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A RECIPE FOR FINDING OPEN SUBSETS OF VECTOR SPACES
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BY

A. BIALYNICKI-BIRULA anp J. SWIECICKA (WARSZAWA)

The present paper is a continuation of [BBSw2] (1).

The ground field is assumed to be the field C of complex numbers. Let a
reductive group G act on an algebraic variety X and let U be a G-invariant
open subset of X. Recall (cf. [S] and [GIT, Chap. I, 1.10 and 1.12), that a
morphism 7 : U — Y, where Y is a (complex) algebraic space, is said to be
a good quotient (of U by G) if:

1. the inverse image under w of any open affine neighbourhood in the
space Y is affine and G-invariant,

2. the restriction of the quotient map to the inverse image of any affine
open subset of Y is the classical quotient of an affine variety (by an action
of the reductive group G).

In the general case where Y is assumed to be an algebraic space one
should understand that in point 1 we consider neighbourhoods in the etale
topology.

We consider only separated quotient spaces.

If #: U — Y is a good quotient of U by G, then the space Y is denoted
by U//G.

Let a reductive group G act linearly on a finite-dimensional complex
vector space V. The aim of this paper is to describe all open G-invariant
subsets U C V such that there exists a good quotient 7 : U — U//G. First,
notice that, if there exists a good quotient 7 : U — U//G, then, for any G-
saturated open subset U’ of U, 7(U’) is open in U//G and w|U’ : U’ — =w(U’)
is a good quotient. Therefore, in order to describe all open subsets U with a
good quotient, it is enough to describe the family of all subsets of V' which
are maximal with respect to saturated inclusion in the family of all open
subsets U admitting a good quotient 7 : U — U//G. Such subsets will be
called G-mazimal (in V).
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In Section 1 we describe all G-maximal subsets in case where G = T is
an algebraic torus. In this case, these subsets can be described by means of
some families of polytopes (or of cones) in the real vector space spanned by
the characters of T'.

In Section 2 we show that T-maximal sets and their quotient spaces are
toric varieties, and we describe their fans.

Next in Section 3 we show that, if T' is a maximal torus in a reductive
group G and U is T-maximal, then gec 9U is open, G-invariant and there
exists a good quotient () o U — (e 9U//G. Moreover, every G-maximal
subset of V' can be obtained in this way. In this general case, we obtain nor-
mal algebraic spaces (not necessarily algebraic varieties) as quotient spaces.

In Section 4 we study the case where the quotient space is quasi-projec-
tive. As a corollary of our results, we deduce that, if G is semisimple, then
any open G-invariant subset U C V', with algebraic variety as the quotient
space U//G, is G-saturated in V. Thus V is the only G-maximal set with
algebraic variety as quotient. The paper ends with Section 5 containing
some examples.

We frequently use the results obtained in [BBSWQ], where the analogous
questions for actions of reductive groups on projective spaces were consid-
ered.

The present paper is also related to a paper of D. Cox [C], where it is
proved that any toric variety is a good quotient of a canonically defined
open subset of a vector space by an action of a diagonalized group.

1. Case of a torus. Let T be a k-dimensional torus and let X (T") be
its character group. Let T act linearly on an n-dimensional vector space V.
Then the action can be diagonalized, i.e. there exists a basis {ay,...,q,}
of V' such that, for every t € T and ¢ = 1,...,n, t(a;) = x:(t)a,, where
Xi € X(T). We fix such a basis. Polytopes in X(7T) ® R spanned by 0
and x;, where i € J C {1,...,n} (possibly J = (), will be called affinely
distinguished.

The coordinates of a vector v € V' in the basis {a,...,a,} are denoted
by v1,...,v,. For any v € V', let P,(v) be the polytope in X (7T)®R spanned
by 0 and all x; such that v; # 0. Then P,(v) is an affinely distinguished
polytope. If P is an affinely distinguished polytope, then we define

V(P)={veV:P,(v) =P}

The closure V(P) of V(P) is the T-invariant subspace of V generated
by {a;}jes, where j € J if and only if x; € P. It follows that v € V(P) if
and only if P,(v) C P.

For any collection IT of affinely distinguished polytopes, let V(IT) =
Upen V(P). The following lemma follows from the above:
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LEMMA 1.1. For any collection II of affinely distinguished polytopes, the
subset V(II) CV is T-invariant. Moreover, V (II) is open if and only if IT
satisfies the following condition:

() if an affinely distinguished polytope P contains a polytope belonging
to II, then P also belongs to II.

The next lemma will also be useful:

LEMMA 1.2. Let II be a collection of affinely distinguished polytopes.
Then II satisfies conditions («) and (B) if and only if II satisfies conditions
(a) and (), where

(B) if P, Py € II and Py N Py is a face of Py, then Py N Py € 11,

(v) if P, P, € II and Py N Py is contained in a face F of Py, then
Fell.

Proof. In fact, if IT satisfies () and (3) and, for P, P, € II, P, N P is
contained in a face F' of P, then consider the polytope Pj spanned by P,
and F. The intersection P; N Pj equals F'. But by («), Py € II and hence
by (8), F € II. The converse implication is obvious. m

DEFINITION 1.3. For any set U C V, define A(U) C V' by
veAU) < P,(v) € {Pa(u) :ueU}.
A(U) will be called the affine combinatorial closure of U.
The main results of the section are the following;:

THEOREM 1.4. Let II be a set of affinely distinguished polytopes. Then
V(II) is open, and there exists a good quotient V(II) — V(II)//T if and
only if II satisfies (o) and (55).

