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A RECIPE FOR FINDING OPEN SUBSETS OF VECTOR SPACES

WITH A GOOD QUOTIENT

BY

A. B I A  L Y N I C K I - B I R U L A AND J. Ś W I Ȩ C I C K A (WARSZAWA)

The present paper is a continuation of [BBŚw2] (1).
The ground field is assumed to be the field C of complex numbers. Let a

reductive group G act on an algebraic variety X and let U be a G-invariant
open subset of X. Recall (cf. [S] and [GIT, Chap. I, 1.10 and 1.12), that a
morphism π : U → Y , where Y is a (complex) algebraic space, is said to be
a good quotient (of U by G) if:

1. the inverse image under π of any open affine neighbourhood in the
space Y is affine and G-invariant,

2. the restriction of the quotient map to the inverse image of any affine
open subset of Y is the classical quotient of an affine variety (by an action
of the reductive group G).

In the general case where Y is assumed to be an algebraic space one
should understand that in point 1 we consider neighbourhoods in the etale
topology.

We consider only separated quotient spaces.
If π : U → Y is a good quotient of U by G, then the space Y is denoted

by U//G.
Let a reductive group G act linearly on a finite-dimensional complex

vector space V . The aim of this paper is to describe all open G-invariant
subsets U ⊆ V such that there exists a good quotient π : U → U//G. First,
notice that, if there exists a good quotient π : U → U//G, then, for any G-
saturated open subset U ′ of U , π(U ′) is open in U//G and π|U ′ : U ′ → π(U ′)
is a good quotient. Therefore, in order to describe all open subsets U with a
good quotient, it is enough to describe the family of all subsets of V which
are maximal with respect to saturated inclusion in the family of all open
subsets U admitting a good quotient π : U → U//G. Such subsets will be
called G-maximal (in V ).
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In Section 1 we describe all G-maximal subsets in case where G = T is
an algebraic torus. In this case, these subsets can be described by means of
some families of polytopes (or of cones) in the real vector space spanned by
the characters of T .

In Section 2 we show that T -maximal sets and their quotient spaces are
toric varieties, and we describe their fans.

Next in Section 3 we show that, if T is a maximal torus in a reductive
group G and U is T -maximal, then

⋂

g∈G gU is open, G-invariant and there
exists a good quotient

⋂

g∈G U →
⋂

g∈G gU//G. Moreover, every G-maximal
subset of V can be obtained in this way. In this general case, we obtain nor-
mal algebraic spaces (not necessarily algebraic varieties) as quotient spaces.

In Section 4 we study the case where the quotient space is quasi-projec-
tive. As a corollary of our results, we deduce that, if G is semisimple, then
any open G-invariant subset U ⊂ V , with algebraic variety as the quotient
space U//G, is G-saturated in V . Thus V is the only G-maximal set with
algebraic variety as quotient. The paper ends with Section 5 containing
some examples.

We frequently use the results obtained in [BBŚw2], where the analogous
questions for actions of reductive groups on projective spaces were consid-
ered.

The present paper is also related to a paper of D. Cox [C], where it is
proved that any toric variety is a good quotient of a canonically defined
open subset of a vector space by an action of a diagonalized group.

1. Case of a torus. Let T be a k-dimensional torus and let X(T ) be
its character group. Let T act linearly on an n-dimensional vector space V .
Then the action can be diagonalized, i.e. there exists a basis {α1, . . . , αn}
of V such that, for every t ∈ T and i = 1, . . . , n, t(αi) = χi(t)αi, where
χi ∈ X(T ). We fix such a basis. Polytopes in X(T ) ⊗ R spanned by 0
and χi, where i ∈ J ⊂ {1, . . . , n} (possibly J = ∅), will be called affinely

distinguished .
The coordinates of a vector v ∈ V in the basis {α1, . . . , αn} are denoted

by v1, . . . , vn. For any v ∈ V , let Pa(v) be the polytope in X(T )⊗R spanned
by 0 and all χi such that vi 6= 0. Then Pa(v) is an affinely distinguished
polytope. If P is an affinely distinguished polytope, then we define

V (P ) = {v ∈ V : Pa(v) = P}.

The closure V (P ) of V (P ) is the T -invariant subspace of V generated
by {αj}j∈J , where j ∈ J if and only if χj ∈ P . It follows that v ∈ V (P ) if
and only if Pa(v) ⊆ P .

For any collection Π of affinely distinguished polytopes, let V (Π) =
⋃

P∈Π V (P ). The following lemma follows from the above:



GOOD QUOTIENTS 99

Lemma 1.1. For any collection Π of affinely distinguished polytopes, the
subset V (Π) ⊆ V is T -invariant. Moreover , V (Π) is open if and only if Π
satisfies the following condition:

(α) if an affinely distinguished polytope P contains a polytope belonging

to Π, then P also belongs to Π.

The next lemma will also be useful:

Lemma 1.2. Let Π be a collection of affinely distinguished polytopes.

Then Π satisfies conditions (α) and (β) if and only if Π satisfies conditions

(α) and (γ), where

(β) if P1, P2 ∈ Π and P1 ∩ P2 is a face of P1, then P1 ∩ P2 ∈ Π,
(γ) if P1, P2 ∈ Π and P1 ∩ P2 is contained in a face F of P1, then

F ∈ Π.

P r o o f. In fact, if Π satisfies (α) and (β) and, for P1, P2 ∈ Π, P1∩P2 is
contained in a face F of P1, then consider the polytope P ′

2 spanned by P2

and F . The intersection P1 ∩ P ′
2 equals F . But by (α), P ′

2 ∈ Π and hence
by (β), F ∈ Π. The converse implication is obvious.

Definition 1.3. For any set U ⊂ V , define A(U) ⊂ V by

v ∈ A(U) ⇔ Pa(v) ∈ {Pa(u) : u ∈ U}.

