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TWO-PARAMETER MULTIPLIERS ON HARDY SPACES

BY

PÉTER S IMON (BUDAPEST)

1. Introduction. In an earlier paper (see Simon [2]) we investigated
some multiplier operators from the so-called dyadic Hardy space Hp to itself
(0 < p ≤ 1). By means of those multipliers and by suitable transformations
from ℓ2 to ℓ2 we defined operators A on Hp which characterize the space Hp

in the following sense: a function f belongs to Hp if and only if Af ∈ Lp.
Moreover, ‖f‖Hp ∼ ‖Af‖p, where “∼” means that the ratio of the two sides
lies between positive constants, independently of f . Among others, for the
Sunouchi operator U we showed the equivalence ‖f‖Hp ∼ ‖Uf‖p (1/2 < p

≤ 1,
T1
0
f = 0).

In the present work we generalize those results to two-dimensional spaces.
As a special case we get the (Hp, Lp)-boundedness of the two-dimensional
Sunouchi operator if 0 < p ≤ 1. This improves a theorem of Weisz [7].

Furthermore, the equivalence ‖f‖Hp ∼ ‖Uf‖p (1/2 < p ≤ 1,
T1
0
f = 0) is

shown also in the two-dimensional case.
To prove these results we apply the atomic decomposition of Lp-bounded

martingales. It is well known that the atomic characterization of the Hardy
spaces Hp (0 < p ≤ 1) plays an important role in the one-dimensional case.
In the two-dimensional case the situation is much more complicated because
the support of a two-dimensional atom can be an arbitrary open set, not
only a dyadic rectangle. However, by a theorem of Weisz [7] in the definition
of p-quasi-locality of operators it is enough to take p-atoms supported on
dyadic rectangles. Furthermore, a p-quasi-local operator which is bounded
from L2 into L2 is also bounded from Hp into Lp (0 < p ≤ 1).

2. Notations. In this section some definitions and notations are intro-
duced. We give a short summary of the basic concepts of Walsh–Fourier
analysis and formulate some known results which play an important role in
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our further investigations. In this connection as well as for more details see
the book by Schipp–Wade–Simon [1].

First of all recall the definition of the Walsh (–Paley) functions wn (n =
0, 1, . . .). Let r be the function defined on [0, 1) by

r(x) :=

{
1 (0 ≤ x < 1/2),
−1 (1/2 ≤ x < 1),

extended to the real line by periodicity of period 1. The Rademacher func-

tions rn (n = 0, 1, . . .) are given by rn(x) := r(2nx) (0 ≤ x < 1). The sys-
tem of the functions rn (n = 0, 1, . . .) is orthonormal (in the usual L2[0, 1)
sense) but incomplete. The product system wn (n = 0, 1, . . .) generated by
rn’s is already a complete and orthonormal system of functions. That is,
wn :=

∏∞
k=0 r

nk

k , where n =
∑∞

k=0 nk2
k (nk = 0, 1) is the binary expansion

of the natural number n = 0, 1, . . .

For f ∈ L1[0, 1) let f̂(n) :=
T1
0
fwn (n = 0, 1, . . .) be the nth Walsh–

Fourier coefficient of the function f . The symbol f̂ will denote the sequence
(f̂(n), n = 0, 1, . . .). The nth partial sum Snf and the nth (C, 1)-mean σnf

of the Walsh–Fourier series
∑∞

k=0 f̂(k)wk are defined by

Snf :=

n−1∑

k=0

f̂(k)wk, σnf :=
1

n

n∑

k=1

Skf (n = 1, 2, . . .).

It is clear that σnf can be written directly in terms of the Walsh–Fourier
coefficients of f as

σnf =

n−1∑

k=0

(1− k/n)f̂(k)wk (n = 1, 2, . . .).

If x, y ∈ [0, 1) are arbitrary and x =
∑∞

k=0 xk2
−k−1, y =

∑∞
k=0 yk2

−k−1

are their dyadic expansions (i.e. xk, yk = 0, 1, where limk xk 6= 1, limk yk
6= 1), then let

x +̇ y :=
∞∑

k=0

|xk − yk|

2k+1

be the so-called dyadic sum of x and y. Furthermore, the (dyadic) convolu-
tion of f, g ∈ L1[0, 1) is defined by

f ∗ g(x) :=

1\
0

f(t)g(x +̇ t) dt (x ∈ [0, 1)).

It follows immediately that for all f ∈ L1[0, 1) and n = 1, 2, . . . ,

Snf = f ∗Dn, σnf = f ∗Kn,
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where

Dn :=
n−1∑

k=0

wk, Kn :=
1

n

n∑

k=1

Dk (n = 1, 2, . . .)

are the exact analogues of the well known (trigonometric) kernel functions of
Dirichlet’s and Fejér’s type, respectively. The functions D2n (n = 0, 1, . . .)
have a nice property which plays a central role in Walsh–Fourier analysis:

(1) D2n(x) =

{
2n (0 ≤ x < 2−n)
0 (2−n ≤ x < 1)

(n = 0, 1, . . .).

Moreover, the following statements will also be used:

(2)

n−1∑

k=0

kwk = n(Dn −Kn) (n = 1, 2, . . .),

(3) 0 ≤ K2s(x) =
1

2

(
2−sD2s(x) +

s∑

l=0

2l−sD2s(x +̇ 2−l−1)
)
,

(4) |Kl(x)| ≤

s∑

t=0

2t−s−1
s∑

i=t

(D2i (x) +D2i(x +̇ 2−t−1)) (2s ≤ l < 2s+1),

(5)

∞∑

k=2s

wk

k
=

∞∑

l=2s+1

Kl

(
1

l − 1
−

1

l + 1

)
−

K2s

2s + 1
−

D2s

2s

(s = 0, 1, . . . ; x ∈ [0, 1)).

The Kronecker product wn,m (n,m = 0, 1, . . .) of two Walsh systems is
said to be the two-dimensional Walsh system. Thus

wn,m(x, y) := wn(x)wm(y) (x, y ∈ [0, 1)).