THEOREM 1.5. Let U be an open T-invariant subset of V' such that a good
quotient U — U//T exists. Then A(U) is T-invariant, open and there exists
a good quotient A(U) — A(U)//T. Moreover, U is T-saturated in A(U).

THEOREM 1.6. Let W be a T-mazimal subset of V.. Then W is affinely
combinatorially closed, i.e. there exists a collection II of affinely distin-
guished polytopes such that W =V (II).

EXAMPLE 1.A. Let p € x(T) ® R and let II(p) be the collection of all
affinely distinguished polytopes containing p. Then IT(p) satisfies () and
(B) and hence there exists a good quotient V(II(p)) — V(II(p))//T. If
p =0, then V(II(p)) = V.

We shall reduce the proofs of the above theorems concerning affine spaces
to the case of projective spaces.

Consider the inclusion 2 : V< P™ = Proj(CaV') defined by 2(vy, ..., v,)
= (1,v1,...,v,). We identify v € V and its image 2(v). Consider the action
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of T on P™ induced by the trivial action on C and the given action on V.
Then 2 is T-invariant. Notice that the action of T on P™ can be lifted to
the above described action on C & V. We fix this lifting and hence we are
in the setting considered in [BBSw2]. The characters corresponding to the
homogeneous coordinates are xg = 0, X1,-- -, Xn-

Using the terminology and notation introduced in [BBSWQ], we see that
any affinely distinguished polytope is distinguished with respect to the ac-
tion of T"on P™ (i.e. is generated as a convex set by some of the characters
Xi, @ € {0,...,n}) and any distinguished polytope is affinely distinguished
if and only if it contains 0.

Recall that, for any x = (zq,...,2z,) € P", P(x) = conv{y; : z; # 0}
and therefore, for any v € V, P,(v) = P(( )) For any distinguished
polytope P, U(P) = {x € P" : P(z) = P} and for any collection II of
distinguished polytopes, U(II) = |Jpc; U(P). Then it is clear that, for any
affinely distinguished polytope P, V(P) = U(P)NV and, for any collection
IT of affinely distinguished polytopes, V(IT) = U(II)NV. Moreover, for any
U C P™ we can define a combinatorial closure C(U) of U in the following
way:

x€C(U) < P(x) e {P(u) :ueU}.
Notice that, for any U C V, A(U) =C(U)NV.

LEMMA 1.7. V(II) is T-saturated in U (IT).

Proof. Let v € V(II) and w € To N U(II). Then by [BBSw2, 2.7]
there exists v € Tv and a one-parameter subgroup « : C* — T such that
w = limg_0 a(t)v'. Let (x;oa)(t) =t™ and let m = min(n;). Then we may
assume that, for ¢ = 0,...,n, w; = v} if n; = m and w; = 0 otherwise.

On the other hand, conv{x; : w; # 0} € II. Thus 0 € conv{x; : w; # 0}.
It follows that m=0 and vo= vy = wo= 1. Hence weU(II)NV =V (II). =

Proof of Theorem 1.4. Assume that IT satisfies (o) and (8). Then by
Lemma 1.1, V(II) is open and T-invariant. Moreover, 0 € P for any
P € II. Hence, according to Lemma 1.2, IT satisfies condition () of [BBSw2,
Theorem 7.8] and thus there exists a good quotient U(II) — U(II)//T. By
Lemma 1.7, V(II) is T-saturated in U(II). Hence a good quotient V (IT)—
V(II)//T exists (and is an open subset of U(IT)//T).

Now, assume that there exists a good quotient V (II) — V' (II)//T. U(II)
is the combinatorial closure of V(II) in P™. Hence, by [BBSw2, (AAA),
Sec. 6], U(II) is open in P™ and there exists a good quotient U(I) —
U(IT)//T. Hence, again by [BBSw2, Theorem 7.8], IT satisfies condition (1)
of that theorem and thus II satisfies conditions («) and (53). =
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Proof of Theorem 1.5. By [BBSWQ, (AAA), Sec. 6] there exists a good
quotient C'(U) — C(U)//T. Once again by (AAA), U is T-saturated in
C(U). Therefore U is T-saturated in A(U). By Lemma 1.2, A(U) is T-
saturated in C'(U). Hence there exists a good quotient A(U) — A(U)//T. =

Proof of Theorem 1.6. Let U C V be T-maximal. By Theorem 1.5, U
is T-saturated in A(U) and there exists a good quotient A(U) — A(U)//T.
Hence, by maximality of U, U = A(U). Hence U is combinatorially closed. m

DEFINITION 1.8. Let IT be a collection of affinely distinguished polytopes
and let II; C II. We say that 11 is saturated in II if any face of a polytope
P € II; which belongs to I belongs to I1;.

The following proposition follows easily from the above:

PRrROPOSITION 1.9. Let a collection 111 of affinely distinguished polytopes
be saturated in IT. Then U(Ily) is T-saturated in U(II).