A(U) will be called the affine combinatorial closure of U .

The main results of the section are the following:

Theorem 1.4. Let Π be a set of affinely distinguished polytopes. Then

V (Π) is open, and there exists a good quotient V (Π) → V (Π)//T if and

only if Π satisfies (α) and (β).

Theorem 1.5. Let U be an open T -invariant subset of V such that a good

quotient U → U//T exists. Then A(U) is T -invariant , open and there exists

a good quotient A(U) → A(U)//T . Moreover , U is T -saturated in A(U).

Theorem 1.6. Let W be a T -maximal subset of V . Then W is affinely

combinatorially closed , i.e. there exists a collection Π of affinely distin-

guished polytopes such that W = V (Π).

Example 1.A. Let p ∈ χ(T ) ⊗ R and let Π(p) be the collection of all
affinely distinguished polytopes containing p. Then Π(p) satisfies (α) and
(β) and hence there exists a good quotient V (Π(p)) → V (Π(p))//T . If
p = 0, then V (Π(p)) = V .

We shall reduce the proofs of the above theorems concerning affine spaces
to the case of projective spaces.

Consider the inclusion ı : V →֒ Pn = Proj(C⊕V ) defined by ı(v1, . . . , vn)
= (1, v1, . . . , vn). We identify v ∈ V and its image ı(v). Consider the action
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of T on Pn induced by the trivial action on C and the given action on V .
Then ı is T -invariant. Notice that the action of T on Pn can be lifted to
the above described action on C ⊕ V . We fix this lifting and hence we are
in the setting considered in [BBŚw2]. The characters corresponding to the
homogeneous coordinates are χ0 = 0, χ1, . . . , χn.

Using the terminology and notation introduced in [BBŚw2], we see that
any affinely distinguished polytope is distinguished with respect to the ac-
tion of T on Pn (i.e. is generated as a convex set by some of the characters
χi, i ∈ {0, . . . , n}) and any distinguished polytope is affinely distinguished
if and only if it contains 0.

Recall that, for any x = (x0, . . . , xn) ∈ Pn, P (x) = conv{χi : xi 6= 0}
and therefore, for any v ∈ V , Pa(v) = P (ı(v)). For any distinguished
polytope P , U(P ) = {x ∈ Pn : P (x) = P} and for any collection Π of
distinguished polytopes, U(Π) =

⋃

P∈Π U(P ). Then it is clear that, for any
affinely distinguished polytope P , V (P ) = U(P )∩V and, for any collection
Π of affinely distinguished polytopes, V (Π) = U(Π)∩V . Moreover, for any
U ⊂ Pn we can define a combinatorial closure C(U) of U in the following
way:

x ∈ C(U) ⇔ P (x) ∈ {P (u) : u ∈ U}.

Notice that, for any U ⊂ V , A(U) = C(U) ∩ V .

Lemma 1.7. V (Π) is T -saturated in U(Π).

P r o o f. Let v ∈ V (Π) and w ∈ Tv ∩ U(Π). Then by [BBŚw2, 2.7]
there exists v′ ∈ Tv and a one-parameter subgroup α : C∗ → T such that
w = limt→0 α(t)v

′. Let (χi ◦α)(t) = tni and let m = min(ni). Then we may
assume that, for i = 0, . . . , n, wi = v′i if ni = m and wi = 0 otherwise.

On the other hand, conv{χi : wi 6= 0} ∈ Π. Thus 0 ∈ conv{χi : wi 6= 0}.
It follows that m=0 and v0= v′0= w0= 1. Hence w∈U(Π)∩ V = V (Π).

Proof of Theorem 1.4. Assume that Π satisfies (α) and (β). Then by
Lemma 1.1, V (Π) is open and T -invariant. Moreover, 0 ∈ P for any
P ∈ Π. Hence, according to Lemma 1.2, Π satisfies condition (η) of [BBŚw2,
Theorem 7.8] and thus there exists a good quotient U(Π) → U(Π)//T . By
Lemma 1.7, V (Π) is T -saturated in U(Π). Hence a good quotient V (Π)→
V (Π)//T exists (and is an open subset of U(Π)//T ).

Now, assume that there exists a good quotient V (Π) → V (Π)//T . U(Π)
is the combinatorial closure of V (Π) in Pn. Hence, by [BBŚw2, (AAA),
Sec. 6], U(Π) is open in Pn and there exists a good quotient U(Π) →
U(Π)//T . Hence, again by [BBŚw2, Theorem 7.8], Π satisfies condition (η)
of that theorem and thus Π satisfies conditions (α) and (β).
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Proof of Theorem 1.5. By [BBŚw2, (AAA), Sec. 6] there exists a good
quotient C(U) → C(U)//T . Once again by (AAA), U is T -saturated in
C(U). Therefore U is T -saturated in A(U). By Lemma 1.2, A(U) is T -
saturated in C(U). Hence there exists a good quotient A(U) → A(U)//T .

Proof of Theorem 1.6. Let U ⊂ V be T -maximal. By Theorem 1.5, U
is T -saturated in A(U) and there exists a good quotient A(U) → A(U)//T .
Hence, by maximality of U , U = A(U). Hence U is combinatorially closed.

Definition 1.8. Let Π be a collection of affinely distinguished polytopes
and let Π1 ⊆ Π. We say that Π1 is saturated in Π if any face of a polytope
P ∈ Π1 which belongs to Π belongs to Π1.

The following proposition follows easily from the above:

Proposition 1.9. Let a collection Π1 of affinely distinguished polytopes

be saturated in Π. Then U(Π1) is T -saturated in U(Π).