For the two-dimensional Walsh–Fourier coefficients of a function f ∈
L1[0, 1)2 the same notations will be used as in the one-dimensional case.
That is, let

f̂(n,m) :=

1\
0

1\
0

f(x, y)wn,m(x, y) dx dy (n,m = 0, 1, . . .)

and f̂ := (f̂(n,m); n,m = 0, 1, . . .). Furthermore, let

Sn,mf :=

n−1∑

k=0

m−1∑

l=0

f̂(k, l)wk,l (n,m = 1, 2, . . .)

be the (n,m)th (rectangular) partial sum of the two-dimensional Walsh–
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Fourier series
∑∞,∞

k,l=0 f̂(k, l)wk,l of f ∈ L1[0, 1)2. It is easy to show that

Sn,mf(x, y) =

1\
0

1\
0

f(t, u)Dn(x +̇ t)Dm(y +̇ u) dt du (x, y ∈ [0, 1)).

In the special case n = 2k, m = 2l (k, l = 0, 1, . . .) we have, by (1),

S2k,2lf(x, y) = 2k+l
\

I(x,y)

f (x, y ∈ [0, 1)),

where the dyadic rectangle I(x, y) is defined to be the Cartesian prod-
uct

Ik,l(x, y) := Ik(x)× Il(y).

Here Ij(z) (j = 0, 1, . . . ; z ∈ [0, 1)) stands for the (unique) dyadic inter-
val

Ij(z) := [ν2−j , (ν + 1)2−j) (ν = 0, . . . , 2j − 1)

containing z.

The one-dimensional operator

L1[0, 1) ∋ f 7→
( ∞∑

n=0

|S2nf − σ2nf |
2
)1/2

=: Ũf

was defined and first investigated by Sunouchi [3], [4]. A simple calculation
shows that

Snf − σnf =
n−1∑

k=0

k

n
f̂(k)wk (n = 1, 2, . . .),

which leads obviously to the definition of the so-called two-dimensional

Sunouchi operator U :

Uf :=

[ ∞∑

n=0

∞∑

m=0

( 2n−1∑

k=0

2m−1∑

l=0

kl

2n+m
f̂(k, l)wk,l

)2]1/2
(f ∈ L1[0, 1)2)

(see also Weisz [7]). By the Parseval equality it is clear that U is a bounded
operator from L2[0, 1)2 to itself. This result was extended to the Lp-spaces
(1 < p < ∞) in the one-dimensional case by Sunouchi [4] and in the two-
dimensional case by Weisz [6]. For further comments in this connection see
Section 4.

3. Preliminaries. The Hardy spaces play a very important role in
Walsh–Fourier analysis, especially in the two-dimensional case. (For details
see Weisz [5].) To define them, let Fn,m (n,m = 0, 1, . . .) be the σ-algebra
generated by the dyadic rectangles In,m(x, y) (x, y ∈ [0, 1)). Hence,
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Fn,m := σ({[k2−n, (k + 1)2−n)× [l2−m, (l + 1)2−m) :

k = 0, . . . , 2n − 1; l = 0, . . . , 2m − 1}),

where σ(S) denotes the σ-algebra generated by an arbitrary set system S.
Then the conditional expectation operator relative to Fn,m is just S2n,2m .
A sequence f = (fn,m; n,m = 0, 1, . . .) of integrable functions is said to be
a martingale if

(i) fn,m is Fn,m-measurable for all n,m = 0, 1, . . . and

(ii) S2n,2mfk,l = fn,m for all n,m, k, l = 0, 1, . . . such that n ≤ k and
m ≤ l.

In other words, for all n,m = 0, 1, . . . the function fn,m is a two-dimen-
sional Walsh polynomial of the form

fn,m =

2n−1∑

k=0

2m−1∑

l=0

αk,lwk,l

(with suitable real coefficients αk,l independent of n,m). For example, if
f ∈ L1[0, 1)2 then the sequence (S2n,2mf ; n,m = 0, 1, . . .) is evidently a
martingale (called the martingale generated by f). Of course, f1 :=(fn,0, n=
0, 1, . . .) and f2 := (f0,m,m = 0, 1, . . .) are (one-dimensional) martingales
with respect to the sequence of σ-algebras

σ({[j2−k , (j + 1)2−k) : j = 0, . . . , 2k − 1}) (k = 0, 1, . . .).

The concept of Walsh–Fourier coefficients can be extended to martingales
by setting f̂(k, l) := αk,l (k, l = 0, 1, . . .). That is, f̂ will denote the sequence
of the Walsh–Fourier coefficients of the function or martingale f .

Let ‖g‖p := (
T1
0

T1
0
|g(x, y)|p dx dy)1/p (0 < p < ∞) be the usual Lp-norm

(or quasi-norm) of g ∈ L1[0, 1)2. We say that a martingale f = (fn,m;n,m =
0, 1, . . .) is Lp-bounded if

‖f‖p := sup
n,m

‖fn,m‖p < ∞.

The set of Lp-bounded martingales will be denoted by Lp. Thus, if F ∈
Lp[0, 1)2 then it can be seen that the martingale f generated by F belongs
to Lp and their Lp-norms are equivalent. This means that there exist positive
constants cp, Cp depending only on p such that cp‖f‖p ≤ ‖F‖p ≤ Cp‖f‖p.
(Also later the symbols cp, Cp denote such constants, although not always
the same at different occurrences.) If p > 1 then Lp and Lp[0, 1)2 can be
identified.

The maximal function f∗ and the quadratic variation Qf of a martingale
f = (fn,m; n,m = 0, 1, . . .) are defined by

f∗ := sup
n,m

|fn,m|
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and

Qf :=
( ∞∑

n=0

∞∑

m=0

|fn,m − fn−1,m − fn,m−1 + fn−1,m−1|
2
)1/2

,

where f−1,k := fk,−1 := 0 (k = −1, 0, 1, . . .). It can be shown that for each
0 < p < ∞ the norms (or quasi-norms) ‖f∗‖p and ‖Qf‖p are equivalent:

cp‖f
∗‖p ≤ ‖Qf‖p ≤ Cp‖f

∗‖p.

We introduce the martingale Hardy spaces for 0 < p < ∞ as follows:
denote by Hp the space of martingales f for which

‖f‖Hp := ‖f∗‖p < ∞.

