TWO-PARAMETER MULTIPLIERS ON HARDY SPACES

BY
 PÉTER SIMON (BUDAPEST)

1. Introduction. In an earlier paper (see Simon [2]) we investigated some multiplier operators from the so-called dyadic Hardy space H^{p} to itself $(0<p \leq 1)$. By means of those multipliers and by suitable transformations from ℓ_{2} to ℓ_{2} we defined operators A on H^{p} which characterize the space H^{p} in the following sense: a function f belongs to H^{p} if and only if $A f \in L^{p}$. Moreover, $\|f\|_{H^{p}} \sim\|A f\|_{p}$, where " \sim " means that the ratio of the two sides lies between positive constants, independently of f. Among others, for the Sunouchi operator U we showed the equivalence $\|f\|_{H^{p}} \sim\|U f\|_{p}(1 / 2<p$ $\leq 1, \int_{0}^{1} f=0$)

In the present work we generalize those results to two-dimensional spaces. As a special case we get the $\left(H^{p}, L^{p}\right)$-boundedness of the two-dimensional Sunouchi operator if $0<p \leq 1$. This improves a theorem of Weisz [7]. Furthermore, the equivalence $\|f\|_{H^{p}} \sim\|U f\|_{p}\left(1 / 2<p \leq 1, \int_{0}^{1} f=0\right)$ is shown also in the two-dimensional case.

To prove these results we apply the atomic decomposition of L^{p}-bounded martingales. It is well known that the atomic characterization of the Hardy spaces $H^{p}(0<p \leq 1)$ plays an important role in the one-dimensional case. In the two-dimensional case the situation is much more complicated because the support of a two-dimensional atom can be an arbitrary open set, not only a dyadic rectangle. However, by a theorem of Weisz [7] in the definition of p-quasi-locality of operators it is enough to take p-atoms supported on dyadic rectangles. Furthermore, a p-quasi-local operator which is bounded from L^{2} into L^{2} is also bounded from H^{p} into $L^{p}(0<p \leq 1)$.
2. Notations. In this section some definitions and notations are introduced. We give a short summary of the basic concepts of Walsh-Fourier analysis and formulate some known results which play an important role in

[^0]our further investigations. In this connection as well as for more details see the book by Schipp-Wade-Simon [1].

First of all recall the definition of the Walsh (-Paley) functions $w_{n}(n=$ $0,1, \ldots)$. Let r be the function defined on $[0,1)$ by

$$
r(x):= \begin{cases}1 & (0 \leq x<1 / 2) \\ -1 & (1 / 2 \leq x<1)\end{cases}
$$

extended to the real line by periodicity of period 1. The Rademacher functions $r_{n}(n=0,1, \ldots)$ are given by $r_{n}(x):=r\left(2^{n} x\right)(0 \leq x<1)$. The system of the functions $r_{n}(n=0,1, \ldots)$ is orthonormal (in the usual $L^{2}[0,1)$ sense) but incomplete. The product system $w_{n}(n=0,1, \ldots)$ generated by r_{n} 's is already a complete and orthonormal system of functions. That is, $w_{n}:=\prod_{k=0}^{\infty} r_{k}^{n_{k}}$, where $n=\sum_{k=0}^{\infty} n_{k} 2^{k}\left(n_{k}=0,1\right)$ is the binary expansion of the natural number $n=0,1, \ldots$

For $f \in L^{1}[0,1)$ let $\widehat{f}(n):=\int_{0}^{1} f w_{n}(n=0,1, \ldots)$ be the nth WalshFourier coefficient of the function f. The symbol \widehat{f} will denote the sequence $(\widehat{f}(n), n=0,1, \ldots)$. The nth partial sum $S_{n} f$ and the nth $(C, 1)$-mean $\sigma_{n} f$ of the Walsh-Fourier series $\sum_{k=0}^{\infty} \widehat{f}(k) w_{k}$ are defined by

$$
S_{n} f:=\sum_{k=0}^{n-1} \widehat{f}(k) w_{k}, \quad \sigma_{n} f:=\frac{1}{n} \sum_{k=1}^{n} S_{k} f \quad(n=1,2, \ldots) .
$$

It is clear that $\sigma_{n} f$ can be written directly in terms of the Walsh-Fourier coefficients of f as

$$
\sigma_{n} f=\sum_{k=0}^{n-1}(1-k / n) \widehat{f}(k) w_{k} \quad(n=1,2, \ldots)
$$