Corollary 1.10. Let U be T -maximal. Then U = V (Π), where Π is

maximal with respect to saturated inclusion in the family of collections of

affinely distinguished polytopes satisfying conditions (α), (β) (of Lemmas 1.1
and 1.2).

Let P be an affinely distinguished polytope. Let Cn(P ) denote the cone
with vertex 0 generated by P . If Π is a set of affinely distinguished poly-
topes, then Cn(Π) will denote the set of cones Cn(P ), where P ∈ Π.

Definition 1.11. Any cone with vertex at 0 generated by an affinely
distinguished polytope will be called distinguished . Let Λ be a family of
distinguished cones. Define V (Λ) to be the set of all v ∈ V such that Pa(v)
generates a cone from Λ. Then V (Λ) is said to be determined (or defined)
by Λ. Let Λ be a collection of affinely distinguished cones and let Λ1 ⊆ Λ.
We say that Λ1 is saturated in Λ if any face of a cone C ∈ Λ1 which belongs
to Λ belongs to Λ1.

If C is a distinguished cone, then Π(C) denotes the family of all affinely
distinguished polytopes that generate C. For a family Λ of distinguished
cones, let Π(Λ) be the union of all families Π(C), where C ∈ Λ.

Theorem 1.12. Let Λ be a collection of distinguished cones. Then V (Λ)
is T -invariant. Moreover , V (Λ) is open and there exists a good quotient

V (Λ) → V (Λ)//T if and only if Λ satisfies:

(A) if D ∈ Λ and a distinguished cone D′ contains D, then D′ ∈ Λ,

(B) if D1,D2 ∈ Λ and D1 ∩D2 is a face of D1, then D1 ∩D2 ∈ Λ.

P r o o f. First notice (compare Lemma 1.2) that conditions (A) and (B)
are equivalent to (A) and the following condition:
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(C) if D1,D2 ∈ Λ and D1 ∩ D2 is contained in a face D3 of D1, then
D3 ∈ Λ.

Then consider the set Π = Π(Λ) (of all affinely distinguished polytopes
that generate a cone from Λ). Since Λ satisfies (A) and (C), Π(Λ) satisfies
(α) and (β). Moreover, V (Π) = V (Λ). Thus the theorem follows from
Theorem 1.4.

Theorem 1.13. Let Π be a family of affinely distinguished polytopes

satisfying (α) and (β). Then Cn(Π) satisfies (A) and (B). Moreover , V (Π)
is T -saturated in V (Cn(Π)).

P r o o f. Obviously Cn(Π) satisfies (A), since Π satisfies (α). Now, if
C1, C2 ∈ Cn(Π) and C1 ∩ C2 is a face of C1, then there exist P1, P2 ∈ Π
such that c(P1) = C1, c(P2) = C2 and P1 ∩ P2 is contained in a face of P1

generating C1 ∩ C2. It follows from (γ) that the face belongs to Π. Hence
C1 ∩ C2 ∈ Cn(Π) and thus Cn(Π) satisfies (B).

In order to show that V (Π) is T -saturated in V (Cn(Π)), it is sufficient
to show that Π is saturated (in the sense of Definition 1.8) in Π(Cn(Π)).
If a face F of P ∈ Π belongs to Π(Cn(Π)), then the face generates a cone
from Cn(Π), and hence there exists P0 ∈ Π such that Cn(F ) = Cn(P0).
Then P0 ∩ P ⊆ F and hence, by (γ), F ∈ Π and the proof is complete.

Corollary 1.14. Let U be a T -maximal subset of V . Then there exists

a collection Λ of distinguished cones such that U = V (Λ). Moreover , Λ is

maximal with respect to saturated inclusion.

Example 1.B. Let p ∈ X(T ) ⊗ R and let Λ(p) be the collection of all
cones C such that p ∈ C. Then Λ(p) satisfies conditions (A) and (B). If
p ∈ P0 = conv({0}∪{χi : i = 1, . . . , n}), then Λ(p) is maximal in the family
of collections of affinely distinguished cones ordered by saturated inclusion
and hence V (Λ(p)) is T -maximal.

2. Quotients of combinatorially closed open subsets of vec-

tor spaces. Let, as above, T be a k-dimensional torus acting on an n-
dimensional linear space V and let {α1, . . . , αn} be a basis of V such that,
for any t∈T and i=1,. . . , n, t(αi)=χi(t) · αi, where χi∈X(T ). Moreover,
assume that the action of T is effective. Let S ∼= (C∗)n be a maximal torus
of Gl(n) acting diagonally in the basis {α1, . . . , αn}, i.e. for (s1, . . . , sn) ∈ S,
let

(s1, . . . , sn)(v1, . . . , vn) = (s1v1, . . . , snvn).

Then V is a toric variety with respect to the action of S and the given
action of T is induced by the action of S, where T is embedded in S by
t 7→ (χ1(t), . . . , χn(t)) for t ∈ T . Let x0 = (1, . . . , 1) and consider the torus
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S embedded in V by s 7→ s ·x0. Consider the projective space Pn as a toric
variety with respect to the action of S defined by

(s1, . . . , sn)(x0, . . . , xn) = (x0, s1x1, . . . , snxn).

Then V is a toric subvariety of Pn (with respect to the action of S).
It was noticed in [BBŚw2] that any open, combinatorially closed subset U
in Pn is an open toric subvariety in Pn. Therefore, for any collection Π of
affinely distinguished polytopes such that U(Π) is open, V (Π) = V ∩U(Π)
is a toric variety. If a good quotient V (Π) → V (Π)//T exists, then the torus
S acts on the quotient space. Since S has an open orbit in V (Π), it also has
an open orbit in V (Π)//T . Since V (Π)//T is a normal algebraic variety, it
is a toric variety with respect to the action of some quotient of the torus
S/T .

