∈X arbitrarily, and define Ci =K(gi(x)) for i= 0, 1. Then Ci⊆ Im(gi)⊆
Im(f) for i = 0, 1 because of Observation 2.3, and the hypothesis g0, g1 ≤ f .
From gig1−i = gi it follows that gi(C1−i) = Ci for i = 0, 1. Since no two
distinct components of Im(f) are isomorphic, it follows that C0 = C1 and
hence also g0(x) = g1(x). Thus g0 = g1 as was to be shown. It is clear that
the rh-map f ∈ End(X) is a maximal idempotent with this property.

For the converse implication in (2), assume that an idempotent f ∈
End(X) is not an rh-map. There are two possible reasons for this. Either
Im(f) contains distinct and isomorphic components C0, C1 ∈ C(X), or else
there exists a component C2 ∈ C(X) not isomorphic to any component
of Im(f).

In the first case, select a finite plot S of Im(f) containing C0 and C1.
Then, by Theorem 2.2, there is an idempotent g ∈ End(Im(f)) with
Im(g) = S. Let ϕ1 be an isomorphism of C0 onto C1 and let ϕ0 be the
inverse of ϕ1. Then, for i = 0, 1, the maps

gi(x) =

{
ϕigf(x) for x ∈ (gf)−1(C1−i),
gf(x) for x ∈ X \ (gf)−1(C1−i),

are distinct idempotent endomorphisms of X satisfying gi ≤ f and gig1−i =
gi. We may thus assume that no two components contained in Im(f) are
isomorphic, and that there exists a component C2 ∈ C(X) not isomorphic
to any component of Im(f). It follows that Im(f) can be extended to a
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minimal finite plot T of X containing C2. By (1), there is an rh-map h with
Im(h) = T , and this violates the maximality of f .

Statement 3.2. Let X ∈ FG. Then

(1) for every rh-map f ∈ End(X) and every component C ∈ C(X) with
C ∩ Im(f) = ∅ there exists a 2rh-map g ∈ End(X) with Im(g) = Im(f)∪C,

(2) an idempotent g ∈ End(X) is a 2rh-map if and only if there exist
exactly two non-equivalent rh-maps f0, f1 < g.

P r o o f. Since Im(f) ∪ C is a finite plot of X, the first claim follows
immediately from Theorem 2.2.

Let g ∈ End(X) be a 2rh-map. From the definitions of 2rh-maps and
rh-maps, and from Statement 3.1(1), it follows that there are exactly two
non-equivalent rh-maps f0, f1 ≤ g.

To prove the converse implication in (2), let f0 and f1 be two non-
equivalent rh-maps such that f0, f1 < g. Then Im(f0) 6= Im(f1) are minimal
plots of X, and hence there exist Ci ∈ C(X) such that Ci ⊆ Im(fi)\Im(f1−i)
for i = 0, 1, and also components C ′i ⊆ Im(f1−i) isomorphic to Ci for i = 0, 1.
Since the plot Im(fi) is minimal, we have C ′i ⊆ Im(f1−i)\Im(fi) for i = 0, 1.
Then S = (Im(f0)\C ′1)∪C1 is a minimal plot of X, and hence there is an rh-
map f2 with Im(f2) = S, by Statement 3.1(1). Clearly, f2 < g and f2 6∈ [f0].
But then f2 ∈ [f1] by the hypothesis, and hence Im(f1) = (Im(f0)\C ′1)∪C1.
Therefore C0 = C ′1.

Altogether, C0
∼= C1, Im(f1) = (Im(f0)\C0)∪C1 and Im(f0) = (Im(f1)\

C1) ∪ C0. If Im(g) properly contains Im(f0) ∪ Im(f1), then C ⊆ Im(g) \
(Im(f0)∪ Im(f1)) for some component C and, regardless of whether C ∼= C0

or not, there exists an rh-map f3 6∈ [f0]∪[f1] with Im(f3) ⊆ Im(g). Therefore
Im(g) = Im(f0) ∪ Im(f1), and hence g is a 2rh-map.

Statement 3.3. For X,Y ∈ FG, let Ψ : End(X) → End(Y ) be an
isomorphism, and let f ∈ End(X). Then

(1) f is an rh-map if and only if Ψ(f) is an rh-map;
(2) f is a 2rh-map if and only if Ψ(f) is a 2rh-map.