If $x, y \in[0,1)$ are arbitrary and $x=\sum_{k=0}^{\infty} x_{k} 2^{-k-1}, y=\sum_{k=0}^{\infty} y_{k} 2^{-k-1}$ are their dyadic expansions (i.e. $x_{k}, y_{k}=0,1$, where $\lim _{k} x_{k} \neq 1, \lim _{k} y_{k}$ $\neq 1$), then let

$$
x \dot{+} y:=\sum_{k=0}^{\infty} \frac{\left|x_{k}-y_{k}\right|}{2^{k+1}}
$$

be the so-called dyadic sum of x and y. Furthermore, the (dyadic) convolution of $f, g \in L^{1}[0,1)$ is defined by

$$
f * g(x):=\int_{0}^{1} f(t) g(x+t) d t \quad(x \in[0,1))
$$

It follows immediately that for all $f \in L^{1}[0,1)$ and $n=1,2, \ldots$,

$$
S_{n} f=f * D_{n}, \quad \sigma_{n} f=f * K_{n}
$$

where

$$
D_{n}:=\sum_{k=0}^{n-1} w_{k}, \quad K_{n}:=\frac{1}{n} \sum_{k=1}^{n} D_{k} \quad(n=1,2, \ldots)
$$

are the exact analogues of the well known (trigonometric) kernel functions of Dirichlet's and Fejér's type, respectively. The functions $D_{2^{n}}(n=0,1, \ldots)$ have a nice property which plays a central role in Walsh-Fourier analysis:

$$
D_{2^{n}}(x)=\left\{\begin{array}{ll}
2^{n} & \left(0 \leq x<2^{-n}\right) \tag{1}\\
0 & \left(2^{-n} \leq x<1\right)
\end{array} \quad(n=0,1, \ldots) .\right.
$$

Moreover, the following statements will also be used:

$$
\begin{align*}
& \text { (2) } \sum_{k=0}^{n-1} k w_{k}=n\left(D_{n}-K_{n}\right) \quad(n=1,2, \ldots), \tag{2}\\
& \text { (3) } \quad 0 \leq K_{2^{s}}(x)=\frac{1}{2}\left(2^{-s} D_{2^{s}}(x)+\sum_{l=0}^{s} 2^{l-s} D_{2^{s}}\left(x+2^{-l-1}\right)\right), \tag{3}\\
& \text { (4) }\left|K_{l}(x)\right| \leq \sum_{t=0}^{s} 2^{t-s-1} \sum_{i=t}^{s}\left(D_{2^{i}}(x)+D_{2^{i}}\left(x+2^{-t-1}\right)\right) \quad\left(2^{s} \leq l<2^{s+1}\right), \tag{4}\\
& \text { (5) } \sum_{k=2^{s}}^{\infty} \frac{w_{k}}{k}=\sum_{l=2^{s}+1}^{\infty} K_{l}\left(\frac{1}{l-1}-\frac{1}{l+1}\right)-\frac{K_{2^{s}}}{2^{s}+1}-\frac{D_{2^{s}}}{2^{s}} \\
& \\
& \quad(s=0,1, \ldots ; x \in[0,1)) .
\end{align*}
$$

The Kronecker product $w_{n, m}(n, m=0,1, \ldots)$ of two Walsh systems is said to be the two-dimensional Walsh system. Thus

$$
w_{n, m}(x, y):=w_{n}(x) w_{m}(y) \quad(x, y \in[0,1)) .
$$

For the two-dimensional Walsh-Fourier coefficients of a function $f \in$ $L^{1}[0,1)^{2}$ the same notations will be used as in the one-dimensional case. That is, let

$$
\widehat{f}(n, m):=\int_{0}^{1} \int_{0}^{1} f(x, y) w_{n, m}(x, y) d x d y \quad(n, m=0,1, \ldots)
$$

and $\widehat{f}:=(\widehat{f}(n, m) ; n, m=0,1, \ldots)$. Furthermore, let

$$
S_{n, m} f:=\sum_{k=0}^{n-1} \sum_{l=0}^{m-1} \widehat{f}(k, l) w_{k, l} \quad(n, m=1,2, \ldots)
$$

be the (n, m)th (rectangular) partial sum of the two-dimensional Walsh-

Fourier series $\sum_{k, l=0}^{\infty, \infty} \widehat{f}(k, l) w_{k, l}$ of $f \in L^{1}[0,1)^{2}$. It is easy to show that

$$
S_{n, m} f(x, y)=\int_{0}^{1} \int_{0}^{1} f(t, u) D_{n}(x \dot{+} t) D_{m}(y \dot{+} u) d t d u \quad(x, y \in[0,1))
$$