To any toric subvariety of V there corresponds a fan of strictly convex
cones in the vector space N(S) ⊗ R ∼= R

n, where N(S) ∼= Z
n is the group

of one-parameter subgroups of S. In this section we describe the fan Σ(Π)
corresponding to the toric variety V (Π). Moreover, in the case when a good
quotient V (Π) → V (Π)//T exists, we describe the fan corresponding to this
quotient, considered as a toric variety described as above.

Let εi be a one-parameter subgroup εi : C
∗ → S ∼= (C∗)n, the embedding

onto the ith coordinate. Then {ε1, . . . , εn} is a basis of N(S)⊗ R. For any
J ⊂ {1, . . . , n}, let σ(J) be the cone (with vertex at 0) generated by εi with
i 6∈ J , i.e.

σ(J) =
{

∑

i 6∈J

aiεi : ai ≥ 0
}

.

Moreover, let P (J) denote the affinely distinguished polytope

P (J) = conv({0} ∪ {χj : j ∈ J}) ⊂ X(T )⊗ R.

The definition of σ(J) is, in a sense, dual to the definition of P (J): σ(J)
is spanned (as a cone) by the axes with indices which do not belong to J ,
while P (J) is spanned (as a polytope) by 0 and the characters with indices
belonging to J .

For any point v ∈ V , let J(v) denote the set {i ∈ I : vi 6= 0}. Notice
that then Pa(v) = P (J(v)).

It follows from the general theory of toric varieties that to any fan in
N(S) ⊂ N(S)⊗R there corresponds an S-toric variety. This toric variety is
affine if and only if the fan contains exactly one maximal cone. Moreover,
to a subfan of the fan of a toric variety there corresponds a toric subvariety.
In particular, to a cone σ(J), where J ⊂ {1, . . . , n}, there corresponds an
open, affine toric subvariety V (σ(J)) ⊂ V . Then V (σ(J)) can be described
as

V (σ(J)) = {v ∈ C
n : J ⊂ J(v)}.
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Indeed (see [Oda, Prop. 1.6]), v ∈ V (σ(J)) if and only if there exists α ∈
σ(J) ∩ N(S) such that v = limt→0 α(t)w, where w is a point of the open
orbit, i.e. w ∈ S · x0. But, for any w = (w1, . . . , wn) ∈ S · x0 (i.e. wi 6= 0
for i = 1, . . . , n) and α =

∑

j 6∈J ajεj , where ai are non-negative integers,
limt→0 α(t)w = (v1, . . . , vn), where vi = wi for i ∈ J and vi = 0 otherwise.
Therefore, if v = (v1, . . . , vn) ∈ V (σ(J)), then vi 6= 0 for i ∈ J , hence
J ⊂ J(v).

On the other hand, consider any point v ∈ V such that J ⊂ J(v).
Let s = (s1, . . . , sn), where si = vi for i ∈ J(v), si = 1 for i 6∈ J(v),
and α =

∑

j 6∈J(v) εj . Then s ∈ S, α ∈ σ(J) ∩ N(S) and for w = s · x0,

v = limt→0 α(t)w. Therefore v ∈ V (σ(J)).
Recall that a collection Σ of strictly convex cones is a fan if the following

two conditions are satisfied:

1. if τ ≺ σ and σ ∈ Σ then τ ∈ Σ,
2. if σ1, σ2 ∈ Σ then σ1 ∩ σ2 ≺ σ1,

where, for cones τ, σ, we write τ ≺ σ if τ is a face of σ. Notice that
σ(J1) ≺ σ(J2) if and only if J2 ⊂ J1.

In our case, all σ(J) are cones of the fan Σ0 = {σ(J) : J ⊂ {1, . . . , n}}
and hence the second condition is automatically satisfied. The toric variety
corresponding to a cone σ spanned by some εi, for i ∈ {1, . . . , n}, is a toric
subvariety of V and will be denoted byV (σ). The toric variety corresponding
to a fan Σ ⊂ Σ0 will be denoted by V (Σ). Then V (Σ) =

⋃

σ∈Σ V (σ).
For any collection Π of affinely distinguished polytopes we define a col-

lection of cones by

Σ(Π) = {σ(J) : P (J) ∈ Π}.

Proposition 2.2. Let Π be a collection of affinely distinguished polytopes

satisfying condition (α) of Lemma 1.1. Then Σ(Π) is a fan and

V (Σ(Π)) = V (Π).

P r o o f. Consider two cones σ(J1), σ(J2), where J1, J2 ⊂ {1, . . . , n}.
Assume that σ(J2) ∈ Σ(Π), i.e. P (J2) ∈ Π, and let σ1 ≺ σ2. Then J2 ⊂ J1
and hence P (J2) ⊂ P (J1). It follows from condition (α) that P (J1) ∈ Π.
Therefore Σ(Π) is a fan.

Let v ∈ V (Σ(Π)). Then there exists a set J such that v ∈ V (σ(J)) and
P (J) ∈ Π. It follows that P (J) ⊂ Pa(v) and P (J) ∈ Π. Since Π satisfies
condition (α), we see that Pa(v) ∈ Π and therefore v ∈ V (Π).

Let now v ∈ V (Π). Then P (J(v)) = Pa(v) ∈ Π and hence v ∈
V (σ(J(v))) and σ(J(v)) ∈ Σ(Π). This proves that v ∈ V (Σ(Π)).

We denote by Σmax the collection of all maximal cones of a fan Σ. Any
fan Σ is uniquely determined by its Σmax.
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Remark 2.3. Let Π be a collection of affinely distinguished polytopes
satisfying condition (α) and let J1, . . . , Jm be subsets of {1, . . . , n} minimal
in the set of all subsets Ji with P (Ji) ∈ Π. Then

Σ(Π)max = {σ(J1), . . . , σ(Jm)}.