By the equivalence ‖f∗‖p ∼ ‖Qf‖p we get ‖f‖Hp ∼ ‖Qf‖p. We remark that
with the help of the well known Khinchin inequality it is possible to linearize
the quadratic variation in the following sense:

cp‖Qf‖p ≤

1\
0

1\
0

∥∥∥
∞∑

n=0

∞∑

m=0

rn(x)rm(y)(6)

× (fn,m − fn−1,m − fn,m−1 + fn−1,m−1)
∥∥∥
p
dx dy

≤ Cp‖Qf‖p (0 < p ≤ 1)

(for details see Simon [2]).

The atomic decomposition of martingales is a useful characterization in
the theory of some Hardy spaces. Unfortunately, in two dimensions this char-
acterization is much more complicated. Indeed, in the two-dimensional case
the support of an atom is not a dyadic rectangle but an open set. However,
a finer atomic decomposition can be given, that is, the atoms can be de-
composed into elementary rectangle particles (see Weisz [7]). This makes it
possible in some investigations to examine only atoms supported on dyadic
rectangles. To this end, let 0 < p ≤ 1. A function a ∈ L2[0, 1)2 is called a
rectangle p-atom if either a is identically equal to 1 or there exists a dyadic
rectangle I such that

(7)

supp a ⊂ I, ‖a‖2 ≤ |I|1/2−1/p,

1\
0

a(x, t) dt =

1\
0

a(u, y) du = 0 (x, y ∈ [0, 1)),

where |I| is the (two-dimensional) Lebesgue measure of I. We say that a is
supported on I. Although the elements of Hp cannot be decomposed into
rectangle p-atoms, in the investigations of the so-called p-quasi-local opera-
tors it is enough to take such atoms.



MULTIPLIERS ON HARDY SPACES 15

To define the quasi-locality let M be the set of all martingales defined
above and T be a mapping from M to itself. Assume that T is sublinear and
bounded from L2 into L2 (see also Simon [2]). Then T is called p-quasi-local
if there exists δ > 0 such that for every rectangle p-atom a supported on
the dyadic rectangle I and for all r = 0, 1, . . . one has

(8)
\

[0,1)2\Ir

|Ta|p ≤ Cp2
−δr.

Here Ir is the dyadic rectangle defined as follows: Ir := Ir1 × Ir2 , where
I = I1 × I2 for some dyadic intervals I1, I2, and Irj is the (unique) dyadic
interval for which Ij ⊂ Irj and the ratio of the lengths of Irj and Ij is
equal to 2r (j = 1, 2). Then a simple modification of a theorem of Weisz
[7] says that for T to be bounded from Hp into Lp it is enough that T be
p-quasi-local. Hence, in this case ‖Tf‖p ≤ Cp‖f‖Hp (f ∈ Hp).

Let x, y ∈ [0, 1) and

Rx,yf :=

∞∑

n=0

∞∑

m=0

rn(x)rm(y)

× (fn,m − fn−1,m − fn,m−1 + fn−1,m−1) (f ∈ Hp).

If TRx,y = Rx,yT for all x, y ∈ [0, 1), then T is also bounded from Hp to
itself. Indeed, by (6), for every f ∈ Hp we get

‖Tf‖Hp ≤ Cp

1\
0

1\
0

‖T (Rx,yf)‖p dx dy

≤ Cp

1\
0

1\
0

‖Rx,yf‖Hp dx dy ≤ Cp‖f‖Hp .

Furthermore, if T is invertible and its inverse is bounded from Hp to Hp,
then Tf can be estimated inHp norm from below: ‖f‖Hp = ‖T−1(Tf)‖Hp ≤
Cp‖Tf‖Hp . Moreover, ‖Tf‖Hp is equivalent to ‖f‖Hp (f ∈ Hp).

4. Results. In this work we investigate multiplier operators T := Tλ,
i.e. a bounded sequence λ = (λk,l; k, l = 0, 1, . . .) of real numbers is given

and T̂λf = λf̂ (f ∈ M). The boundedness of λ and the well known Parseval
equality imply that Tλ is obviously bounded from L2 into L2.

Let 0 < p ≤ 1. If Tλ is p-quasi-local, then by our previous remarks
Tλ : Hp → Hp is bounded. Moreover, in the case infk,l |λk,l| > 0 the inverse
T−1
λ of Tλ is bounded from L2 into L2. Consequently, the p-quasi-locality

of T−1
λ is enough for T−1

λ : Hp → Hp to be bounded. This leads to the
equivalence ‖Tλf‖Hp ∼ ‖f‖Hp .
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Let Tλf be written in the following form:

Tλf =
∞∑

j=0

∞∑

k=0

λj,kf̂(j, k)wj,k =
∞∑

n=−1

∞∑

m=−1

Λ(λ)
n,m ∗ f,

where Λ
(λ)
−1,−1 ∗ f := λ0,0f̂(0, 0)w0,0,

Λ
(λ)
−1,m ∗ f :=

2m+1−1∑

k=2m

λ0,kf̂(0, k)w0,k ,

Λ
(λ)
n,−1 ∗ f :=

2n+1−1∑

j=2n

λj,0f̂(j, 0)wj,0

Λ(λ)
n,m ∗ f :=

2n+1−1∑

j=2n

2m+1−1∑

k=2m

λj,kf̂(j, k)wj,k (n,m = 0, 1, . . .).

Consider the sequence df of functions defined by

df := (Λ
(λ)
n−1,m−1 ∗ f ; n,m = 0, 1, . . .).

Then Q(Tλf)(x, y) = ‖df(x, y)‖ℓ2 for all x, y ∈ [0, 1). If ℓ denotes the set
of two-dimensional real sequences and δ : ℓ → ℓ is a map satisfying the
ℓ2-boundedness condition ‖δ(u)‖ℓ2 ≤ Cδ‖u‖ℓ2 (u ∈ ℓ, Cδ > 0 is a constant
depending only on δ), then define

∆f(x, y) := δ(df(x, y)) (x, y ∈ [0, 1)).

Since ‖∆f(x, y)‖ℓ2 ≤ Cδ‖df(x, y)‖ℓ2 ≤ CδQ(Tλf)(x, y) (x, y ∈ [0, 1)), the
operator A defined by

Af(x, y) := ‖∆f(x, y)‖ℓ2 (f ∈ Hp, x, y ∈ [0, 1))

satisfies the estimate

‖Af‖p ≤ Cp‖Tλf‖Hp (f ∈ Hp).