In the special case $n=2^{k}, m=2^{l}(k, l=0,1, \ldots)$ we have, by (1),

$$
S_{2^{k}, 2^{l}} f(x, y)=2^{k+l} \int_{I(x, y)} f \quad(x, y \in[0,1))
$$

where the dyadic rectangle $I(x, y)$ is defined to be the Cartesian product

$$
I_{k, l}(x, y):=I_{k}(x) \times I_{l}(y)
$$

Here $I_{j}(z)(j=0,1, \ldots ; z \in[0,1))$ stands for the (unique) dyadic interval

$$
I_{j}(z):=\left[\nu 2^{-j},(\nu+1) 2^{-j}\right) \quad\left(\nu=0, \ldots, 2^{j}-1\right)
$$

containing z.
The one-dimensional operator

$$
L^{1}[0,1) \ni f \mapsto\left(\sum_{n=0}^{\infty}\left|S_{2^{n}} f-\sigma_{2^{n}} f\right|^{2}\right)^{1 / 2}=: \widetilde{U} f
$$

was defined and first investigated by Sunouchi [3], [4]. A simple calculation shows that

$$
S_{n} f-\sigma_{n} f=\sum_{k=0}^{n-1} \frac{k}{n} \widehat{f}(k) w_{k} \quad(n=1,2, \ldots)
$$

which leads obviously to the definition of the so-called two-dimensional Sunouchi operator U :

$$
U f:=\left[\sum_{n=0}^{\infty} \sum_{m=0}^{\infty}\left(\sum_{k=0}^{2^{n}-1} \sum_{l=0}^{2^{m}-1} \frac{k l}{2^{n+m}} \widehat{f}(k, l) w_{k, l}\right)^{2}\right]^{1 / 2} \quad\left(f \in L^{1}[0,1)^{2}\right)
$$

(see also Weisz [7]). By the Parseval equality it is clear that U is a bounded operator from $L^{2}[0,1)^{2}$ to itself. This result was extended to the L^{p}-spaces $(1<p<\infty)$ in the one-dimensional case by Sunouchi [4] and in the twodimensional case by Weisz [6]. For further comments in this connection see Section 4.
3. Preliminaries. The Hardy spaces play a very important role in Walsh-Fourier analysis, especially in the two-dimensional case. (For details see Weisz [5].) To define them, let $\mathcal{F}_{n, m}(n, m=0,1, \ldots)$ be the σ-algebra generated by the dyadic rectangles $I_{n, m}(x, y)(x, y \in[0,1))$. Hence,

$$
\begin{aligned}
\mathcal{F}_{n, m}:=\sigma\left(\left\{\left[k 2^{-n},(k+1) 2^{-n}\right)\right.\right. & \times\left[l 2^{-m},(l+1) 2^{-m}\right): \\
& \left.\left.k=0, \ldots, 2^{n}-1 ; l=0, \ldots, 2^{m}-1\right\}\right),
\end{aligned}
$$

where $\sigma(\mathcal{S})$ denotes the σ-algebra generated by an arbitrary set system \mathcal{S}. Then the conditional expectation operator relative to $\mathcal{F}_{n, m}$ is just $S_{2^{n}, 2^{m}}$. A sequence $f=\left(f_{n, m} ; n, m=0,1, \ldots\right)$ of integrable functions is said to be a martingale if
(i) $f_{n, m}$ is $\mathcal{F}_{n, m}$-measurable for all $n, m=0,1, \ldots$ and
(ii) $S_{2^{n}, 2^{m}} f_{k, l}=f_{n, m}$ for all $n, m, k, l=0,1, \ldots$ such that $n \leq k$ and $m \leq l$.

In other words, for all $n, m=0,1, \ldots$ the function $f_{n, m}$ is a two-dimensional Walsh polynomial of the form

$$
f_{n, m}=\sum_{k=0}^{2^{n}-1} \sum_{l=0}^{2^{m}-1} \alpha_{k, l} w_{k, l}
$$

(with suitable real coefficients $\alpha_{k, l}$ independent of n, m). For example, if $f \in L^{1}[0,1)^{2}$ then the sequence ($S_{2^{n}, 2^{m}} f ; n, m=0,1, \ldots$) is evidently a martingale (called the martingale generated by f). Of course, $f_{1}:=\left(f_{n, 0}, n=\right.$ $0,1, \ldots)$ and $f_{2}:=\left(f_{0, m}, m=0,1, \ldots\right)$ are (one-dimensional) martingales with respect to the sequence of σ-algebras

$$
\sigma\left(\left\{\left[j 2^{-k},(j+1) 2^{-k}\right): j=0, \ldots, 2^{k}-1\right\}\right) \quad(k=0,1, \ldots)
$$

The concept of Walsh-Fourier coefficients can be extended to martingales by setting $\widehat{f}(k, l):=\alpha_{k, l}(k, l=0,1, \ldots)$. That is, \widehat{f} will denote the sequence of the Walsh-Fourier coefficients of the function or martingale f.