Example 2.A.

Fig. 1

Let an action of a two-dimensional torus T on C
5 be given by the charac-

ters χ1 = (−2,−2), χ2 = (2,−2), χ3 = (2, 2), χ4 = (−2, 2), χ5 = (3, 3) and
let p= (1, 0) (see Fig. 1). Let J1 = {2, 3} and J2 = {2, 5}. It is easy to see
that J1, J2 are subsets of {1, . . . , 5} which are minimal in the collection of
subsets Ji such that p∈P (Ji). It follows that Σ(Π(p))max = {σ(J1), σ(J2)}.

We have described the fan Σ(Π) of any open subvariety V (Π) ⊂ V and
now, for a subtorus T ⊂ S, we shall construct a fan of the quotient variety
V (Π)//T in the case when this good quotient exists.

Let Π be a collection of affinely distinguished polytopes in R
k such that

V (Π) is open and a good quotient V (Π) → V (Π)//T exists. In order to
describe the fan of the quotient variety V (Π)//T , we first consider the case
when S/T acts effectively on V (Π)//T .

Lemma 2.4. Assume that , for a collection of affinely distinguished poly-

topes Π, V (Π) is open and a good quotient V (Π) → V (Π)//T exists. Then

S/T acts effectively on V (Π)//T if and only if no proper face of the polytope

P0 = conv({0} ∪ {χi : i = 1, . . . , n})

belongs to Π.

P r o o f. We tacitly use the fact that two points have the same image in
the (good) quotient space if and only if the closures of their orbits intersect.
Let S ·x0 be an open orbit of V . Then S ·x0 ⊂ V (P0). If no proper face of P0
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belongs to Π, then all T -orbits contained in V (P0) are closed in V (Π) and,
in particular, S · x0 is T -saturated in V (Π). Therefore S · x0//T ≃ S/T is
an open orbit of S in V (Π)//T and hence S/T acts effectively on V (Π)//T .

If a proper face F of P0 belongs to Π, then any T -orbit contained in S ·x0

has an orbit from V (F ) in its closure. Moreover, the fibres of the canonical
map S/T → V (Π) are of dimension greater than 0 (since F is a proper face
of P0). Hence dimV (Π) < dimS− dimT . It follows that the action of S/T
on V (Π) is not effective.

Let f : N(S)⊗R → N(S/T )⊗R be the morphism induced by the quotient
morphism of the tori. Notice that N(S/T )⊗R ≃ (N(S)⊗R)/(N(T )⊗R).

Before we state the next theorem first recall that any fan Σ is uniquely
determined by the collection Σmax of all cones maximal in Σ.

Theorem 2.5. Assume that V (Π) is open, a good quotient π : V (Π) →
V (Π)//T exists and no proper face of P0 ∈ Π belongs to Π. Then V (Π)//T
is a toric variety with respect to the action of S/T and

{f(σ) ∈ N(S/T )⊗ R : σ ∈ Σ(Π)}max

is the set of all maximal cones in its fan.

P r o o f. It follows from Lemma 2.4 that in this case S/T acts effectively
on the quotient space V (Π)//T and hence the quotient space is a toric
variety with respect to the action of S/T . The quotient morphism V (Π) →
V (Π)//T is then a morphism of an S-toric variety onto an S/T -toric variety
consistent with the homomorphism of tori S → S/T . Let Σ1 be the fan in
N(S/T )⊗R corresponding to the quotient variety. By [Oda, Theorem 1.13],
for every σ ∈ Σ(Π), f(σ) is a strictly convex cone and there exists a cone
τ ∈ Σ1 such that f(σ) ⊂ τ . Since the quotient morphism V (Π) → V (Π)//T
is an affine morphism, we see that, for any open, S/T -invariant affine set
W ⊂ V (Π)//T corresponding to a cone η ∈ Σ1, the set π

−1(W ) is an affine,
open, S-invariant subset of V (Π) and therefore it corresponds to a strictly
convex cone from Σ(Π), and η is the image under f of this cone. It follows
that maximal cones of Σ1 are images of maximal cones of Σ. Moreover, if
σ is maximal in Π, then f(σ) is maximal in the fan of V (Π)//T .

We now show that the general case can be reduced to the case described
in Theorem 2.5.

For any affinely distinguished polytope P , let

VP = {v ∈ V : Pa(v) ⊂ P} and J(P ) = {i ∈ {1, . . . , n} : χi ∈ P}.

Then VP = {(v1, . . . , vn) ∈ V : vi = 0 for i 6∈ J(P )} is a linear subspace
of dimension dimVP = #J(P ). The subtorus SP of S generated by the
one-parameter subgroups εi, i 6∈ J(P ), acts trivially on VP and the torus
SP defined as S/SP acts effectively on VP . Let TP = T/T ∩ SP ⊂ SP . The
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linear subspaces lin{εi : i ∈ J(P )} ⊂ X(S) ⊗ R and linP ⊂ X(T ) ⊗ R are
naturally isomorphic to X(SP )⊗ R and X(TP )⊗ R respectively. Let T (P )
be the subtorus of S generated by T and SP .

Now, let Π be a collection of affinely distinguished polytopes. It fol-
lows from Lemma 1.2 that, in the case when a good quotient π : V (Π) →
V (Π)//T exists, for any affinely distinguished polytope P ∈ Π, there is
exactly one face of P of minimal dimension contained in Π.

Theorem 2.6. Assume that a good quotient π : V (Π) → V (Π)//T exists.

Let P1 be a face of P0 of minimal dimension contained in Π. Then a good

quotient VP1
(ΠP1

) → VP1
(ΠP1

)//TP1
exists and VP1

(ΠP1
)//TP1

is a toric

variety with respect to the induced action of SP1
/TP1

. Moreover , V (Π)//T
is a toric variety with respect to the action of the torus S/T (P1) and there is

a natural isomorphism V (Π)//T ≃ VP1
(ΠP1

)//TP1
equivariant with respect

to the action of the torus S.