Furthermore, if δ is invertible and its inverse δ−1 is ℓ2-bounded, then df(x, y)
= δ−1(∆f(x, y)) (x, y ∈ [0, 1)), i.e.

Q(Tλf)(x, y) = ‖df(x, y)‖ℓ2 ≤ Cδ−1‖∆f(x, y)‖ℓ2 ≤ Cδ−1Af (f ∈ Hp).

This implies the estimate

‖f‖Hp ≤ Cp‖Af‖p (f ∈ Hp),

that is, ‖f‖Hp ∼ ‖Af‖p. For example, let • be the usual convolution in ℓ
and, for a fixed sequence b ∈ ℓ1 consider

δ(u) := u • b (u ∈ ℓ).

Then ‖δ(u)‖ℓ2 ≤ ‖b‖ℓ1‖u‖ℓ2 (u ∈ ℓ), i.e. δ is ℓ2-bounded.
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By a special choice of b and λ we get the Sunouchi operator U as follows.
Let b and λ be defined in the following way:

bn,m :=
1

2n+m+2
,

λ0,0 := 1, λi,j :=
ij

2n+m
, λi,0 := i2−n, λ0,j := j2−m,

where 2n ≤ i < 2n+1, 2m ≤ j < 2m+1 (n,m = 0, 1, . . .). Hence, for f ∈
Hp, i, l = 1, 2, . . . ,

Λ
(λ)
−1,−1 ∗ f = f̂(0, 0)w0,0,

Λ
(λ)
−1,l−1 ∗ f = 21−l

2l−1∑

j=2l−1

f̂(0, j)jw0,j ,

Λ
(λ)
i−1,−1 ∗ f = 21−i

2i−1∑

k=2i−1

f̂(k, 0)kwk,0,

Λ
(λ)
i−1,l−1 ∗ f = 2−i−l−2

2i−1∑

k=2i−1

2l−1∑

j=2l−1

f̂(k, j)kjwk,j

and the sequence ∆f = ((∆f)n,m; n,m = 0, 1, . . .) is the following:

(∆f)n,m =
n∑

i=0

m∑

l=0

2−n−m+i+l−2Λ
(λ)
i−1,l−1 ∗ f

= 2−n−m−2f̂(0, 0) + 2−n−m−1
m∑

l=1

2l−1∑

j=2l−1

jf̂(0, j)w0,j

+ 2−n−m−1
n∑

i=1

2i−1∑

k=2i−1

kf̂(k, 0)wk,0

+ 2−n−m
n∑

i=1

m∑

l=1

2i−1∑

k=2i−1

2l−1∑

j=2l−1

kjf̂(k, j)wk,j

= 2−n−m−2f̂(0, 0) + 2−n−m−1
2m−1∑

j=1

jf̂(0, j)w0,j

+ 2−n−m−1
2n−1∑

k=1

kf̂(k, 0)wk,0 + 2−n−m
2n−1∑

k=1

2m−1∑

j=1

kjf̂(k, j)wk,j .

It follows that

c(Uf − |f̂(0, 0)| − Ũf1 − Ũf2) ≤ Af ≤ C(|f̂(0, 0)| + Ũf1 + Ũf2 + Uf),
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where f1 := (f0,m,m = 0, 1, . . .), f2 := (fn,0, n = 0, 1, . . .) and c, C are

positive constants independent of f . Recall that ‖Ũfj‖Hp ≤ Cp‖f‖Hp (j =
1, 2) (see the one-dimensional case in Simon [2]). We will prove

Theorem. Let λ be defined as above and 0 < p ≤ 1. Then Tλ : Hp → Hp

is bounded. Moreover , if 1/2 < p ≤ 1, then T1/λ : Hp → Hp is bounded.

On account of our previous remarks the first part of the Theorem implies

Corollary 1. For all 0 < p ≤ 1 there exists a constant Cp > 0 depend-

ing only on p such that

‖Uf‖p ≤ Cp‖f‖Hp (f ∈ Hp).

This improves a result of Weisz [7]. More specifically, he proved the same
statement (by another argument) assuming 2/3 < p ≤ 1.

A simple calculation shows that the mapping ℓ ∋ u 7→ b • u ∈ ℓ is a
bijection and its inverse is ℓ ∋ u 7→ b̃ • u ∈ ℓ with the sequence b̃ given by

b̃n,m :=





4 (n = m = 0),
−2 (n = 1,m = 0 or n = 0,m = 1),
1 (n = m = 1),
0 (for other n,m = 0, 1, . . .).

This means that from the second part of the Theorem we get

Corollary 2. If 1/2 < p ≤ 1, then there exists a constant Cp > 0
depending only on p such that

‖f‖Hp ≤ Cp‖|f̂(0, 0)| + Ũf1 + Ũf2 + Uf‖p (f ∈ Hp).

Of course, for some martingales f the norms ‖f‖Hp and ‖Uf‖p are equiv-
alent, that is, if f0,m = fn,0 = 0 (n,m = 0, 1, . . .), then

cp‖f‖Hp ≤ ‖Uf‖p ≤ Cp‖f‖Hp (f ∈ Hp).

5. Proof of the Theorem. Let 0 < p ≤ 1. We prove the boundedness
of Tλ. It is enough to show that Tλ is p-quasi-local, i.e. (8) is true for all
rectangle p-atoms a supported on I. Without loss of generality it can be
assumed that

I = [0, 2−N )× [0, 2−M )

for some N,M = 0, 1, . . . Let r = 0, 1, . . . Then\
[0,1)2\Ir

|Tλa|
p ≤

4∑

i=1

\
Ai

|Tλa|
p,

where

A1 := [2−N+r, 1)× [0, 2−M ), A2 := [2−N , 1)× [2−M+r, 1),

A3 := [0, 2−N )× [2−M+r, 1), A4 := [2−N+r, 1) × [2−M , 1).
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We will show that

(9)
\
Ai

|Tλa|
p ≤ Cp2

−rδ (i = 1, 2, 3, 4)

with a suitable positive δ independent of a and r. It is clear that the proof
for i = 3 and 4 is the same as for i = 1 and 2, respectively. Consequently,
we give details for i = 1 and i = 2 only.