Let $\|g\|_{p}:=\left(\int_{0}^{1} \int_{0}^{1}|g(x, y)|^{p} d x d y\right)^{1 / p}(0<p<\infty)$ be the usual L^{p}-norm (or quasi-norm) of $g \in L^{1}[0,1)^{2}$. We say that a martingale $f=\left(f_{n, m} ; n, m=\right.$ $0,1, \ldots)$ is L^{p}-bounded if

$$
\|f\|_{p}:=\sup _{n, m}\left\|f_{n, m}\right\|_{p}<\infty
$$

The set of L^{p}-bounded martingales will be denoted by L^{p}. Thus, if $F \in$ $L^{p}[0,1)^{2}$ then it can be seen that the martingale f generated by F belongs to L^{p} and their L^{p}-norms are equivalent. This means that there exist positive constants c_{p}, C_{p} depending only on p such that $c_{p}\|f\|_{p} \leq\|F\|_{p} \leq C_{p}\|f\|_{p}$. (Also later the symbols c_{p}, C_{p} denote such constants, although not always the same at different occurrences.) If $p>1$ then L^{p} and $L^{p}[0,1)^{2}$ can be identified.

The maximal function f^{*} and the quadratic variation $Q f$ of a martingale $f=\left(f_{n, m} ; n, m=0,1, \ldots\right)$ are defined by

$$
f^{*}:=\sup _{n, m}\left|f_{n, m}\right|
$$

and

$$
Q f:=\left(\sum_{n=0}^{\infty} \sum_{m=0}^{\infty}\left|f_{n, m}-f_{n-1, m}-f_{n, m-1}+f_{n-1, m-1}\right|^{2}\right)^{1 / 2},
$$

where $f_{-1, k}:=f_{k,-1}:=0(k=-1,0,1, \ldots)$. It can be shown that for each $0<p<\infty$ the norms (or quasi-norms) $\left\|f^{*}\right\|_{p}$ and $\|Q f\|_{p}$ are equivalent:

$$
c_{p}\left\|f^{*}\right\|_{p} \leq\|Q f\|_{p} \leq C_{p}\left\|f^{*}\right\|_{p}
$$

We introduce the martingale Hardy spaces for $0<p<\infty$ as follows: denote by H^{p} the space of martingales f for which

$$
\|f\|_{H^{p}}:=\left\|f^{*}\right\|_{p}<\infty
$$

By the equivalence $\left\|f^{*}\right\|_{p} \sim\|Q f\|_{p}$ we get $\|f\|_{H^{p}} \sim\|Q f\|_{p}$. We remark that with the help of the well known Khinchin inequality it is possible to linearize the quadratic variation in the following sense:

$$
\begin{align*}
c_{p}\|Q f\|_{p} \leq & \int_{0}^{1} \int_{0}^{1} \| \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} r_{n}(x) r_{m}(y) \tag{6}\\
& \times\left(f_{n, m}-f_{n-1, m}-f_{n, m-1}+f_{n-1, m-1}\right) \|_{p} d x d y \\
\leq & C_{p}\|Q f\|_{p} \quad(0<p \leq 1)
\end{align*}
$$

(for details see Simon [2]).
The atomic decomposition of martingales is a useful characterization in the theory of some Hardy spaces. Unfortunately, in two dimensions this characterization is much more complicated. Indeed, in the two-dimensional case the support of an atom is not a dyadic rectangle but an open set. However, a finer atomic decomposition can be given, that is, the atoms can be decomposed into elementary rectangle particles (see Weisz [7]). This makes it possible in some investigations to examine only atoms supported on dyadic rectangles. To this end, let $0<p \leq 1$. A function $a \in L^{2}[0,1)^{2}$ is called a rectangle p-atom if either a is identically equal to 1 or there exists a dyadic rectangle I such that

$$
\begin{align*}
& \operatorname{supp} a \subset I, \quad\|a\|_{2} \leq|I|^{1 / 2-1 / p} \\
& \int_{0}^{1} a(x, t) d t=\int_{0}^{1} a(u, y) d u=0 \quad(x, y \in[0,1)) \tag{7}
\end{align*}
$$

where $|I|$ is the (two-dimensional) Lebesgue measure of I. We say that a is supported on I. Although the elements of H^{p} cannot be decomposed into rectangle p-atoms, in the investigations of the so-called p-quasi-local operators it is enough to take such atoms.

To define the quasi-locality let \mathcal{M} be the set of all martingales defined above and T be a mapping from \mathcal{M} to itself. Assume that T is sublinear and bounded from L^{2} into L^{2} (see also Simon [2]). Then T is called p-quasi-local if there exists $\delta>0$ such that for every rectangle p-atom a supported on the dyadic rectangle I and for all $r=0,1, \ldots$ one has

$$
\begin{equation*}
\int_{[0,1)^{2} \backslash I^{r}}|T a|^{p} \leq C_{p} 2^{-\delta r} \tag{8}
\end{equation*}
$$

Here I^{r} is the dyadic rectangle defined as follows: $I^{r}:=I_{1}^{r} \times I_{2}^{r}$, where $I=I_{1} \times I_{2}$ for some dyadic intervals I_{1}, I_{2}, and I_{j}^{r} is the (unique) dyadic interval for which $I_{j} \subset I_{j}^{r}$ and the ratio of the lengths of I_{j}^{r} and I_{j} is equal to $2^{r}(j=1,2)$. Then a simple modification of a theorem of Weisz [7] says that for T to be bounded from H^{p} into L^{p} it is enough that T be p-quasi-local. Hence, in this case $\|T f\|_{p} \leq C_{p}\|f\|_{H^{p}}\left(f \in H^{p}\right)$.