COROLLARY 1.10. Let U be T-maximal. Then U = V(II), where II is
mazimal with respect to saturated inclusion in the family of collections of
affinely distinguished polytopes satisfying conditions (&), (8) (of Lemmas 1.1
and 1.2).

Let P be an affinely distinguished polytope. Let Cn(P) denote the cone
with vertex 0 generated by P. If II is a set of affinely distinguished poly-
topes, then Cn(/7) will denote the set of cones Cn(P), where P € II.

DEFINITION 1.11. Any cone with vertex at 0 generated by an affinely
distinguished polytope will be called distinguished. Let A be a family of
distinguished cones. Define V' (A) to be the set of all v € V' such that P,(v)
generates a cone from A. Then V(A) is said to be determined (or defined)
by A. Let A be a collection of affinely distinguished cones and let A; C A.
We say that A; is saturated in A if any face of a cone C' € A; which belongs
to A belongs to A;.

If C is a distinguished cone, then IT(C) denotes the family of all affinely
distinguished polytopes that generate C'. For a family A of distinguished
cones, let IT(A) be the union of all families IT(C'), where C € A.

THEOREM 1.12. Let A be a collection of distinguished cones. Then V(A)
is T-invariant. Moreover, V(A) is open and there exists a good quotient
V(A) = V(A)//T if and only if A satisfies:

(A) if D € A and a distinguished cone D’ contains D, then D' € A,

(B) if D1,Ds € A and Dy N Dy is a face of Dy, then Dy N Dy € A.

Proof. First notice (compare Lemma 1.2) that conditions (A) and (B)
are equivalent to (A) and the following condition:
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(C) if D1,Dy € A and Dy N Dy is contained in a face D3 of Dy, then
D3 € A.

Then consider the set IT = IT(A) (of all affinely distinguished polytopes
that generate a cone from A). Since A satisfies (A) and (C), I1(A) satisfies
(o) and (B). Moreover, V(II) = V(A). Thus the theorem follows from
Theorem 1.4. m

THEOREM 1.13. Let II be a family of affinely distinguished polytopes
satisfying () and (8). Then Cn(II) satisfies (A) and (B). Moreover, V (II)
is T-saturated in V(Cn(II)).

Proof. Obviously Cn(I]) satisfies (A), since II satisfies (). Now, if
C1,Cy € Cn(IT) and Cy N Cy is a face of Cq, then there exist P, Py € I1
such that ¢(P;) = Cq, ¢(P2) = Cy and P; N P, is contained in a face of Py
generating Cq N Cy. It follows from () that the face belongs to II. Hence
Cy N Cy € Cn(IT) and thus Cn(I7) satisfies (B).

In order to show that V(II) is T-saturated in V(Cn(II)), it is sufficient
to show that IT is saturated (in the sense of Definition 1.8) in IT(Cn(IT)).
If a face F' of P € II belongs to II(Cn(II)), then the face generates a cone
from Cn(II), and hence there exists Py € II such that Cn(F) = Cn(F).
Then Py N P C F and hence, by (v), F' € II and the proof is complete. m

COROLLARY 1.14. Let U be a T-maximal subset of V. Then there exists
a collection A of distinguished cones such that U = V(A). Moreover, A is
mazimal with respect to saturated inclusion.

EXAMPLE 1.B. Let p € X(T) ® R and let A(p) be the collection of all
cones C such that p € C. Then A(p) satisfies conditions (A) and (B). If
p€ Py=conv({0}U{x; :i=1,...,n}), then A(p) is maximal in the family
of collections of affinely distinguished cones ordered by saturated inclusion
and hence V(A(p)) is T-maximal.

2. Quotients of combinatorially closed open subsets of vec-
tor spaces. Let, as above, T be a k-dimensional torus acting on an n-
dimensional linear space V and let {a1,...,a,} be a basis of V such that,
for any teT and i=1,...,n, t(a;) =x4(t) - o, where x; € X(T'). Moreover,
assume that the action of T is effective. Let S = (C*)™ be a maximal torus
of Gl(n) acting diagonally in the basis {1, ..., a,}, i.e. for (s1,...,8,) € S,
let

(815 vy Sn) (U1, oy Uy) = (8101, ..., SpUR).
Then V is a toric variety with respect to the action of S and the given

action of T is induced by the action of S, where T is embedded in S by
t— (x1(t),...,xn(t)) for t € T. Let 29 = (1,...,1) and consider the torus
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S embedded in V' by s — s-x. Consider the projective space P" as a toric
variety with respect to the action of S defined by

(815 vy Sn)(@oy vy n) = (To, S1T1, - -+, SnTn)-

Then V is a toric subvariety of P™ (with respect to the action of S).
It was noticed in [BBSWQ] that any open, combinatorially closed subset U
in P™ is an open toric subvariety in P"™. Therefore, for any collection II of
affinely distinguished polytopes such that U(II) is open, V(IT) = V. NU(II)
is a toric variety. If a good quotient V (IT) — V(II)//T exists, then the torus
S acts on the quotient space. Since S has an open orbit in V' (IT), it also has
an open orbit in V(IT)//T. Since V(II)//T is a normal algebraic variety, it
is a toric variety with respect to the action of some quotient of the torus
S/T.