P r o o f. Assume first that no proper face of P0 belongs to Π. Then
P1 = P0 and therefore VP1

= V , ΠP1
= Π, S1 = S and T (P ) = T . In this

case, the theorem follows from Theorem 2.5.
Now, assume that a proper face of P0 belongs to Π. Then dimP1 <

dimP0 = k. A polytope P1 is a face of P0 = conv{χi : i ∈ I}) and hence
there exists α0∈N(T ) ≃ X(T )∗ such that 〈α0, χi〉 = 0 for any χi ∈ P1 and
〈α0, χj〉 > 0 for all χj 6∈P1. Moreover, we have assumed that a good quotient
π : V (Π) → V (Π)//T exists and therefore condition (β) of Lemma 1.2 is
satisfied. It follows that, for any polytope P ∈ Π, P ∩P1 is a face of P and
P ∩ P1 ∈ Π.

Consider any point v = (v1, . . . , vn) ∈ V . It follows from the choice of
α0 that the limit limt→0 α0(t)v exists in V and equals (a1, . . . , an), where
ai = vi for i ∈ J(P1) and ai = 0 otherwise. Then, for any v ∈ V with
P (v) ∈ Π, v0 = limt→0 α(t)v exists and P (v0) = P (x) ∩ P1 ∈ Π. Therefore
v0 ∈ V (Π) and π(v) = π(v0). It follows that π(V (Π)) = π(VP1

(ΠP1
)).

Notice that VP1
is closed in V and VP1

∩V (Π) is closed in V (Π), hence a
good quotient VP1

∩V (Π) → VP1
∩V (Π)//T exists. The torus S acts on VP1

with isotropy group SP1 , and T acts with isotropy group T ∩SP1 . Consider
now the collection ΠP1

of distinguished polytopes in X(TP1
⊗R) defined as

ΠP1
= {P ∈ Π : P ⊂ P1}.

Then VP1
∩ V (Π) = VP1

(ΠP1
) and we can now use Theorem 2.5 for the

torus S/SP1 and its subtorus T/(T ∩ SP1).

Example. Let a two-dimensional torus T act on the vector space C
5

with characters χ1 = (−2,−2), χ2 = (2,−2), χ3 = (2, 2), χ4 = (−2, 2),
χ5 = (3, 3) and let p = (1, 0) as in Example 2.3. Obviously no proper face of
the polytope P0 = conv{χ1, . . . , χ5} is contained in Π(p) and hence we can
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use Theorem 2.5. Then the fan of the quotient V (Π(p))//T has maximal
cones f(σ(J1)), f(σ(J2)), where σ(J1) is generated by εi for i 6= 2, 3, σ2 is
generated by εi for i 6= 2, 5, and f is the quotient morphism of vector spaces:
f : N(S)⊗R → N(S/T )⊗R = (N(S)/N(T ))⊗R (the submodule N(T ) is
generated in N(S) by (−2, 2, 2,−2, 3) and (−2,−2, 2, 2, 3)).

We obtain a somewhat simpler picture by considering distinguished cones
instead of affinely distinguished polytopes. This suffices for our purposes,
since any T -maximal set is determined by a family of cones as well as by a
family of polytopes (see Corollary 1.12). To describe this picture, we define,
for any J ⊂ {1, . . . , n}, a distinguished cone

Cn(J) =
{

∑

j∈J

bj · χj : bj ≥ 0
}

⊂ X(T )⊗ R.

Proposition 2.7. Let Λ be a collection of distinguished cones and as-

sume that V (Λ) is open. Let

Σ(Λ) = {σ(J) : Cn(J) ∈ Λ}.

Then V (Λ) is a toric variety and V (Λ) = V (Σ(Λ)).

P r o o f. The open subvariety V (Λ) is defined by a set of affinely distin-
guished polytopes and hence is a toric variety. Assume that v ∈ V (Σ(Λ)),
i.e. there exists J ⊂ {1, . . . , n} such that Cn(J) ∈ Λ and v ∈ V (σ(J)). This
is equivalent to the existence of J ⊂ {1, . . . , n} such that Cn(J) ∈ Λ and
J ⊂ J(v). Therefore Cn(J) ∈ Λ and Cn(J) ⊂ Cn(J(v)). Since V (Λ) is open
it follows that Cn(J(v)) ∈ Λ and hence v ∈ V (Λ).

Assume now that v ∈ V (Λ). Then Cn(J(v)) ∈ Λ and v ∈ V (σ(J(v)))
and therefore v ∈ V (Σ(Λ)).

3. Case of a general reductive group. Let a linear action (repre-
sentation) of G on a linear space V be given. Let T be a maximal torus
of G.

Theorem 3.1. Let U ⊆ V be a T -maximal subset of V . Then
⋂

g∈G gU
is G-invariant and open. Moreover , there exists a good quotient

⋂

g∈G

gU →
⋂

g∈G

gU//G.

P r o o f. Let U1 be a T -maximal subset of Pn containing U as a T -
saturated subset. Then U1 ∩ V = U and hence

⋂

g∈G

gU1 ∩ V =
⋂

g∈G

gU.
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It follows from [BBŚw3, Theorem C] that
⋂

g∈G gU1 is open, G-invariant
and there exists a good quotient

⋂

g∈G

gU1 →
⋂

g∈G

gU1//G.

Moreover (since V is affine and G is reductive), there exists a good quotient
V → V//G. Hence by [BBŚw4, Proposition 1.1] there exists a good quotient

⋂

g∈G

gU →
⋂

g∈G

gU//G.