Let $x, y \in[0,1)$ and

$$
\begin{aligned}
R_{x, y} f:= & \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} r_{n}(x) r_{m}(y) \\
& \times\left(f_{n, m}-f_{n-1, m}-f_{n, m-1}+f_{n-1, m-1}\right) \quad\left(f \in H^{p}\right)
\end{aligned}
$$

If $T R_{x, y}=R_{x, y} T$ for all $x, y \in[0,1)$, then T is also bounded from H^{p} to itself. Indeed, by (6), for every $f \in H^{p}$ we get

$$
\begin{aligned}
\|T f\|_{H^{p}} & \leq C_{p} \iint_{00}^{11}\left\|T\left(R_{x, y} f\right)\right\|_{p} d x d y \\
& \leq C_{p} \int_{0}^{11} \int_{0}^{1}\left\|R_{x, y} f\right\|_{H^{p}} d x d y \leq C_{p}\|f\|_{H^{p}} .
\end{aligned}
$$

Furthermore, if T is invertible and its inverse is bounded from H^{p} to H^{p}, then $T f$ can be estimated in H^{p} norm from below: $\|f\|_{H^{p}}=\left\|T^{-1}(T f)\right\|_{H^{p}} \leq$ $C_{p}\|T f\|_{H^{p}}$. Moreover, $\|T f\|_{H^{p}}$ is equivalent to $\|f\|_{H^{p}}\left(f \in H^{p}\right)$.
4. Results. In this work we investigate multiplier operators $T:=T_{\lambda}$, i.e. a bounded sequence $\lambda=\left(\lambda_{k, l} ; k, l=0,1, \ldots\right)$ of real numbers is given and $\widehat{T_{\lambda} f}=\lambda \widehat{f}(f \in \mathcal{M})$. The boundedness of λ and the well known Parseval equality imply that T_{λ} is obviously bounded from L^{2} into L^{2}.

Let $0<p \leq 1$. If T_{λ} is p-quasi-local, then by our previous remarks $T_{\lambda}: H^{p} \rightarrow H^{p}$ is bounded. Moreover, in the case $\inf _{k, l}\left|\lambda_{k, l}\right|>0$ the inverse T_{λ}^{-1} of T_{λ} is bounded from L^{2} into L^{2}. Consequently, the p-quasi-locality of T_{λ}^{-1} is enough for $T_{\lambda}^{-1}: H^{p} \rightarrow H^{p}$ to be bounded. This leads to the equivalence $\left\|T_{\lambda} f\right\|_{H^{p}} \sim\|f\|_{H^{p}}$.

Let $T_{\lambda} f$ be written in the following form:

$$
T_{\lambda} f=\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \lambda_{j, k} \widehat{f}(j, k) w_{j, k}=\sum_{n=-1}^{\infty} \sum_{m=-1}^{\infty} \Lambda_{n, m}^{(\lambda)} * f
$$

where $\Lambda_{-1,-1}^{(\lambda)} * f:=\lambda_{0,0} \widehat{f}(0,0) w_{0,0}$,

$$
\begin{aligned}
& \Lambda_{-1, m}^{(\lambda)} * f:=\sum_{k=2^{m}}^{2^{m+1}-1} \lambda_{0, k} \widehat{f}(0, k) w_{0, k}, \\
& \Lambda_{n,-1}^{(\lambda)} * f:=\sum_{j=2^{n}}^{2^{n+1}-1} \lambda_{j, 0} \widehat{f}(j, 0) w_{j, 0} \\
& \Lambda_{n, m}^{(\lambda)} * f:=\sum_{j=2^{n}}^{2^{n+1}-1} \sum_{k=2^{m}}^{2^{m+1}-1} \lambda_{j, k} \widehat{f}(j, k) w_{j, k} \quad(n, m=0,1, \ldots)
\end{aligned}
$$