To any toric subvariety of V' there corresponds a fan of strictly convex
cones in the vector space N(S) ® R = R"™, where N(S) = Z" is the group
of one-parameter subgroups of S. In this section we describe the fan X'(I7)
corresponding to the toric variety V (II'). Moreover, in the case when a good
quotient V (IT) — V(II)//T exists, we describe the fan corresponding to this
quotient, considered as a toric variety described as above.

Let €; be a one-parameter subgroup ¢; : C* — § = (C*)™, the embedding
onto the ith coordinate. Then {ei,...,e,} is a basis of N(S) ® R. For any
J CA{1,...,n}, let o(J) be the cone (with vertex at 0) generated by ¢; with

i ¢ J, ie.
O'(J) = {Zai&?i ta; > 0}
igJ
Moreover, let P(J) denote the affinely distinguished polytope
P(J) =conv({0}U{x,;:j€J}) Cc X(T)®R.

The definition of o(J) is, in a sense, dual to the definition of P(J): o(J)
is spanned (as a cone) by the axes with indices which do not belong to J,
while P(J) is spanned (as a polytope) by 0 and the characters with indices
belonging to J.

For any point v € V, let J(v) denote the set {i € I : v; # 0}. Notice
that then P,(v) = P(J(v)).

It follows from the general theory of toric varieties that to any fan in
N(S) € N(S)®R there corresponds an S-toric variety. This toric variety is
affine if and only if the fan contains exactly one maximal cone. Moreover,
to a subfan of the fan of a toric variety there corresponds a toric subvariety.
In particular, to a cone o(J), where J C {1,...,n}, there corresponds an
open, affine toric subvariety V' (o(J)) C V. Then V(o(J)) can be described
as

V(e(J) = {veCm:Jc Jw)}
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Indeed (see [Oda, Prop. 1.6]), v € V(o(J)) if and only if there exists o €
o(J) N N(S) such that v = lim;_,0 a(t)w, where w is a point of the open
orbit, i.e. w € S - xg. But, for any w = (wy,...,w,) € S-xg (i.e. w; #0
fori =1,...,n) and o = ng_] ajej, where a; are non-negative integers,
lim;_y0 a(t)w = (v1,...,v,), where v; = w; for i € J and v; = 0 otherwise.
Therefore, if v = (vy,...,v,) € V(o(J)), then v; # 0 for ¢ € J, hence
J C J(v).

On the other hand, consider any point v € V such that J C J(v).
Let s = (s1,...,5n), where s; = v; for i € J(v), s;, = 1 for i € J(v),
and o = 307, €5 Then s € S, a € o(J) N N(S) and for w = s - 2o,
v = limy_,o a(t)w. Therefore v € V(o (J)).

Recall that a collection X of strictly convex cones is a fan if the following
two conditions are satisfied:

1. if <o and o € X then 7 € X,
2. if 01,09 € X then 01 Nogy < 01,

where, for cones 7,0, we write 7 < o if 7 is a face of o. Notice that
o(J1) < o(Jz2) if and only if Jo C J;.

In our case, all o(J) are cones of the fan Xy = {o(J) : J C {1,...,n}}
and hence the second condition is automatically satisfied. The toric variety
corresponding to a cone o spanned by some ¢;, for i € {1,...,n}, is a toric
subvariety of V' and will be denoted by V' (¢). The toric variety corresponding
to a fan X' C Xy will be denoted by V(X). Then V(X)) =, cx V(0).

For any collection IT of affinely distinguished polytopes we define a col-
lection of cones by

$(IT) = {o(J) : P(J) € IT}.

PROPOSITION 2.2. Let II be a collection of affinely distinguished polytopes
satisfying condition («) of Lemma 1.1. Then X (II) is a fan and

V(X(IT)) = V(II).

Proof. Consider two cones o(Jy),0(J2), where Jy, Jo C {1,...,n}.
Assume that o(J3) € X(II), i.e. P(J3) € II, and let 01 < 0. Then Jo C J;
and hence P(Jy) C P(Jp). It follows from condition («) that P(Jy) € II.
Therefore X(IT) is a fan.

Let v € V(X(IT)). Then there exists a set J such that v € V(o(J)) and
P(J) € II. 1t follows that P(J) C P,(v) and P(J) € II. Since II satisfies
condition («), we see that P,(v) € II and therefore v € V(II).

Let now v € V(II). Then P(J(v)) = Pa(v) € II and hence v €
V(o(J(v))) and o(J(v)) € X(II). This proves that v € V(X(I)). =

We denote by X, the collection of all maximal cones of a fan Y. Any
fan X' is uniquely determined by its X, ax.
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REMARK 2.3. Let II be a collection of affinely distinguished polytopes
satisfying condition («) and let Jy, ..., J,, be subsets of {1,...,n} minimal
in the set of all subsets J; with P(J;) € II. Then

E(H)max = {O-(Jl)’ s ’O-(Jm)}'

EXAMPLE 2.A.