First we examine the case i = 1. By the definition of the rectangle p-atom
(see (7)) we have

(10) â(n,m) = 0

if n < 2N or m < 2M . Therefore

Tλa =
∞∑

i=N

∞∑

j=M

2i+1−1∑

k=2i

2j+1−1∑

l=2j

kl

2i+j
â(k, l)wk,l,

i.e. \
A1

|Tλa|
p =

1\
2−N+r

2−M\
0

|Tλa|
p

≤

1\
2−N+r

2−M\
0

∞∑

i=N

∣∣∣∣
2i+1−1∑

k=2i

k

2i

∞∑

j=M

2j+1−1∑

l=2j

l

2j
â(k, l)wk,l

∣∣∣∣
p

=

∞∑

i=N

1\
2−N+r

2−M\
0

∣∣∣∣
2−N\
0

2−M\
0

a(s, t)

2i+1−1∑

k=2i

k

2i
wk(x +̇ s)

×

∞∑

j=M

2j+1−1∑

l=2j

l

2j
wl(y +̇ t) ds dt

∣∣∣∣
p

dy dx.

Using Hölder’s inequality we conclude that\
A1

|Tλa|
p ≤ 2−M(1−p)

∞∑

i=N

1\
2−N+r

( 2−M\
0

∣∣∣∣
2−N\
0

2−M\
0

a(s, t)

×
2i+1−1∑

k=2i

k

2i
wk(x +̇ s)

∞∑

j=M

2j+1−1∑

l=2j

l

2j
wl(y +̇ t) ds dt

∣∣∣∣ dy
)p

dx

≤ 2−M(1−p)
∞∑

i=N

1\
2−N+r

( 2−N\
0

2−M\
0

∣∣∣∣
2−M\
0

a(s, t)

×

∞∑

j=M

2j+1−1∑

l=2j

l

2j
wl(y +̇ t) dt

∣∣∣∣ dy
∣∣∣∣
2i+1−1∑

k=2i

k

2i
wk(x +̇ s)

∣∣∣∣ ds
)p

dx.
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It follows by Cauchy’s inequality that\
A1

|Tλa|
p ≤ 2−M(1−p)

∞∑

i=N

1\
2−N+r

( 2−N\
0

2−M/2

[ 1\
0

∣∣∣∣
2−M\
0

a(s, t)

×
∞∑

j=M

2j+1−1∑

l=2j

l

2j
wl(y +̇ t) dt

∣∣∣∣
2

dy

]1/2∣∣∣∣
2i+1−1∑

k=2i

k

2i
wk(x +̇ s)

∣∣∣∣ ds
)p

dx

≤ 2−M(1−p/2)
∞∑

i=N

1\
2−N+r

( 2−N\
0

[ 1\
0

|a(s, t)|2 dt
]1/2

×

∣∣∣∣
2i+1−1∑

k=2i

k

2i
wk(x +̇ s)

∣∣∣∣ ds
)p

dx.

Now, applying the formulas (1)–(3) we obtain\
A1

|Tλa|
p ≤ 2−M(1−p/2)

∞∑

i=N

1\
2−N+r

( 2−N\
0

[ 1\
0

|a(s, t)|2 dt
]1/2

×

i∑

l=0

2l−i−1D2i(x +̇ s +̇ 2−l−1) ds
)p

dx

≤ 2−M(1−p/2)
∞∑

i=N

2−(i+1)p

×

1\
2−N+r

(N−r−1∑

l=0

2l
2−N\
0

[ 1\
0

|a(s, t)|2 dt
]1/2

×D2i(x +̇ s +̇ 2−l−1) ds
)p

dx

≤ 2−M(1−p/2)
∞∑

i=N

2−(i+1)p

×

N−r−1∑

l=0

2pl
1\

2−N+r

( 2−N\
0

[ 1\
0

|a(s, t)|2 dt
]1/2

×D2i(x +̇ s +̇ 2−l−1)ds
)p

dx

= 2−M(1−p/2)
∞∑

i=N

2−(i+1)p
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×

N−r−1∑

l=0

2pl
2−l−1+2−N\

2−l−1

( 2−N\
0

[ 1\
0

|a(s, t)|2 dt
]1/2

×D2i(x +̇ s +̇ 2−l−1) ds
)p

dx

≤ 2−M(1−p/2)
∞∑

i=N

2−(i+1)p

×
N−r−1∑

l=0

2pl
2−l−1+2−N\

2−l−1

([ 2−N\
0

1\
0

|a(s, t)|2 dt ds
]1/2

×
[ 2−N\

0

D2
2i(x +̇ s +̇ 2−l−1) ds

]1/2)p

dx

= 2−M(1−p/2)
∞∑

i=N

2−(i+1)p‖a‖p2

N−r−1∑

l=0

2pl−N2ip/2

≤ 2−M(1−p/2)2−(N+M)(p/2−1)
∞∑

i=N

2−(i/2+1)p−N
N−r−1∑

l=0

2pl

≤ Cp2
−Np/22−Np/22(N−r)p = Cp2

−rp.

Hence, (9) is true for i = 1 with δ := p.

To show (9) for i = 2 we refer to (10) and to the definition (7) of the
atoms, which gives\
A2

|Tλa|
p =

1\
2−N

1\
2−M+r

|Tλa|
p

≤
∞∑

i=N

∞∑

j=M

2N+M
1\

2−N

1\
2−M+r

( 2−N\
0

2−M\
0

∣∣∣∣
2i+1−1∑

k=2i

kwk(x +̇ s)

2i

∣∣∣∣

×

∣∣∣∣
2j+1−1∑

l=2j

lwl(y +̇ t)

2j

∣∣∣∣ ds dt
)p

dx dy

≤

[ ∞∑

i=N

2N
1\

2−N

( 2−N\
0

∣∣∣∣
2i+1−1∑

k=2i

kwk(x +̇ s)

2i

∣∣∣∣ ds
)p

dx

]

×

[ ∞∑

j=M

2M
1\

2−M+r

( 2−M\
0

∣∣∣∣
2j+1−1∑

l=2j

lwl(y +̇ t)