Consider the sequence $d f$ of functions defined by

$$
d f:=\left(\Lambda_{n-1, m-1}^{(\lambda)} * f ; n, m=0,1, \ldots\right)
$$

Then $Q\left(T_{\lambda} f\right)(x, y)=\|d f(x, y)\|_{\ell_{2}}$ for all $x, y \in[0,1)$. If ℓ denotes the set of two-dimensional real sequences and $\delta: \ell \rightarrow \ell$ is a map satisfying the ℓ_{2}-boundedness condition $\|\delta(u)\|_{\ell_{2}} \leq C_{\delta}\|u\|_{\ell_{2}}\left(u \in \ell, C_{\delta}>0\right.$ is a constant depending only on δ), then define

$$
\Delta f(x, y):=\delta(d f(x, y)) \quad(x, y \in[0,1))
$$

Since $\|\Delta f(x, y)\|_{\ell_{2}} \leq C_{\delta}\|d f(x, y)\|_{\ell_{2}} \leq C_{\delta} Q\left(T_{\lambda} f\right)(x, y)(x, y \in[0,1))$, the operator A defined by

$$
A f(x, y):=\|\Delta f(x, y)\|_{\ell_{2}} \quad\left(f \in H^{p}, x, y \in[0,1)\right)
$$

satisfies the estimate

$$
\|A f\|_{p} \leq C_{p}\left\|T_{\lambda} f\right\|_{H^{p}} \quad\left(f \in H^{p}\right)
$$

Furthermore, if δ is invertible and its inverse δ^{-1} is ℓ_{2}-bounded, then $d f(x, y)$ $=\delta^{-1}(\Delta f(x, y))(x, y \in[0,1))$, i.e.

$$
Q\left(T_{\lambda} f\right)(x, y)=\|d f(x, y)\|_{\ell_{2}} \leq C_{\delta^{-1}}\|\Delta f(x, y)\|_{\ell_{2}} \leq C_{\delta^{-1}} A f \quad\left(f \in H^{p}\right)
$$

This implies the estimate

$$
\|f\|_{H^{p}} \leq C_{p}\|A f\|_{p} \quad\left(f \in H^{p}\right)
$$

that is, $\|f\|_{H^{p}} \sim\|A f\|_{p}$. For example, let • be the usual convolution in ℓ and, for a fixed sequence $b \in \ell_{1}$ consider

$$
\delta(u):=u \bullet b \quad(u \in \ell)
$$

Then $\|\delta(u)\|_{\ell_{2}} \leq\|b\|_{\ell_{1}}\|u\|_{\ell_{2}}(u \in \ell)$, i.e. δ is ℓ_{2}-bounded.

By a special choice of b and λ we get the Sunouchi operator U as follows. Let b and λ be defined in the following way:

$$
\begin{aligned}
b_{n, m} & :=\frac{1}{2^{n+m+2}}, \\
\lambda_{0,0} & :=1, \quad \lambda_{i, j}:=\frac{i j}{2^{n+m}}, \quad \lambda_{i, 0}:=i 2^{-n}, \quad \lambda_{0, j}:=j 2^{-m},
\end{aligned}
$$

where $2^{n} \leq i<2^{n+1}, 2^{m} \leq j<2^{m+1}(n, m=0,1, \ldots)$. Hence, for $f \in$ $H^{p}, i, l=1,2, \ldots$,

$$
\begin{aligned}
& \Lambda_{-1,-1}^{(\lambda)} * f=\widehat{f}(0,0) w_{0,0}, \\
& \Lambda_{-1, l-1}^{(\lambda)} * f=2^{1-l} \sum_{j=2^{l-1}}^{2^{l}-1} \widehat{f}(0, j) j w_{0, j}, \\
& \Lambda_{i-1,-1}^{(\lambda)} * f=2^{1-i} \sum_{k=2^{i-1}}^{2^{i}-1} \widehat{f}(k, 0) k w_{k, 0}, \\
& \Lambda_{i-1, l-1}^{(\lambda)} * f=2^{-i-l-2} \sum_{k=2^{i-1}}^{2^{i}-1} \sum_{j=2^{l-1}}^{2^{l}-1} \widehat{f}(k, j) k j w_{k, j}
\end{aligned}
$$

and the sequence $\Delta f=\left((\Delta f)_{n, m} ; n, m=0,1, \ldots\right)$ is the following:

$$
\begin{aligned}
(\Delta f)_{n, m}= & \sum_{i=0}^{n} \sum_{l=0}^{m} 2^{-n-m+i+l-2} \Lambda_{i-1, l-1}^{(\lambda)} * f \\
= & 2^{-n-m-2} \widehat{f}(0,0)+2^{-n-m-1} \sum_{l=1}^{m} \sum_{j=2^{l-1}}^{2^{l}-1} j \widehat{f}(0, j) w_{0, j} \\
& +2^{-n-m-1} \sum_{i=1}^{n} \sum_{k=2^{i-1}}^{2^{i}-1} k \widehat{f}(k, 0) w_{k, 0} \\
& +2^{-n-m} \sum_{i=1}^{n} \sum_{l=1}^{m} \sum_{k=2^{i-1}}^{2^{i}-1} \sum_{j=2^{l-1}}^{2^{l}-1} k j \widehat{f}(k, j) w_{k, j} \\
= & 2^{-n-m-2} \widehat{f}(0,0)+2^{-n-m-1} \sum_{j=1}^{2^{m}-1} j \widehat{f}(0, j) w_{0, j} \\
& +2^{-n-m-1} \sum_{k=1}^{2^{n}-1} k \widehat{f}(k, 0) w_{k, 0}+2^{-n-m} \sum_{k=1}^{2^{n}-1} \sum_{j=1}^{2^{m}-1} k j \widehat{f}(k, j) w_{k, j} .
\end{aligned}
$$