X5

X4 X3

O3

X1 X2
Fig. 1

Let an action of a two-dimensional torus 7" on C® be given by the charac-
ters x1 = (=2,-2), x2 = (2,-2), x3 = (2,2), xa = (=2,2), x5 = (3,3) and
let p=(1,0) (see Fig. 1). Let J; ={2,3} and J,={2,5}. It is easy to see
that Jy,Jo are subsets of {1,...,5} which are minimal in the collection of
subsets J; such that pe P(J;). It follows that X (I1(p))max = {o(J1),0(J2)}.

We have described the fan Y (IT) of any open subvariety V(II) C V and
now, for a subtorus 7' C S, we shall construct a fan of the quotient variety
V(II)//T in the case when this good quotient exists.

Let IT be a collection of affinely distinguished polytopes in R¥ such that
V(II) is open and a good quotient V(IT) — V(IT)//T exists. In order to
describe the fan of the quotient variety V' (II)//T, we first consider the case
when S/T acts effectively on V(II)//T.

LEMMA 2.4. Assume that, for a collection of affinely distinguished poly-
topes II, V(II) is open and a good quotient V(II) — V (II)//T exists. Then
S/T acts effectively on V(II)//T if and only if no proper face of the polytope

Py=conv({0}U{x;:i=1,...,n})
belongs to 1I.
Proof. We tacitly use the fact that two points have the same image in

the (good) quotient space if and only if the closures of their orbits intersect.
Let Sz be an open orbit of V. Then S-xg C V(P). If no proper face of P,
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belongs to 11, then all T-orbits contained in V' (F) are closed in V(IT) and,
in particular, S - g is T-saturated in V(II). Therefore S - xz¢//T ~ S/T is
an open orbit of S in V' (II)//T and hence S/T acts effectively on V (II)//T.

If a proper face F' of Py belongs to I1, then any T-orbit contained in S-xg
has an orbit from V(F) in its closure. Moreover, the fibres of the canonical
map S/T — V(II) are of dimension greater than 0 (since F' is a proper face
of Py). Hence dimV(IT) < dim S —dim T'. It follows that the action of S/T
on V(II) is not effective. m

Let f: N(S)®R — N(S/T)®R be the morphism induced by the quotient
morphism of the tori. Notice that N(S/T) @ R ~ (N(S)®R)/(N(T) ® R).

Before we state the next theorem first recall that any fan X' is uniquely
determined by the collection X, of all cones maximal in Y.

THEOREM 2.5. Assume that V (II) is open, a good quotient 7 : V(1) —
V(II)//T exists and no proper face of Py € II belongs to II. Then V (II)//T
is a toric variety with respect to the action of S/T and

[fo) € N(S/T)® R : 0 € Z(IT) hax
1s the set of all mazimal cones in its fan.

Proof. It follows from Lemma 2.4 that in this case S/T acts effectively
on the quotient space V(II)//T and hence the quotient space is a toric
variety with respect to the action of S/T. The quotient morphism V (IT) —
V(II)//T is then a morphism of an S-toric variety onto an S/T-toric variety
consistent with the homomorphism of tori S — S/T. Let ¥y be the fan in
N(S/T)®R corresponding to the quotient variety. By [Oda, Theorem 1.13],
for every o € X(II), f(o) is a strictly convex cone and there exists a cone
T € ¥y such that f(o) C 7. Since the quotient morphism V (IT) — V(II)//T
is an affine morphism, we see that, for any open, S/T-invariant affine set
W C V(II)//T corresponding to a cone n € X, the set 7=1(W) is an affine,
open, S-invariant subset of V' (II) and therefore it corresponds to a strictly
convex cone from Y (IT), and 7 is the image under f of this cone. It follows
that maximal cones of Xy are images of maximal cones of Y. Moreover, if
o is maximal in I7, then f(o) is maximal in the fan of V(II)//T. m

We now show that the general case can be reduced to the case described
in Theorem 2.5.
For any affinely distinguished polytope P, let

Vp={veV:P,(v)C P} and J(P)={ie{l,...,n}:x; € P}.

Then Vp = {(v1,...,vn) € V :v; =0 for i ¢ J(P)} is a linear subspace
of dimension dimVp = #J(P). The subtorus S¥ of S generated by the
one-parameter subgroups ¢;, i € J(P), acts trivially on Vp and the torus
Sp defined as S/ST acts effectively on Vp. Let Tp = T/T N ST C Sp. The
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linear subspaces lin{e; : i € J(P)} C X(S)®R and lin P C X(T) ® R are
naturally isomorphic to X(Sp) ® R and X (Tp) ® R respectively. Let T'(P)
be the subtorus of S generated by T and ST.

Now, let II be a collection of affinely distinguished polytopes. It fol-
lows from Lemma 1.2 that, in the case when a good quotient = : V(II) —
V(II)//T exists, for any affinely distinguished polytope P € II, there is
exactly one face of P of minimal dimension contained in I7.

THEOREM 2.6. Assume that a good quotientw : V(II) — V(II)//T exists.
Let Py be a face of Py of minimal dimension contained in II. Then a good
quotient Vp, (Ilp,) — Vp, (Ilp,)//Tp, exists and Vp (IIp,)//Tp, is a toric
variety with respect to the induced action of Sp,/Tp,. Moreover, V(II)//T
is a toric variety with respect to the action of the torus S/T(Py) and there is
a natural isomorphism V (II)//T ~ Vp, (IIp,)//Tp, equivariant with respect
to the action of the torus S.