2j

∣∣∣∣ dt
)p

dy

]
=: AB.
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As in the proof for i = 1 we get

A ≤

∞∑

i=N

2N
1\

2−N

( 2−N\
0

K2i(x +̇ s) ds
)p

dx

≤
∞∑

i=N

2N−p(i+1)
1\

2−N

( 2−N\
0

N−1∑

l=0

2l−1D2i(x +̇ s +̇ 2−l−1) ds
)p

dx

≤
∞∑

i=N

2N−p(i+1)
1\

2−N

N−1∑

l=0

2p(l−1)
( 2−N\

0

D2i(x +̇ s+̇2−l−1) ds
)p

dx

=

∞∑

i=N

2N−p(i+1)
N−1∑

l=0

2p(l−1)

×

2−l−1+2−N\
2−l−1

( 2−N\
0

D2i(x +̇ s +̇ 2−l−1) ds
)p

dx

=

∞∑

i=N

2N−p(i+1)
N−1∑

l=0

2p(l−1)−N ≤ Cp.

For B the proof is similar. The only difference is that we have to write
the sum

∑M−r−1
l=0 instead of

∑N−1
l=0 (and, of course, M instead of N). There-

fore

B ≤
∞∑

j=M

2M−p(i+1)
M−r−1∑

l=0

2p(l−1)−M ≤ Cp2
−rp.

This completes the proof of (9) with δ := p, that is, the Theorem is true
for Tλ.

The proof for T1/λ is much more complicated. Assume 1/2 < p ≤ 1. As
above it is enough to prove (9) for i = 1, 2 and for T1/λ instead of Tλ. First
we consider the case i = 1. Let a be a rectangular p-atom supported on
[0, 2−N ) × [0, 2−M ) for some N,M = 0, 1, . . . and let r = 0, 1, . . . Then—as
in the proof for Tλ—we get\

A1

|T1/λa|
p ≤ 2−M(1−p/2)

∞∑

i=N

1\
2−N+r

( 2−N\
0

[ 1\
0

|a(s, t)|2 dt
]1/2

×

∣∣∣∣
2i+1−1∑

k=2i

2i

k
wk(x +̇ s)

∣∣∣∣ ds
)p

dx,
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from which by the formulas (1) and (5) it follows that\
A1

|T1/λa|
p ≤ 2−M(1−p/2)

×

∞∑

i=N

1\
2−N+r

( 2−N\
0

[ 1\
0

|a(s, t)|2 dt
]1/2

K2i(x +̇ s) ds
)p

dx

+ 2−M(1−p/2)
∞∑

i=N

1\
2−N+r

( 2−N\
0

[ 1\
0

|a(s, t)|2 dt
]1/2

×K2i+1(x +̇ s) ds
)p

dx

+ 2−M(1−p/2)
∞∑

i=N

2ip
1\

2−N+r

( 2−N\
0

[ 1\
0

|a(s, t)|2 dt
]1/2

×

∣∣∣∣
2i+1−1∑

l=2i+1

Kl(x +̇ s)

(
1

l − 1
−

1

l + 1

)∣∣∣∣ ds
)p

dx

=: Σ(1) +Σ(2) +Σ(3).

Taking into account (1), (4) and the proof for Tλ we obtain

Σ(i) ≤ Cp2
−rp (i = 1, 2).

Furthermore, (1) and (4) imply that

Σ(3) ≤ Cp2
−M(1−p/2)

∞∑

i=N

2ip
1\

2−N+r

( 2−N\
0

[ 1\
0

|a(s, t)|2 dt
]1/2

× 2−i
i∑

ν=0

2ν−i
i∑

m=ν

(D2m(x+̇s) +D2m(x +̇ s +̇ 2−ν−1)) ds
)p

dx

≤ Cp2
−M(1−p/2)

∞∑

i=N

2−ip
1\

2−N+r

( 2−N\
0

[ 1\
0

|a(s, t)|2 dt
]1/2

×
i∑

m=0

m∑

ν=0

2ν(D2m(x +̇ s) +D2m(x +̇ s +̇ 2−ν−1)) ds
)p

dx

≤ Cp2
−M(1−p/2)

∞∑

i=N

2−ip
1\

2−N+r

( 2−N\
0

[ 1\
0

|a(s, t)|2 dt
]1/2

×
(N−r−1∑

m=0

2mD2m(x +̇ s) +

N−r−1∑

m=0

m∑

ν=0

2νD2m(x +̇ s +̇ 2−ν−1)
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+

i∑

m=N−r

m∑

ν=0

2νD2m(x +̇ s +̇ 2−ν−1)
)
ds
)p

dx

≤ Cp2
−M(1−p/2)

∞∑

i=N

2−ip
1\

2−N+r

( 2−N\
0

[ 1\
0

|a(s, t)|2 dt
]1/2

×
N−r−1∑

m=0

2mD2m(x +̇ s) ds
)p

dx

+ Cp2
−M(1−p/2)

∞∑

i=N

2−ip
1\

2−N+r

( 2−N\
0

[ 1\
0

|a(s, t)|2 dt
]1/2

×

N−r−1∑

m=0

m∑

ν=0

2νD2m(x +̇ s +̇ 2−ν−1) ds
)p

dx

+ Cp2
−M(1−p/2)

∞∑

i=N

2−ip
1\

2−N+r

( 2−N\
0

[ 1\
0

|a(s, t)|2 dt
]1/2

×
i∑

m=N−r

m∑

ν=0

2νD2m(x +̇ s +̇ 2−ν−1) ds
)p

dx

=: Σ(31) +Σ(32) +Σ(33).

For Σ(31) it follows that

Σ(31) ≤ Cp2
−M(1−p/2)

∞∑

i=N

2−ip
N−r−1∑

m=0

2pm

×

1\
2−N+r

( 2−N\
0

[ 1\
0

|a(s, t)|2 dt
]1/2

D2m(x +̇ s) ds
)p

dx

≤ Cp2
−M(1−p/2)‖a‖p2

∞∑

i=N

2−ip
N−r−1∑

m=0

2pm

×
2N−m−1∑

l=2r

(l+1)2−N\
l2−N

( 2−N\
0

D2
2m(x +̇ s) ds

)p/2

dx

≤ Cp2
−M(1−p/2)2−(N+M)(p/2−1)2−pN

×

N−r−1∑

m=0

2pm
2N−m−1∑

l=2r

2−N (22m−N
)p/2
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≤ Cp2
−Np/22N2−pN

N−r−1∑

m=0

22pm2−N2N−m2−Np/2

= Cp2
−2pN2N2(2p−1)(N−r)

= Cp2
−r(2p−1).