P r o o f. These are immediate consequences of Statements 3.1(2) and
3.2(2).

The following is a crucial separating property of the collection of all
rh- and 2rh-maps.

Theorem 3.4. For any X ∈ FG and any two distinct points x, y ∈ X
there exists an rh-map or a 2rh-map f ∈ End(X) with f(x) 6= f(y).

P r o o f. If K(x) = K(y) or K(x) 6∼= K(y), then there exists an rh-map
f ∈ End(X) with x, y ∈ Im(f); see Statement 3.1(1). If the components
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K(x) and K(y) are distinct and isomorphic, then there is an rh-map g ∈
End(X) such that K(x) ⊆ Im(g) and K(y)∩Im(g) = ∅, by Statement 3.1(1)
again. But then, by Statement 3.2(1), there is a 2rh-map f ∈ End(X) such
that K(x) ∪K(y) ⊆ Im(f).

4. Blocks

Definition. Any non-trivial maximal collection G of equivalence classes
of rh-maps such that for any two distinct [g0], [g1] ∈ G there exists a 2rh-map
f ∈ End(X) with g0, g1 < f is called a block .

Statement 4.1. Let G be a block in X ∈ FG. Then

(1) if [g0], [g1], [g2] ∈ G are distinct , then Im(g0) \ Im(g1) = Im(g0) \
Im(g2) is a component of X and Im(g0) ∩ Im(g1) = Im(g0) ∩ Im(g2) =
Im(g1) ∩ Im(g2),

(2) if [g0], [g1], [g2], [g3] ∈ G then Im(g0) \ Im(g1) ∼= Im(g2) \ Im(g3)
whenever [g0] 6= [g1] and [g2] 6= [g3],

(3) there exists a finite poset P with χX(P ) > 1 such that the map
β : G → CP (X) defined by β([g]) = Im(g) \ Im(g′) for [g′] ∈ G \ {[g]} is a
bijection,

(4) if [g] ∈ G and if G1 is a block in X such that [g] ∈ G1 6= G, then
for every [g0] ∈ G \ {[g]} and [g1] ∈ G1 \ {[g]} we have (Im(g) \ Im(g0)) ∩
(Im(g) \ Im(g1)) = ∅.

For any rh-map g ∈ End(X) and for any finite poset P with χX(P ) > 1
set S = Im(g) \ (

⋃
{C | C ∈ CP (X)}). For every C ∈ CP (X), let gC ∈

End(X) be an rh-map with Im(gC) = S∪C. Then G = {[gC ] | C ∈ CP (X)}
is a block.

P r o o f. To prove (1), let [g0], [g1], [g2] ∈ G be distinct. If the components
C0 = Im(g0) \ Im(g1), D0 = Im(g0) \ Im(g2) are distinct, then they are
not isomorphic because g0 is an rh-map. Since there exists a 2rh-map h1
with Im(h1) = Im(g0) ∪ Im(g1), from Statement 3.2 it follows that C1 =
Im(g1) \ Im(g0) ∼= C0 ⊆ Im(g2) and D2 = Im(g2) \ Im(g0) ∼= D0 ⊆ Im(g1).
Thus, by Observation 2.3, the components C0, C1, D0 and D2 are contained
in the image of any idempotent f > g1, g2. Hence there is no 2rh-map
f > g1, g2—a contradiction, and C0 = D0 follows. But then C0

∼= D2 as
well, and hence Im(g0)∩ Im(g1) = Im(g0)∩ Im(g2) = Im(g1)∩ Im(g2). This
proves (1), and implies that (2) holds as well.

Let P denote a poset isomorphic to the component C0. From (2) it follows
that χX(P )> 1, and that the map β : G→CP (X) from (3) is well-defined
and injective. The map β is surjective because of the maximal property of G.
This proves (3).
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Now we turn to (4). If G,G1 3 [g] are blocks and if I = (Im(g)\Im(g0))∩
(Im(g) \ Im(g1)) 6= ∅ for some [g0] ∈ G \ {[g]} and [g1] ∈ G1 \ {[g]}, then
I ∈ C(X) is isomorphic to Im(g0) \ Im(g) and Im(g1) \ Im(g). Therefore the
latter two components are isomorphic (or equal), and hence G = G1 by the
maximality of G.