Proof. Assume first that no proper face of Py belongs to II. Then
P, = Py and therefore Vp =V, IIp, =11, S; = S and T(P) = T. In this
case, the theorem follows from Theorem 2.5.

Now, assume that a proper face of Py belongs to II. Then dim P, <
dim Py =k. A polytope P; is a face of Py = conv{y; : ¢ € I}) and hence
there exists ag € N(T') ~ X(T)* such that {ag, x;) = 0 for any x; € P; and
(ap, x;) > 0 for all x; ¢ P1. Moreover, we have assumed that a good quotient
m: V(II)— V(II)//T exists and therefore condition () of Lemma 1.2 is
satisfied. It follows that, for any polytope P € II, PN P, is a face of P and
PNnP ell.

Consider any point v = (v1,...,v,) € V. It follows from the choice of
ap that the limit lim; o ag(¢)v exists in V' and equals (a4, ...,a,), where
a; = v; for i € J(Py) and a; = 0 otherwise. Then, for any v € V with
P(v) € II, vy = lim;_,0 a(t)v exists and P(v°) = P(x) N Py € II. Therefore
9 € V(II) and 7(v) = 7(v?). It follows that w(V (II)) = n(Vp, (IIp,)).

Notice that Vp, is closed in V and Vp, NV (I1) is closed in V' (IT), hence a
good quotient Vp, NV (II) — Vp, NV (II)//T exists. The torus S acts on Vp,
with isotropy group S¥', and T acts with isotropy group T'NS**. Consider
now the collection ITp, of distinguished polytopes in X (Tp, ® R) defined as

HPIZ{PGHZPCP1}.

Then Vp, N V(II) = Vp,(IIp,) and we can now use Theorem 2.5 for the
torus S/ST and its subtorus T/(T'N ST1). m

EXAMPLE. Let a two-dimensional torus T act on the vector space C®
with characters x1 = (=2,-2), x2 = (2,-2), x3 = (2,2), x4 = (—2,2),
X5 = (3,3) and let p = (1,0) as in Example 2.3. Obviously no proper face of
the polytope Py = conv{xi,..., X5} is contained in IT(p) and hence we can
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use Theorem 2.5. Then the fan of the quotient V(II(p))//T has maximal
cones f(o(Jy)), f(o(J2)), where o(Jy) is generated by ¢; for i # 2,3, o9 is
generated by ¢; for ¢ # 2,5, and f is the quotient morphism of vector spaces:
f:N(S)®R - N(S/T)®@R = (N(S)/N(T)) ®R (the submodule N(T') is
generated in N(S) by (—2,2,2,—2,3) and (—2,-2,2,2,3)).

We obtain a somewhat simpler picture by considering distinguished cones
instead of affinely distinguished polytopes. This suffices for our purposes,
since any T-maximal set is determined by a family of cones as well as by a
family of polytopes (see Corollary 1.12). To describe this picture, we define,
for any J C {1,...,n}, a distinguished cone

Cn(J) = {ij-xj b > 0} c X(T) 2R
jed
PROPOSITION 2.7. Let A be a collection of distinguished cones and as-
sume that V(A) is open. Let

X(A)={o(J): Cn(J) € A}.
Then V(A) is a toric variety and V(A) = V(X(A)).

Proof. The open subvariety V(A) is defined by a set of affinely distin-
guished polytopes and hence is a toric variety. Assume that v € V(X(A)),
i.e. there exists J C {1,...,n} such that Cn(J) € A and v € V(o(J)). This
is equivalent to the existence of J C {1,...,n} such that Cn(J) € A and
J C J(v). Therefore Cn(J) € A and Cn(J) C Cn(J(v)). Since V(A) is open
it follows that Cn(J(v)) € A and hence v € V(A).

Assume now that v € V(A). Then Cn(J(v)) € A and v € V(a(J(v)))
and therefore v € V(X(A)). =

3. Case of a general reductive group. Let a linear action (repre-
sentation) of G on a linear space V' be given. Let T be a maximal torus

of G.

THEOREM 3.1. Let U C V be a T-maximal subset of V.. Then ﬂgGG gU
is G-invariant and open. Moreover, there exists a good quotient

ﬂ gU — ﬂ qU//G.
geG geG

Proof. Let U; be a T-maximal subset of P"™ containing U as a T-
saturated subset. Then U; NV = U and hence

(oUinV =) gU.

geqG geqG
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It follows from [BBSw3, Theorem C] that ) sec U1 is open, G-invariant
and there exists a good quotient

ﬂ gU1 — ﬂ gUl//G

geG geG

Moreover (since V' is affine and G is reductive), there exists a good quotient
V — V//G. Hence by [BBSw4, Proposition 1.1] there exists a good quotient

(oU = () 9U//G.

geG geG

THEOREM 3.2. Let W be a G-mazimal set in V. Then there exists a
T-mazximal subset U of V' such that W = ﬂgGG qgU.

Proof. Since there exists a good quotient W — W//G, there exists
(by [BBSw3, Corollary 2.3]) a good quotient W — W//T. Then W is
T-saturated in a T-maximal set U in V and, by Theorem 3.1, there exists
a good quotient (,cq gU — (\,cq9U//G. But W is G-saturated in U.