Theorem 3.2. Let W be a G-maximal set in V . Then there exists a

T -maximal subset U of V such that W =
⋂

g∈G gU .

P r o o f. Since there exists a good quotient W → W//G, there exists
(by [BBŚw3, Corollary 2.3]) a good quotient W → W//T . Then W is
T -saturated in a T -maximal set U in V and, by Theorem 3.1, there exists
a good quotient

⋂

g∈G gU →
⋂

g∈G gU//G. But W is G-saturated in U .

In fact, in order to prove this it suffices to show (by [BBŚw1, Proposition
3.2]) that, for any g ∈ G, W is gTg−1-saturated in

⋂

g∈G gU . Since both W
and

⋂

g∈G gU are G-invariant, it suffices to show that W is T -saturated in
⋂

g∈G gU . But W is T -saturated in U and W ⊂
⋂

g∈G gU ⊂ U . Thus W is
T -saturated in

⋂

g∈G gU and the proof is complete.

4.Quasi-projective quotients. In [BBŚw2] we gave a characterization
of G-invariant open subsets U of projective space Pn with an action of a
reductive group G having a quasi-projective variety as quotient U//G. A
similar characterization is also valid in the case of an action of G on an affine
space V . We first consider the case where G is a torus.

Proposition 4.1. Let U be an open subset of V such that a good quotient

U → U//T exists and the quotient space U//T is quasi-projective. Then there

exists a point p ∈ X(T )⊗ R such that U is saturated in V (Π(p)).

P r o o f. As before consider V as an open subset of projective space Pn.
Then by [BBŚw2, Proposition 7.13], there exists a point p ∈ X(T )⊗R such
that U is T -saturated in U(p) = {x ∈ Pn : p ∈ P (x)}.

But U(p) ∩ V = V (Π(p)). Therefore U ⊂ V (Π(p)) is saturated in
V (Π(p)).

Recall that, for a given subset U ⊂ V , A(U) and C(U) denote the
combinatorial closure of U in V and in Pn, respectively.

Proposition 4.2. Let U be a T -invariant subset of V such that a good

quotient U//T exists and is quasi-projective. Then a good quotient A(U) →
A(U)//T exists and is also quasi-projective.
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P r o o f. It follows from [BBŚw2, Corollary 7.15] that C(U)//T exists
and is quasi-projective. But (by Lemma 1.2) A(U) is T -saturated in C(U).
Therefore a good quotient A(U)//T is an open subset of C(U)//T and hence
is quasi-projective.

Corollary 4.3. Let U be a T -invariant open subset of V . Then a good

quotient U//T exists and is quasi-projective if and only if U is T -saturated
in V (Π(p)) for some p ∈ X(T )⊗ R.

Proposition 4.4. Let U ⊂ V be an open T -invariant variety such that

a good quotient U → U//T exists. Then U//T is projective if and only if

there exists a point p in conv{0, χ1, . . . , χn} \ conv{χ1, . . . , χn} such that

U = V (Π(p)).

P r o o f. As before consider U as an open, T -invariant subset of Pn. Then
C(U) → C(U)//T exists and is projective. But U is T -saturated in C(U),
therefore U = C(U). Then, by [BBŚw2, 7.13], C(U) = {(x0, . . . , xn) ∈ Pn :
p ∈ conv{χj : xj 6= 0}} for some p ∈ X(T ) ⊗ R (as before we assume that
χ0 = 0). It follows that p satisfies, for every x = (x0, . . . , xn) ∈ Pn, the
following condition:

p ∈ P (x) ⇒ x0 6= 0,

and this proves the assertion.

Corollary 4.5. Assume that a torus T acts on V with characters

χ1, . . . , χn. There exists an open, T -invariant subset U in V with projective

variety as quotient if and only if

conv{0, χ1, . . . , χn} \ conv{χ1, . . . , χn} 6= ∅.

Proposition 4.6. Let G semisimple. Let U be an open G-invariant sub-

set of V with a good quotient π : U → U//G, where U//G is an algebraic

variety. Then U is G-saturated in V .

P r o o f. Assume first that U//T is quasi-projective. It follows from [GIT,
1.12] that there exists a G-linearized invertible sheaf L′ on U such U is equal
to the set Xss(L′) of all semistable points of L′. It follows from the definition
of semistable points that there exist a finite family of G-invariant sections
s′1, . . . , s

′
l ∈ L′(U) such that the supports Supp(s′i), i = 1, . . . , l, are affine,

⋃

i Supp(s
′
i) = U and Supp(s′i) are G-saturated in U .

Let L′ correspond to a divisor D′ =
∑

niXi and let {Y1, . . . , Yk} be all
irreducible components of V \ U of codimension 1 in X. Now, any divisor
D =

∑

niXi+
∑

mjYj , where mj ∈ Z
+, determines a unique G0-linearized

(where G0 is the connected component of the identity e ∈ G) invertible sheaf
L on V and we may choose integers mj so that every section s′i extends to
a G0-invariant section si of L defined on V with the same support as s′i
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(comp. [GIT, 1.13]). Then U is G0-saturated (and hence also G-saturated)
in Xss(L).

On the other hand, L is trivial (any line bundle over V is trivial) and
admits a unique (since a connected and semisimple group has no non-trivial

characters) G0-linearization. The G0-linearization of L is trivial, i.e. L
G0

≃
V × C, where the action of G0 on V ×C is given by

g(v, c) = (gv, c)

for every g ∈ G, v ∈ V and c ∈ C. Hence Xss(L) = V and this completes
the proof in the case where U//T is quasi-projective.