To prove the final claim, it suffices to note that S ∪C is a minimal plot
of X for every C ∈ CP (X), apply Statement 3.1(1) to obtain an rh-map gC
with Im(gC) = S ∪C, and then use Statement 3.2(1) to obtain the requisite
2rh-maps. The maximality of G = {gC | C ∈ CP (X)} is obvious.

Definition. Let P be a finite connected poset. We say that a block G
is a P -block if Im(g0) \ Im(g1) ∈ CP (X) for any two distinct [g0], [g1] ∈ G.

Corollary 4.2. For any P -block G, the map β : G → CP (X) from
Statement 4.1(3) is a bijection. For every rh-map g ∈ End(X) and for
every finite poset P with χX(P ) > 1, there exists exactly one P -block G
with [g] ∈ G.

An immediate consequence of Statement 3.3 and of the definition of a
block is

Statement 4.3. If X,Y ∈ FG and Ψ : End(X) → End(Y ) is an
isomorphism, then G is a block in X exactly when Ψ(G) = {[Ψ(g)] | [g] ∈ G}
is a block in Y .

Lemma 4.4. Let G be a P -block in X. For every C ∈ CP (X), let gC ∈
End(X) denote an rh-map with Im(gC) ∩ C 6= ∅ and [gC ] ∈ G. Let f ∈
End(X) be any rh-map, let [g] ∈ G, and let C ∈ CP (X) be such that
Im(g)∩C = ∅. Then C ⊆ Im(f) if and only if kf 6= g′f for every 2rh-map
k > g, gC and every g′ ∈ [g].

P r o o f. If C ⊆ Im(f), then kf 6= g′f because C ⊆ Im(gC) ⊆ Im(k) and
Im(g′)∩C = Im(g)∩C = ∅. To prove the converse, suppose that C\Im(f) 6=
∅. Then Im(f)∩C = ∅, by Observation 2.3. By Theorem 2.2, there exists a
2rh-map k ∈ End(X) with Im(k) = Im(g) ∪ C and k(Im(f)) ⊆ Im(g). But
then g′ = gk ∈ [g] and kf = g′f , as was to be shown.

5. Three equivalences. Let S be a class of equimorphic objects in FG.
For any X,Y ∈ S choose an isomorphism ΨXY : End(X)→ End(Y ) so that

(C1) for any X,Y, Z ∈ S we have ΨXZ = ΨY ZΨXY ,

(C2) for any X,Y ∈ S, the composite ΨY XΨXY is the identity on
End(X).

Definition. For any finitely generated variety V of double Heyting
algebras, let R(V) denote the class of all dh-spaces X ∈ PV such that
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χX(P ) ≤ 1 for every poset P . In other words, members of R(V) are exactly
all dh-spaces from PV that are their own minimal plots. We define

n1(V) to be the number of non-isomorphic dh-spaces in R(V),
n2(V) = max{|Aut(End(X))| | X ∈ R(V)},
n3(V) = max{|C(X)| | X ∈ R(V)}.
The claim below is an immediate consequence of Theorem 1.5.

Lemma 5.1. For any finitely generated variety V of double Heyting al-
gebras, the cardinals n1(V), n2(V), and n3(V) are finite.

On the class S we now define the first equivalence ∼1 by the requirement
that

Y ∼1 Z if and only if the images of rh-maps in Y and Z are isomorphic.

In other words, for Y,Z ∈ S we write Y ∼1 Z if and only if these dh-spaces
have isomorphic minimal plots. The claim below follows immediately from
Lemma 5.1.

Lemma 5.2. The equivalence ∼1 has at most n1(V) classes.

We need the following observation from [2].

Lemma 5.3 [2]. If X is a dh-space and r ∈ End(X) is idempotent , then
the map ξ : End(Im(r)) → rEnd(X)r defined by ξ(k) = kr is an isomor-
phism of End(Im(r)) onto rEnd(X)r with inverse ξ−1(h) = rh� Im(r).

For any class S1 of the equivalence ∼1 select some X ∈ S1. Choose
an rh-map rX ∈ End(X), and for every Y ∈ S1 set rY = ΨXY (rX). Then
rY ∈ End(Y ) is an rh-map and, because X ∼1 Y , the dh-spaces Im(rX) and
Im(rY ) are isomorphic. Thus for any Y ∈ S1 there exists a dh-isomorphism
ϕY : Im(rX)→ Im(rY ). For any h ∈ End(Im(rX)), write τY (h) = ϕY hϕ

−1
Y .