In fact, in order to prove this it suffices to show (by [BBSWL Proposition
3.2]) that, for any g € G, W is gT'g~!-saturated in ﬂgGG gU. Since both W
and [ gec 9U are G-invariant, it suffices to show that W is T-saturated in
Nyeq 9U. But W is T-saturated in U and W C ()¢5 gU C U. Thus W is
T-saturated in [ e gU and the proof is complete. =

4. Quasi-projective quotients. In [BBSWQ] we gave a characterization
of G-invariant open subsets U of projective space P"™ with an action of a
reductive group G having a quasi-projective variety as quotient U//G. A
similar characterization is also valid in the case of an action of G on an affine
space V. We first consider the case where G is a torus.

PROPOSITION 4.1. Let U be an open subset of V' such that a good quotient
U — UJ/T exists and the quotient space U//T is quasi-projective. Then there
exists a point p € X(T) @ R such that U is saturated in V (II(p)).

Proof. As before consider V as an open subset of projective space P™.
Then by [BBSWQ, Proposition 7.13], there exists a point p € X (T') ® R such
that U is T-saturated in U(p) = {x € P" : p € P(z)}.

But U(p) NV = V(II(p)). Therefore U C V(II(p)) is saturated in
V(I(p)). m

Recall that, for a given subset U C V, A(U) and C(U) denote the

combinatorial closure of U in V' and in P", respectively.

PROPOSITION 4.2. Let U be a T-invariant subset of V' such that a good
quotient U//T exists and is quasi-projective. Then a good quotient A(U) —
A(U)//T exists and is also quasi-projective.
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Proof. It follows from [BBSw2, Corollary 7.15] that C(U)//T exists
and is quasi-projective. But (by Lemma 1.2) A(U) is T-saturated in C(U).
Therefore a good quotient A(U)//T is an open subset of C(U)//T and hence
is quasi-projective. m

COROLLARY 4.3. Let U be a T-invariant open subset of V. Then a good

quotient U//T exists and is quasi-projective if and only if U is T-saturated
in V(II(p)) for some p € X(T) @ R.

PROPOSITION 4.4. Let U C V be an open T-invariant variety such that
a good quotient U — U//T exists. Then UJ/T is projective if and only if
there exists a point p in conv{0, x1,...,Xn} \ cONV{Xx1,...,Xn} Such that
U = V(I(p))-

Proof. Asbefore consider U as an open, T-invariant subset of P™. Then
C(U) = C(U)//T exists and is projective. But U is T-saturated in C'(U),
therefore U = C(U). Then, by [BBSw2, 7.13], C(U) = {(x0, ..., x,) € P" :
p € conv{y; : ; # 0}} for some p € X(T') ® R (as before we assume that
Xo = 0). It follows that p satisfies, for every z = (xq,...,x,) € P", the
following condition:

p € P(x) = x9 #0,

and this proves the assertion. m

COROLLARY 4.5. Assume that a torus T acts on V with characters
X1,---5Xn- Lhere exists an open, T-invariant subset U in V' with projective
variety as quotient if and only if

conv{0, X1, -, Xn} \ cONV{X1,..., Xn} # 0.

PROPOSITION 4.6. Let G semisimple. Let U be an open G-invariant sub-
set of V with a good quotient w : U — U//G, where U//G is an algebraic
variety. Then U is G-saturated in V.

Proof. Assume first that U//T is quasi-projective. It follows from [GIT,
1.12] that there exists a G-linearized invertible sheaf £’ on U such U is equal
to the set X*%(L’) of all semistable points of £’. It follows from the definition
of semistable points that there exist a finite family of G-invariant sections
sh,...,8; € L'(U) such that the supports Supp(s}), ¢ = 1,...,[, are affine,
(U, Supp(s}) = U and Supp(s}) are G-saturated in U.

Let £’ correspond to a divisor D' = > n;X; and let {Y7,...,Y;} be all
irreducible components of V' \ U of codimension 1 in X. Now, any divisor
D =Y"n;X;+> m;Y;, where m; € Z*, determines a unique Gy-linearized
(where Gy is the connected component of the identity e € G) invertible sheaf
L on V and we may choose integers m; so that every section s; extends to
a Go-invariant section s; of £ defined on V' with the same support as s,
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(comp. [GIT, 1.13]). Then U is Gy-saturated (and hence also G-saturated)
in X*5(L).

On the other hand, £ is trivial (any line bundle over V' is trivial) and
admits a unique (since a connected and semisimple group has no non-trivial

characters) Go-linearization. The Go-linearization of £ is trivial, i.e. £ ~
V x C, where the action of Gy on V' x C is given by

9(v,¢) = (gv;¢)

for every g € G, v € V and ¢ € C. Hence X*(£) = V and this completes
the proof in the case where U//T is quasi-projective.

Now, let 7 : U — U//T be a good quotient, where the quotient U//G is
any algebraic variety. Then U//T can be covered by open quasi-projective
subsets, say W;, for i = 1,...,s. It follows from the above that 7—(W;) are
G-saturated in V. Since a union of G-saturated subsets is G-saturated and
Unr—t(W;) =U, U is G-saturated in V. =

COROLLARY 4.7. Let G be semisimple. Let U be a G-invariant subset
with a good quotient. If the quotient space U//G is an algebraic variety,
then U//G is quasi-affine. More exactly, it is an open subset in V//G.