Now, we estimate Σ(32) as follows:

Σ(32) ≤ Cp2
−M(1−p/2)−pN

1\
2−N+r

( 2−N\
0

[ 1\
0

|a(s, t)|2 dt
]1/2

×

N−r−1∑

ν=0

2ν
N−r−1∑

m=ν

D2m(x +̇ s +̇ 2−ν−1) ds
)p

dx

≤ Cp2
−M(1−p/2)−pN

N−r−1∑

ν=0

2νp
1\

2−N+r

( 2−N\
0

[ 1\
0

|a(s, t)|2 dt
]1/2

×
N−r−1∑

m=ν

D2m(x +̇ s +̇ 2−ν−1) ds
)p

dx

≤ Cp2
−M(1−p/2)−pN ‖a‖p2

N−r−1∑

ν=0

2νp

×

1\
2−N+r

( 2−N\
0

(N−r−1∑

m=ν

D2m(x +̇ s +̇ 2−ν−1)
)2

ds
)p/2

dx

= Cp2
−M(1−p/2)−pN ‖a‖p2

N−r−1∑

ν=0

2νp

×
(N−r−ν−2∑

b=0

b−N+r+1\
2b−N+r

( 2−N\
0

D2
2ν (x +̇ s +̇ 2−ν−1)

)
ds
)p/2

dx

+

2−ν\
2−ν−1

( 2−N\
0

(N−r−1∑

m=ν

D2m(x +̇ s +̇ 2−ν−1)
)2

ds
)p/2

dx
)

=: Σ
(32)
1 +Σ

(32)
2 ,

where

Σ
(32)
2 ≤ Cp2

−M(1−p/2)−pN 2−(N+M)(p/2−1)

×

N−r−1∑

ν=0

2νp
N−r−ν−2∑

b=0

2b−N+r(22ν−N )p/2
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≤ Cp2
−pN−N(p/2−1)

N−r−1∑

ν=0

22νp2−Np/2−N+r2N−r−ν

≤ Cp2
−2pN+N2(2p−1)(N−r)

= Cp2
−r(2p−1).

The analogous estimate for Σ
(32)
2 can be verified in the following way:

Σ
(32)
2 ≤ Cp2

−M(1−p/2)−pN ‖a‖p2

N−r−1∑

ν=0

2νp

×

2−ν\
0

( 2−N\
0

(N−r−1∑

m=ν

D2m(x +̇ s)
)2

ds
)p/2

dx

= Cp2
−M(1−p/2)−pN ‖a‖p2

N−r−1∑

ν=0

2νp

×
( 2−N+r\

0

( 2−N\
0

(N−r−1∑

m=ν

D2m(x +̇ s)
)2

ds
)p/2

dx

+

N−r−ν∑

d=1

2−ν−d+1\
2−ν−d

( 2−N\
0

( ν+d−1∑

m=ν

D2m(x +̇ s)
)2

ds
)p/2

dx
)

≤ Cp2
−M(1−p/2)−pN ‖a‖p2

N−r−1∑

ν=0

2νp

×
(
2−N+r2−Np/22(N−r)p +

N−ν−r∑

d=1

2−ν−d2−Np/22p(ν+d)
)

= Cp2
−M(1−p/2)−2pN ‖a‖p2

N−r−1∑

ν=0

2(2p−1)ν

×
(
2(N−r)(p−1) +

N−r−ν∑

d=1

2(p−1)d
)

≤ Cp2
−M(1−p/2)−2pN 2−(N+M)(p/2−1)

×
N−r−1∑

ν=0

(N − r − ν)2(2p−1)ν

≤ Cp2
−2pN−N(p/2−1)2(2p−1)(N−r)

≤ Cp2
−r(2p−1).
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To complete the proof for i = 1 we have to estimate Σ(33):

Σ(33) ≤ Cp2
−M(1−p/2)

∞∑

i=N

2−ip

×
i∑

m=N−r

1\
2−N+r

( 2−N\
0

[ 1\
0

|a(s, t)|2 dt
]1/2

×
m∑

ν=0

2νD2m(x +̇ s +̇ 2−ν−1) ds
)p

dx

= Cp2
−M(1−p/2)

∞∑

i=N

2−ip

×
i∑

m=N−r

N−r−1∑

l=0

2−l−1+2−m\
2−l−1

( 2−N\
0

[ 1\
0

|a(s, t)|2 dt
]1/2

× 2lD2m(x +̇ s +̇ 2−ν−1) ds
)p

dx

≤ Cp2
−M(1−p/2)

∞∑

i=N

2−ip
i∑

m=N−r

‖a‖p2

N−r−1∑

l=0

2pl

×

2−l−1+2−m\
2−l−1

( 2−N\
0

D2
2m(x +̇ s +̇ 2−ν−1) ds

)p/2

dx

≤ Cp2
−M(1−p/2)‖a‖p2

∞∑

i=N

2−ip

×
( N∑

m=N−r

2−m
N−r−1∑

l=0

2pl(22m−N )p/2

+
i∑

m=N+1

2−m
N−r−1∑

l=0

2pl2mp/2
)

≤ Cp2
−M(1−p/2)‖a‖p2

∞∑

i=N

2−ip

×
(
2−Np/2

N∑

m=N−r

2(p−1)m2p(N−r)

+ 2p(N−r)
i∑

m=N+1

2p/2−1−m
)
.
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If p < 1, then

Σ(33) ≤ Cp2
−M(1−p/2)‖a‖p2

∞∑

i=N

2−ip

× (2−Np/22p(N−r)2(p−1)(N−r) + 2p(N−r)2(p/2−1)N )

≤ Cp2
−N(p/2−1)2p(N−r)−pN (2−Np/2+pN−N−(p−1)r + 2pN/2−N )

≤ Cp2
−rp.