Then τY : End(Im(rX)) → End(Im(rY )) is a monoid isomorphism such
that ϕY h = τY (h)ϕY for every h ∈ End(Im(rX)), or, equivalently, for any
g ∈ End(Im(rY )) we have τ−1Y (g)ϕ−1Y = ϕ−1Y g.

By Lemma 5.3, for any Y ∈S, the map ξY : End(Im(rY ))→rY End(Y )rY
given by ξY (h) = hrY is an isomorphism whose inverse ξ−1Y is given by
ξ−1Y (k) = k� Im(rY ) for every k ∈ rY End(Y )rY . Furthermore, the domain-
range restriction of ΨY Z maps rY End(Y )rY ⊆ End(Y ) bijectively onto
rZ End(Z)rZ ⊆ End(Z) because ΨY Z(rY ) = rZ .

We are now prepared to define the second equivalence ∼2 on S by setting

Y ∼2 Z if and only if Y ∼1 Z and ΨY XξY τY = ΨZXξZτZ .

For any Y ∼2 Z, we write φY Z = ϕZϕ
−1
Y .

Lemma 5.4. If the equivalence ∼1 has s1 classes, then the equivalence
∼2 has at most s1n2(V) classes. Furthermore, if Y ∼2 Z, then φY Z :
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Im(rY ) → Im(rZ) is a dh-isomorphism such that , for any y ∈ Im(rY ) and
any f ∈ End(Y ),

φY ZrY f(y) = rZΨY Z(f)φY Z(y).

If also U ∼2 Z, then

φZUφY Z = φY U and

φUY φY U = φY Y is the identity map on Im(rY ).

P r o o f. From Lemma 5.3 it follows that the composite ξ−1X ΨY XξY τY is
an automorphism of End(Im(rX)) for every Y . Thus if the equivalence ∼1

has s1 classes, then the equivalence ∼2 has at most s1n2(V) classes.
Suppose that Y ∼2 Z. Then ΨY XξY τY = ΨZXξZτZ and hence

ξ−1Z ΨXZΨY XξY τY τ
−1
Y = ξ−1Z ΨXZΨZXξZτZτ

−1
Y .

Using (C1) and (C2), it then follows that ξ−1Z ΨY ZξY = τZτ
−1
Y . From the

latter fact and all appropriate definitions, for any f ∈ End(Y ) and y ∈
Im(rY ), we obtain

φY ZrY f(y) = ϕZϕ
−1
Y rY f(y) = ϕZ(τ−1Y (rY f� Im(rY ))ϕ−1Y (y)

= τZ(τ−1Y (rY f� Im(rY )))ϕZϕ
−1
Y (y)

= ξ−1Z ΨY ZξY (rY f� Im(rY ))φY Z(y)

= ξ−1Z ΨY Z(rY frY )φY Z(y) = ξ−1Z (rZΨY Z(f)rZ)φY Z(y)

= rZΨY Z(f)φY Z(y).

The remaining two equalities are obvious.

For each class S2 of the second equivalence, select and fix some X ∈ S2.
Define

T = {P | P is a poset, χX(P ) > 1}, and

P = {P | P is a poset, χX(P ) ≥ 1}.
For each P ∈ T, let GP denote the P -block in X that contains [rX ].

Let Y ∼2 X. Then, by Statement 4.3, for every P ∈ T there is a poset
Q such that the collection ΨXY (GP ) is a Q-block in Y . Define γY (P ) = Q.
Then γY (P ) ∈ P because Im(rY ) is isomorphic to Im(rX), and the mapping
γY : T→ P thus defined is one-to-one because ΨXY is an isomorphism and
rY is an rh-map.

We now define the third equivalence ∼3 on S by requiring that

Y ∼3 Z if and only if Y ∼2 Z and γY = γZ .

Lemma 5.5. If the equivalence ∼2 has s2 equivalence classes then the
equivalence ∼3 has fewer than 3s2n3(V)! equivalence classes. If Y ∼3 Z
and P is a poset , then G is a P -block in Y exactly when ΨY Z(G) is a
P -block in Z.
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P r o o f. Let Y ∼3 Z. Since T ⊆ P, the map γ−1Y γZ is a partial permu-
tation of P, and the first claim follows immediately. The second claim is a
direct consequence of the definition of the third equivalence.