5. Examples

EXAMPLE 5.A. Let T be a one-dimensional torus acting on a linear space
V. Let U be a T-maximal subset of V. Then U = U(A) for a collection A of
distinguished cones satisfying (A) and (B) (of Theorem 1.12) with vertices at
0in X(T) ® R ~ R. But there are only four possibilities for distinguished
cones: {0}, R, RT U {0} and R~ U {0}. If the action of T admits both
positive and negative weights (we have fixed an isomorphism 7' ~ C*, hence
X(T) = Z), then all these cones are distinguished. Let us consider this case.
If all these cones belong to A, then U = V. If some are not in A, then since
A satisfies conditions (A) and (B), it must be that either

1. {0}, RT and R~ are not in A, or
2. {0} and R* are not in A, or
3. {0} and R~ are not in A.

In the first case we obtain U = V \ (V- UV UVT) (where V= (resp.
V) is the subspace of V spanned by all vectors «; of the basis {1, ..., a,}
with non-positive (non-negative, respectively) weights x;). But then U is
T-saturated in V', and hence U is not T-maximal. In the second case U =
V\ V*, and finally in the third case U =V \ V.

If the weights of the action are all non-positive or all non-negative, then
as T-maximal sets we obtain only V and V' \ V7.
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ExaMpPLE 5.B. Let T be a 2-dimensional torus. Consider an action
of T on a 6-dimensional linear space determined by the configuration of
characters x;, ¢ =1,...,6, as in Fig. 2.

X3
X2

X4

o X1

X5

Fig. 2

Then consider the following distinguished cones (with vertices at 0) in
X(T) ® R ~ R%:

1. C; spanned by x;, ¢ = 1,4,

2. Cy spanned by x;, ¢ = 2,5,

3. C3 spanned by x;, i = 3,6,

4. Cy spanned by all characters x1,..., X6-

Let A = {C1,C%,C53,C4}. Then conditions (A), (B) are satisfied and
hence there exists a good quotient V(A) — V(A)//T. The open set V(A) is
not saturated in V' = V(A(0)) and since ﬂ?zl C; = {0}, p = 0 is the only
point such that A is contained in A(p). It follows that the quotient space
U(A)//T is not quasi projective (but it is an algebraic variety).

REMARK 5.1. In constructing examples of open subsets U C V with a
good quotient U — U//T the following remark can be useful. Let Ay be a
family of distinguished cones. Let A be the collection of cones defined by:

C € A if and only if there exists a cone Cy € Ay such that Cy C C.
Then A satisfies conditions (A) and (B) (and hence also (C)) if and only if
Ay satisfies condition (C).

ExAMPLE 5.C. Let G = S1(2) act linearly on a vector space V. We show
that V is the only SI/(2)-maximal set in V. By Theorem 3.2 any SI(2)-

maximal set in V is of the form ) gec 9U, where U is T-maximal for a
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maximal torus T of SI(2). But T ~ C*, X(T)®R ~ R! and U = U(A) for a
collection A of distinguished cones with vertices at 0 in X (T)®R ~ R!. But
there are only four such cones: RY, R*U{0}, R~ U{0} and {0}. If all belong
to A, then U =V and [, gU= V. If one of them is not in A, then either
{0} and R* or {0} and R™ are not in A. In both cases (1, gU(A) is the
complement of the null cone of the action. Hence [, gU(A) is G-saturated
in V. Hence if ﬂgEG gU is G-maximal, then ﬂgEG gU = V. This proves our
claim.

EXAMPLE 5.D. We show that, for G = SI(3), there exists a linear rep-
resentation in a linear space V and an open Si(3)-invariant subset U C V
with a good quotient U — U//SI(3) such that the quotient space U//SI(3)
is (an algebraic space but) not an algebraic variety.

Consider the example of Nagata [N], i.e. the action of SI(3) on the space
W5 of forms of degree 5 in three variables z, y, z induced by the natural
action on the 3-dimensional space W7 of linear forms in these variables. It is
known that there exists an open SI(3)-invariant open subset Uy C Proj(Ws)
with a good quotient but such that the quotient space is not an algebraic
variety (see [BBSw2, Example 9.4]). Let U be the inverse image of Uy in
Ws. Then Uy = U//C*, where we consider the action of C* on W5 and on
U by homotheties. On the other hand, we have an action of SI(3) on U and
both actions commute. Hence we have an action of SI(3) x C* on U and we
may consider the good quotients

U — UJJC* = Uy — Uy //SI(3) = UJ/SI(3) x C*.

By [BBSw3, Corollary 2.3] there exists a good quotient U — U//SI(3).
Now, U//SI(3) is an algebraic space but not an algebraic variety since if it
were, then its good quotient U//SI(3) — (U//SI(3))//C* would have (by
[BBSWl, Corollary 1.3]) an algebraic variety as quotient space. This would
contradict the fact that (U//SI(3))//C* ~ U, //SI(3) and that Uy//SI(3) is

not an algebraic variety.
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