On the other hand, for p = 1 we obtain

Σ(33) ≤ C12
−M/2‖a‖2

∞∑

i=N

2−ir(2−N/22N−r + 2N−r2−N/2)

≤ C1r2
−r ≤ C12

−r/2.

Finally, we consider the case i = 2:\
A2

|T1/λa|
p ≤

[ ∞∑

i=N

2N
1\

2−N

( 2−N\
0

∣∣∣∣
2i+1−1∑

k=2i

2i

k
wk(x +̇ s)

∣∣∣∣ ds
)p

dx

]

×

[ ∞∑

j=M

2M
1\

2−M

( 2−M\
0

∣∣∣∣
2j+1−1∑

l=2j

2j

l
wl(y +̇ t)

∣∣∣∣ dt
)p

dy

]
=: RV,

where R ≤ Cp by the one-dimensional case (see Simon [2]). We will show a
stronger estimate, that is, V ≤ Cp2

−rδ with a suitable δ > 0 independent of
a, r and M . To this end, estimate V as follows (see the analogous situation
above):

V ≤ Cp

∞∑

j=M

2M+jp

×

1\
2−M+r

( 2−M\
0

∣∣∣∣
2j+1−1∑

l=2j+1

Kl(y +̇ t)

(
1

l − 1
−

1

l + 1

)∣∣∣∣ dt
)p

dy

+ Cp

∞∑

j=M

2M
1\

2−M+r

[( 2−M\
0

K2j (y +̇ t) dt
)p

+
( 2−M\

0

K2j+1(y +̇ t) dt
)p]

dy

=: V1 + V2.

As in the proof for i = 1 (see the estimation of B) we get V2 ≤ Cp2
−rp. For

V1 we follow the method of the proof for the case i = 1 (see the estimation
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of Σ(3)). Hence,

V1 ≤ Cp2
M

∞∑

j=M

2−jp
1\

2−M+r

( 2−M\
0

[M−r−1∑

m=0

2mD2m(y +̇ t)

+
M−r−1∑

m=0

m∑

ν=0

2νD2m(y +̇ t+̇2−ν−1)

+

j∑

m=M−r

m∑

ν=0

2νD2m(y +̇ t +̇ 2−ν−1)
]
dt
)p

dy

≤ Cp2
M

∞∑

j=M

2−jp
1\

2−M+r

[( 2−M\
0

M−r−1∑

m=0

2mD2m(y +̇ t) dt
)p

+
( 2−M\

0

M−r−1∑

m=0

m∑

ν=0

2νD2m(y +̇ t +̇ 2−ν−1) dt
)p

+
( 2−M\

0

j∑

m=M−r

m∑

ν=0

2νD2m(y+̇t +̇ 2−ν−1) dt
)p]

dy

=: V
(1)
1 + V

(2)
1 + V

(3)
1 .

Now, for V
(1)
1 we have (see the examination of Σ(31) in the proof for the

case i = 1)

V
(1)
1 ≤ Cp2

M
∞∑

j=M

2−jp
M−r−1∑

m=0

2pm

×
2M−m−1∑

l=2r

(l+1)2−M\
l2−M

( 2−M\
0

D2m(y +̇ t) dt
)p

dy

≤ Cp2
M−pM

M−r−1∑

m=0

2pm
2M−m−1∑

l=2r

2−M (2m−M )p

≤ Cp2
−2pM

M−r−1∑

m=0

22pm2M−m

≤ Cp2
−r(2p−1).

Similarly to the estimation of Σ(32) in the case i = 2 we have

V
(2)
1 ≤ Cp2

M−pM
M−r−1∑

ν=0

2νp
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×
[M−r−ν−2∑

b=0

2b−M+r+1\
2b−M+r

( 2−M\
0

D2ν (y +̇ t +̇ 2−ν−1) dt
)p

dy

+

2−ν\
2−ν−1

( 2−M\
0

(M−r−1∑

m=ν

D2m(y +̇ t +̇ 2−ν−1) dt
)p

dy
]

=: V
(2)
11 + V

(2)
12 ,

where

V
(2)
11 ≤ Cp2

M−pM
M−r−1∑

ν=0

2νp
M−r−ν−2∑

b=0

2b−M+r(2ν−M )p ≤ Cp2
−r(2p−1)

and

V
(2)
12 ≤ Cp2

M−pM
M−r−1∑

ν=0

2νp
[ 2−M+r\

0

( 2−M\
0

(M−r−1∑

m=ν

D2m(y +̇ t) dt
)p

dy

+

M−r−ν∑

d=1

2−ν−d+1\
2−ν−d

( 2−M\
0

ν+d−1∑

m=ν

D2m(y +̇ t) dt
)p

dy
]

≤ Cp2
M−pM

M−r−1∑

ν=0

2νp

×
(
2−M+r2−Mp2(M−r)p +

M−r−ν∑

d=1

2−ν−d2−Mp2p(ν+d)
)

≤ Cp2
−r(2p−1).

To examine V
(3)
1 we apply again the argument from the case i = 1, i.e.

similarly to the estimation of Σ(33) we get

V
(3)
1 ≤ Cp2

M
∞∑

j=M

2−jp

×

j∑

m=M−r

1\
2−M+r

( 2−M\
0

m∑

ν=0

2νD2m(y +̇ t +̇ 2−ν−1) dt
)p

dy

≤ Cp2
M

∞∑

j=M

2−jp

×

j∑

m=M−r

M−r−1∑

l=0

2pl
2−l−1+2−m\

2−l−1

( 2−M\
0

2lD2m(y +̇ t +̇ 2−ν−1) dt
)p

dy
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≤ Cp2
M

∞∑

j=M

2−jp

×
( M∑

m=M−r

2−m
M−r−1∑

l=0

2pl(2m−M )p +

j∑

m=M+1

2−m
M−r−1∑

l=0

2pl
)

≤ Cp2
M

∞∑

j=M

2−jp
(
2−pM

M∑

m=M−r

2pm−m+p(M−r) + 2−j+p(M−r)
)

≤ Cp

{
2−r(2p−1) (p < 1),
2−r/2 (p = 1).

This completes the proof of the theorem.
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