Let Y ∼3 Z. For each C∈ C(Y ) with Im(rY )∩C = ∅, select some rh-map
gC ∈ End(Y ) with C ∩ Im(gC) 6= ∅ for which [gC ] belongs to the C-block
containing [rY ]. Then the component C = Im(gC)\ Im(rY ) is isomorphic to
Im(rY ) \ Im(gC) ∈ C(Y ).

Define a mapping εY Z : C(Y )→ C(Z) by setting, for every C ∈ C(Y ),

εY Z(C) =

{
φY Z(C) if C ∩ Im(rY ) 6= ∅,
Im(ΨY Z(gC)) \ Im(rZ) if C ∩ Im(rY ) = ∅.

The map εY Z is well-defined since φY Z maps Im(rY ) isomorphically onto
Im(rZ) and because ΨY Z maps any block G containing [rY ] bijectively onto
a block containing [rZ ]. It is also clear that the definition of εY Z does not
depend on the particular choice of the rh-maps gC with C ∩ Im(rY ) = ∅.

Lemma 5.6. Let Y ∼3 Z ∼3 U . Then

(1) C ∩ Im(rY ) 6= ∅ if and only if εY Z(C) ∩ Im(rZ) 6= ∅, for every
C ∈ C(Y ),

(2) εY Z(C) ∼= C for every C ∈ C(Y ),
(3) εY U = εZUεY Z ,
(4) εZY εY Z is the identity of C(Y ),
(5) if f ∈ End(Y ) is an rh-map and C ∈ C(Y ), then C ⊆ Im(f) if and

only if εY Z(C) ⊆ Im(ΨY Z(f)).

P r o o f. Assume first that C ∩ Im(rY ) 6= ∅. Lemma 5.4 gives φY ZrY =
rZφY Z , and hence εY Z(C) = φY Z(C) intersects Im(rZ). But then C is
a component of Im(rY ), and φY Z(C) is a component of Im(rZ) because
φY Z : Im(rY )→ Im(rZ) is an isomorphism. This proves (2) for any C with
C ∩ Im(gC) 6= ∅, and one implication in (1). From Lemma 5.4 it also follows
that (3) and (4) hold for any C with C ∩ Im(rY ) 6= ∅.

Secondly, assume that C ∩ Im(gC) = ∅. Then there is a C-block G in
Y containing both [rY ] and [gC ] 6= [rY ]. The block ΨY Z(G) then contains
[ΨY Z(gC)] 6= [rZ ], and Im(ΨY Z(gC)) \ Im(rZ) ∼= C because of Lemma 5.5.
This completes the proof of (1) and (2). The remainder of (3) and (4) follows
from (C1), (C2) and the definition of εY Z .

Finally, (5) follows from Lemma 4.4 and the fact that the isomorphism
ΨY Z preserves rh-maps, 2rh-maps and blocks.

Let S3 be a class of the third equivalence. Select and fix some dh-space
X ∈ S3. Let C ∈ C(X) be such that C ∩ Im(rX) = ∅. Then, as we already
know, there is a C-block GC such that [rX ], [g′C ] ∈ GC for an rh-map g′C
with Im(g′C) \ Im(rX) = C.
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To continue the argument, we need a more specific choice of rh-maps
respectively equivalent to rX and g′C . By Theorem 2.2, for every C ∈ C(X)
with C ∩ Im(rX) = ∅, there exist rh-maps gC with Im(gC) \ Im(rX) = C
and hC ∈ [rX ] such that gChC = gC and hCgC = hC . For any C ∈ C(X)
contained in Im(rX), we select gC = hC = rX .

For any Y ∈ S3 and any component D ∈ C(Y ) define C = εY X(D)
and gD = ΨXY (gC), hD = ΨXY (hC). Clearly, gDhD = gD, hDgD = hD,
hD ∈ [rY ], and [gD] ∈ GD in Y .

For any Y ∼3 Z we now define a mapping σY Z : Y → Z by

σY Z(x) =

{
φY Z(x) if x ∈ Im(rY ),
ΨY Z(gK(x))φY ZhK(x)(x) if x ∈ Y \ Im(rY ).