It follows that

$$
c\left(U f-|\widehat{f}(0,0)|-\widetilde{U} f_{1}-\widetilde{U} f_{2}\right) \leq A f \leq C\left(|\widehat{f}(0,0)|+\widetilde{U} f_{1}+\widetilde{U} f_{2}+U f\right)
$$

where $f_{1}:=\left(f_{0, m}, m=0,1, \ldots\right), f_{2}:=\left(f_{n, 0}, n=0,1, \ldots\right)$ and c, C are positive constants independent of f. Recall that $\left\|\widetilde{U} f_{j}\right\|_{H^{p}} \leq C_{p}\|f\|_{H^{p}}(j=$ 1,2) (see the one-dimensional case in Simon [2]). We will prove

Theorem. Let λ be defined as above and $0<p \leq 1$. Then $T_{\lambda}: H^{p} \rightarrow H^{p}$ is bounded. Moreover, if $1 / 2<p \leq 1$, then $T_{1 / \lambda}: H^{p} \rightarrow H^{p}$ is bounded.

On account of our previous remarks the first part of the Theorem implies
Corollary 1. For all $0<p \leq 1$ there exists a constant $C_{p}>0$ depending only on p such that

$$
\|U f\|_{p} \leq C_{p}\|f\|_{H^{p}} \quad\left(f \in H^{p}\right) .
$$

This improves a result of Weisz [7]. More specifically, he proved the same statement (by another argument) assuming $2 / 3<p \leq 1$.

A simple calculation shows that the mapping $\ell \ni u \mapsto b \bullet u \in \ell$ is a bijection and its inverse is $\ell \ni u \mapsto \widetilde{b} \bullet u \in \ell$ with the sequence \widetilde{b} given by

$$
\widetilde{b}_{n, m}:= \begin{cases}4 & (n=m=0) \\ -2 & (n=1, m=0 \text { or } n=0, m=1), \\ 1 & (n=m=1), \\ 0 & (\text { for other } n, m=0,1, \ldots)\end{cases}
$$

This means that from the second part of the Theorem we get
Corollary 2. If $1 / 2<p \leq 1$, then there exists a constant $C_{p}>0$ depending only on p such that

$$
\|f\|_{H^{p}} \leq C_{p}\left\||\widehat{f}(0,0)|+\widetilde{U} f_{1}+\widetilde{U} f_{2}+U f\right\|_{p} \quad\left(f \in H^{p}\right)
$$

Of course, for some martingales f the norms $\|f\|_{H^{p}}$ and $\|U f\|_{p}$ are equivalent, that is, if $f_{0, m}=f_{n, 0}=0(n, m=0,1, \ldots)$, then

$$
c_{p}\|f\|_{H^{p}} \leq\|U f\|_{p} \leq C_{p}\|f\|_{H^{p}} \quad\left(f \in H^{p}\right) .
$$

5. Proof of the Theorem. Let $0<p \leq 1$. We prove the boundedness of T_{λ}. It is enough to show that T_{λ} is p-quasi-local, i.e. (8) is true for all rectangle p-atoms a supported on I. Without loss of generality it can be assumed that

$$
I=\left[0,2^{-N}\right) \times\left[0,2^{-M}\right)
$$

for some $N, M=0,1, \ldots$ Let $r=0,1, \ldots$ Then

$$
\int_{[0,1)^{2} \backslash I^{r}}\left|T_{\lambda} a\right|^{p} \leq \sum_{i=1}^{4} \int_{A_{i}}\left|T_{\lambda} a\right|^{p},
$$

where

$$
\begin{array}{ll}
A_{1}:=\left[2^{-N+r}, 1\right) \times\left[0,2^{-M}\right), & A_{2}:=\left[2^{-N}, 1\right) \times\left[2^{-M+r}, 1\right), \\
A_{3}:=\left[0,2^{-N}\right) \times\left[2^{-M+r}, 1\right), & A_{4}:=\left[2^{-N+r}, 1\right) \times\left[2^{-M}, 1\right) .
\end{array}
$$

We will show that

$$
\begin{equation*}
\int_{A_{i}}\left|T_{\lambda} a\right|^{p} \leq C_{p} 2^{-r \delta} \quad(i=1,2,3,4) \tag{9}
\end{equation*}
$$

with a suitable positive δ independent of a and r. It is clear that the proof for $i=3$ and 4 is the same as for $i=1$ and 2 , respectively. Consequently, we give details for $i=1$ and $i=2$ only.