Now, let π : U → U//T be a good quotient, where the quotient U//G is
any algebraic variety. Then U//T can be covered by open quasi-projective
subsets, say Wi, for i = 1, . . . , s. It follows from the above that π−1(Wi) are
G-saturated in V . Since a union of G-saturated subsets is G-saturated and
⋃

π−1(Wi) = U , U is G-saturated in V .

Corollary 4.7. Let G be semisimple. Let U be a G-invariant subset

with a good quotient. If the quotient space U//G is an algebraic variety ,
then U//G is quasi-affine. More exactly , it is an open subset in V//G.

5. Examples

Example 5.A. Let T be a one-dimensional torus acting on a linear space
V . Let U be a T -maximal subset of V . Then U = U(Λ) for a collection Λ of
distinguished cones satisfying (A) and (B) (of Theorem 1.12) with vertices at
0 in X(T ) ⊗ R ≃ R

1. But there are only four possibilities for distinguished
cones: {0}, R1, R+ ∪ {0} and R

− ∪ {0}. If the action of T admits both
positive and negative weights (we have fixed an isomorphism T ≃ C

∗, hence
X(T ) = Z), then all these cones are distinguished. Let us consider this case.
If all these cones belong to Λ, then U = V . If some are not in Λ, then since
Λ satisfies conditions (A) and (B), it must be that either

1. {0}, R+ and R
− are not in Λ, or

2. {0} and R+ are not in Λ, or

3. {0} and R
− are not in Λ.

In the first case we obtain U = V \ (V − ∪ V + ∪ V T ) (where V − (resp.
V +) is the subspace of V spanned by all vectors αi of the basis {α1, . . . , αn}
with non-positive (non-negative, respectively) weights χi). But then U is
T -saturated in V , and hence U is not T -maximal. In the second case U =
V \ V +, and finally in the third case U = V \ V −.

If the weights of the action are all non-positive or all non-negative, then
as T -maximal sets we obtain only V and V \ V T .
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Example 5.B. Let T be a 2-dimensional torus. Consider an action
of T on a 6-dimensional linear space determined by the configuration of
characters χi, i = 1, . . . , 6, as in Fig. 2.

Fig. 2

Then consider the following distinguished cones (with vertices at 0) in
χ(T )⊗R ≃ R

2:

1. C1 spanned by χi, i = 1, 4,
2. C2 spanned by χi, i = 2, 5,
3. C3 spanned by χi, i = 3, 6,
4. C4 spanned by all characters χ1, . . . , χ6.

Let Λ = {C1, C2, C3, C4}. Then conditions (A), (B) are satisfied and
hence there exists a good quotient V (Λ) → V (Λ)//T . The open set V (Λ) is

not saturated in V = V (Λ(0)) and since
⋂4

i=1 Ci = {0}, p = 0 is the only
point such that Λ is contained in Λ(p). It follows that the quotient space
U(Λ)//T is not quasi projective (but it is an algebraic variety).

Remark 5.1. In constructing examples of open subsets U ⊂ V with a
good quotient U → U//T the following remark can be useful. Let Λ0 be a
family of distinguished cones. Let Λ be the collection of cones defined by:

C ∈ Λ if and only if there exists a cone C0 ∈ Λ0 such that C0 ⊂ C.

Then Λ satisfies conditions (A) and (B) (and hence also (C)) if and only if
Λ0 satisfies condition (C).

Example 5.C. Let G = Sl(2) act linearly on a vector space V . We show
that V is the only Sl(2)-maximal set in V . By Theorem 3.2 any Sl(2)-
maximal set in V is of the form

⋂

g∈G gU , where U is T -maximal for a
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maximal torus T of Sl(2). But T ≃ C
∗, X(T )⊗R ≃ R

1 and U = U(Λ) for a
collection Λ of distinguished cones with vertices at 0 in X(T )⊗R ≃ R

1. But
there are only four such cones: R1,R+∪{0}, R−∪{0} and {0}. If all belong
to Λ, then U = V and

⋂

g∈G gU= V . If one of them is not in Λ, then either

{0} and R
+ or {0} and R

− are not in Λ. In both cases
⋂

g∈G gU(Λ) is the
complement of the null cone of the action. Hence

⋂

g∈G gU(Λ) isG-saturated
in V . Hence if

⋂

g∈G gU is G-maximal, then
⋂

g∈G gU = V . This proves our
claim.

Example 5.D. We show that, for G = Sl(3), there exists a linear rep-
resentation in a linear space V and an open Sl(3)-invariant subset U ⊂ V
with a good quotient U → U//Sl(3) such that the quotient space U//Sl(3)
is (an algebraic space but) not an algebraic variety.

Consider the example of Nagata [N], i.e. the action of Sl(3) on the space
W5 of forms of degree 5 in three variables x, y, z induced by the natural
action on the 3-dimensional space W1 of linear forms in these variables. It is
known that there exists an open Sl(3)-invariant open subset U0 ⊂ Proj(W5)
with a good quotient but such that the quotient space is not an algebraic
variety (see [BBŚw2, Example 9.4]). Let U be the inverse image of U0 in
W5. Then U0 = U//C∗, where we consider the action of C∗ on W5 and on
U by homotheties. On the other hand, we have an action of Sl(3) on U and
both actions commute. Hence we have an action of Sl(3)×C

∗ on U and we
may consider the good quotients

U → U//C∗ = U0 → U0//Sl(3) = U//Sl(3) ×C
∗.

By [BBŚw3, Corollary 2.3] there exists a good quotient U → U//Sl(3).
Now, U//Sl(3) is an algebraic space but not an algebraic variety since if it
were, then its good quotient U//Sl(3) → (U//Sl(3))//C∗ would have (by
[BBŚw1, Corollary 1.3]) an algebraic variety as quotient space. This would
contradict the fact that (U//Sl(3))//C∗ ≃ U0//Sl(3) and that U0//Sl(3) is
not an algebraic variety.
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