Since gC = hC = rY for any C ∈ C(Y ) contained in Im(rY ), and because
ΨY Z(rY ) = rZ , we may simply write

σY Z(x) = ΨY Z(gK(x))φY ZhK(x)(x) for all x ∈ Y.
Statement 5.7. Let Y ∼3 Z ∼3 U . Then

(1) σY Z : Y → Z is a bijection,
(2) σY Z preserves order and has the dh-property,
(3) σY U = σZUσY Z ,
(4) σZY σY Z is the identity map of Y ,
(5) σY Z(Im(f)) =

⋃
{εY Z(C) | C ∈C(Y ) and C⊆ Im(f)}= Im(ΨY Z(f))

for every rh-map f ∈ End(Y ).

P r o o f. First, the restriction σY Z� Im(rY ) = φY Z satisfies the first four
claims because φY Z : Im(rY ) → Im(rZ) is a dh-isomorphism for which the
second and the third claims of Lemma 5.4 hold.

Let D∈C(Y ) be such that D∩Im(rY )=∅. Then σY Z(D) is a component
of C(Z) disjoint from Im(rZ), by Lemma 5.6 and the definition of σY Z . Also,
the restriction of σY Z to any such D is a dh-isomorphism, so that (2) holds.
The composition properties (3) and (4) hold on Y \ Im(rY ) because of the
definition of σY Z and similar composition properties of εY Z and φY Z ; see
Lemmas 5.4 and 5.6. The fact that εY Z : C(Y ) → C(Z) is a bijection, and
(1), follow from what was already noted.

Finally, (5) is a consequence of the definition of σY Z and Lemma 5.6(5).

Lemma 5.8. Let Y ∼3 Z. If f ∈ End(Y ) is an rh-map or a 2rh-map,
then

(e) σY Zf = ΨY Z(f)σY Z .

P r o o f. Our proof has three steps.

Step 1. Suppose that f ∈ End(Y ) is such that Im(f) ⊆ Im(rY ). Since
this assumption is equivalent to rY f = f and because ΨY Z(rY ) = rZ , we
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also have Im(ΨY Z(f)) ⊆ Im(rZ). Thus for every y ∈ Im(rY ) we obtain, using
Lemma 5.4, ΨY Z(f)σY Z(y) = rZΨY Z(f)φY Z(y) = φY ZrY f(y) = σY Zf(y).
If y ∈ Y \Im(rY ), then for C = K(y) we have gC(y) = y and hC(y) ∈ Im(rY ).
Therefore

ΨY Z(f)σY Z(y) = ΨY Z(f)ΨY Z(gC)φY ZhC(y)

= rZΨY Z(f)ΨY Z(gC)φY ZhC(y)

= rZΨY Z(rY fgC)φY ZhC(y) = φY ZrY fgChC(y)

= φY ZfgC(y) = φY Zf(y),

using the definition of σY Z and Lemma 5.4. This shows that (e) holds for
any f ∈ End(Y ) with Im(f) ⊆ Im(rY ).

Step 2. Let f be any rh-map of Y . Let g0 ∈ [rY ] and g1∈ [f ] be rh-maps
satisfying g0g1 = g0 and g1g0 = g1. First we show that

(a) ΨY Z(g1)σY Z(y) = σY Zg1(y) for every y ∈ Im(rY ).

Using g0g1 = g0 and Step 1, we obtain

ΨY Z(g0)ΨY Z(g1)σY Z = ΨY Z(g0)σY Z = σY Zg0(b)

= σY Zg0g1 = ΨY Z(g0)σY Zg1.

Since g1(Im(rY )) = Im(g1) and Im(ΨY Z(g1)) = ΨY Z(g1)(Im(rZ)) =
ΨY Z(g1)σY Z(Im(rY )), from Statement 5.7(5) applied to g1 it now follows
that σY Zg1(Im(rY )) =σY Z(Im(g1)) = Im(ΨY Z(g1)) =ΨY Z(g1)σY Z(Im(rY )).
For every y ∈ Im(rY ) we thus have

(c) ΨY Z(g0)ΨY Z(g1)σY Z(y) = ΨY Z(g0)σY Zg1(y).

But ΨY Z(g0) is injective on Im(ΨY Z(g1)) because ΨY Z(g1)ΨY Z(g0) =
ΨY Z(g1), and (a) follows from (b) and (c).

Since g1g0f = f and g0 ∈ [rY ], from Step 1 and (a) we now deduce that,
for any x ∈ Y ,

σY Zf(x) = σY Zg1g0f(x) = ΨY Z(g1)σY Zg0f(x)

= ΨY Z(g1)ΨY Z(g0f)σY Z(x)

= ΨY Z(g1g0f)σY Z(x) = ΨY Z(f)σY Z(x).

Hence (e) holds for any rh-map f ∈ End(Y ).

Step 3. Suppose that f ∈ End(Y ) is a 2rh-map. Select and fix some
y ∈ Y . Then there exists a plot W of Y containing K(y), whose all other
components are contained in Im(f), and which contains K(f(y)) in case
when K(f(y)) 6∼= K(y). Let g1 be an rh-map with Im(g1) = W .

Then Im(fg1) ⊆ Im(g2) for some rh-map g2. We may assume that g2 is
one-to-one on Im(rY ); see Theorem 2.2. Then there exists some g3 ∈ [rY ]
so that g3g2 = g3 and g2g3 = g2. Set h = g3fg1. Then Im(h) ⊆ Im(rY ) and
g2h = g2fg1 = fg1. Since g1(y) = y, using Steps 1 and 2, we then obtain
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σY Zf(y) = σY Zfg1(y) = σY Zg2h(y) = ΨY Z(g2)σY Zh(y)

= ΨY Z(g2)ΨY Z(h)σY Z(y) = ΨY Z(f)ΨY Z(g1)σY Z(y)

= ΨY Z(f)σY Zg1(y) = ΨY Z(f)σY Z(y).

Therefore (e) holds also for any 2rh-map.

Statement 5.9. If Y ∼3 Z, then σY Z is a dh-isomorphism.

P r o o f. In view of Statement 5.7, we need only prove that σY Z is con-
tinuous.

First we note that, for any compact 0-dimensional space (X, τ),

(A) any collection U of τ -clopen subsets that separates points of X is a
subbase of τ .

Indeed, if σ is the coarsest topology on X for which every U ∈ U is
σ-clopen, then (X,σ) is Hausdorff, and idX : (X, τ) → (X,σ) is continu-
ous. Since (X, τ) is compact, both (X, τ) and (X,σ) are compact Hausdorff
spaces, and hence σ = τ .

Clearly, for any two topological spaces (X, τ) and (Y, σ),

(B) a map f : X → Y is continuous whenever f−1(U) is τ -open for every
U ∈ U from some subbase U of σ.

Now, by Theorem 3.4 and (A), the collection

U = {f−1{z} | z ∈ Im(f), f ∈ End(Z) is an rh-map or a 2rh-map}
is a subbase of the topology on Z. By Statement 3.3, an endomorphism f
of Z is an rh-map (or a 2rh-map) if and only if ΨZY (f) is an rh-map (or
a 2rh-map, respectively). By Lemma 5.8, we have σZY f = ΨZY (f)σZY for
any f ∈ End(Z) which is an rh-map or a 2rh-map. Since σY Z is a bijection
and σZY = σ−1Y Z , for any such f and each z ∈ Im(f) we have σ−1Y Z(f−1{z}) =
ΨZY (f)−1(σ−1Y Z{z}) = ΨZY (f)−1(σZY {z}). Thus σ−1Y Z(f−1{z}) is clopen in
Y , and hence σY Z is continuous, by (B).

Now we are ready to complete the proof of our result.

Proof of Main Theorem. The first claim follows from Lemmas 5.1, 5.2,
5.4, 5.5, and from Statement 5.9.

Turning to the second claim, for any integer n > 0 we consider the dh-
space Pn on the set {0, 1, . . . , 2n+ 1} whose order is given by 2i < 2i+ 1 >
2i+ 2 for i = 0, 1, . . . , n− 1 and 2n < 2n+ 1.

We claim that the double Heyting algebra D(Pn) dual to any such Pn

has only the trivial endomorphism. SincePn is order connected, the algebra
D(Pn) is simple (see Proposition 1.4) and hence every f ∈ End(Pn) is
invertible. If a, b∈Pn then |[a)| = 2 for a = 0 alone, and |(b]|=2 only for b=
2n+1. Since the unique order path connecting 0 to 2n+1 passes through all
other elements of Pn, the identity map is the only dh-endomorphism of Pn.



58 V. KOUBEK AND J. SICHLER

The duals D(Pi) of the posets Pi with 0 < i ≤ n generate a finitely
generated variety Vn of double Heyting algebras that has more than n
non-isomorphic members with isomorphic endomorphism monoids.

Corollary 5.10. For any finitely generated variety V of double Heyting
algebras there is an integer

n < 3n1(V)n2(V)n3(V)!

for which V is n-determined.
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