First we examine the case $i=1$. By the definition of the rectangle p-atom (see (7)) we have

$$
\begin{equation*}
\widehat{a}(n, m)=0 \tag{10}
\end{equation*}
$$

if $n<2^{N}$ or $m<2^{M}$. Therefore

$$
T_{\lambda} a=\sum_{i=N}^{\infty} \sum_{j=M}^{\infty} \sum_{k=2^{i}}^{2^{i+1}-1} \sum_{l=2^{j}}^{2^{j+1}-1} \frac{k l}{2^{i+j}} \widehat{a}(k, l) w_{k, l}
$$

i.e.

$$
\begin{aligned}
\int_{A_{1}}\left|T_{\lambda} a\right|^{p}= & \int_{2^{-N+r}}^{1} \int_{0}^{2^{-M}}\left|T_{\lambda} a\right|^{p} \\
\leq & \int_{2^{-N+r}}^{1} \int_{0}^{2^{-M}} \sum_{i=N}^{\infty}\left|\sum_{k=2^{i}}^{2^{i+1}-1} \frac{k}{2^{i}} \sum_{j=M}^{\infty} \sum_{l=2^{j}}^{2^{j+1}-1} \frac{l}{2^{j}} \widehat{a}(k, l) w_{k, l}\right|^{p} \\
= & \sum_{i=N}^{\infty} \int_{2^{-N+r}}^{1} \int_{0}^{2^{-M}} \left\lvert\, \int_{0}^{2^{-N}} \int_{0}^{2^{-M}} a(s, t) \sum_{k=2^{i}}^{2^{i+1}-1} \frac{k}{2^{i}} w_{k}(x+s)\right. \\
& \times\left.\sum_{j=M}^{\infty} \sum_{l=2^{j}}^{2^{j+1}-1} \frac{l}{2^{j}} w_{l}(y \dot{+} t) d s d t\right|^{p} d y d x .
\end{aligned}
$$

Using Hölder's inequality we conclude that

$$
\begin{aligned}
\int_{A_{1}}\left|T_{\lambda} a\right|^{p} \leq & 2^{-M(1-p)} \sum_{i=N}^{\infty} \int_{2^{-N+r}}^{1}\left(\int_{0}^{2^{-M}} \mid \int_{0}^{2^{-N}} \int_{0}^{2^{-M}} a(s, t)\right. \\
& \left.\left.\times \sum_{k=2^{i}}^{2^{i+1}-1} \frac{k}{2^{i}} w_{k}(x \dot{+} s) \sum_{j=M}^{\infty} \sum_{l=2^{j}}^{2^{j+1}-1} \frac{l}{2^{j}} w_{l}(y \dot{+} t) d s d t \right\rvert\, d y\right)^{p} d x \\
\leq & 2^{-M(1-p)} \sum_{i=N}^{\infty} \int_{2^{-N+r}}^{1}\left(\int_{0}^{2^{-N}} \int_{0}^{2^{-M}} \mid \int_{0}^{2^{-M}} a(s, t)\right. \\
& \left.\left.\times \sum_{j=M}^{\infty} \sum_{l=2^{j}}^{2^{j+1}-1} \frac{l}{2^{j}} w_{l}(y \dot{+} t) d t|d y|_{k=2^{i}}^{2^{i+1}-1} \frac{k}{2^{i}} w_{k}(x \dot{+} s) \right\rvert\, d s\right)^{p} d x
\end{aligned}
$$

It follows by Cauchy's inequality that

$$
\begin{aligned}
\int_{A_{1}}\left|T_{\lambda} a\right|^{p} \leq & 2^{-M(1-p)} \sum_{i=N}^{\infty} \int_{2^{-N+r}}^{1}\left(\int _ { 0 } ^ { 2 ^ { - N } } 2 ^ { - M / 2 } \left[\left.\int_{0}^{1}\right|_{0} ^{2^{-M}} \int_{0}^{2} a(s, t)\right.\right. \\
& \left.\left.\times\left.\sum_{j=M}^{\infty} \sum_{l=2^{j}}^{2^{j+1}-1} \frac{l}{2^{j}} w_{l}(y+t) d t\right|^{2} d y\right] \left.\left.^{1 / 2}\right|_{k=2^{i}} ^{2^{i+1}-1} \sum_{2^{i}} \frac{k}{2^{2}} w_{k}(x+s) \right\rvert\, d s\right)^{p} d x \\
\leq & 2^{-M(1-p / 2)} \sum_{i=N}^{\infty} \int_{2^{-N+r}}^{1}\left(\int_{0}^{2^{-N}}\left[\int_{0}^{1}|a(s, t)|^{2} d t\right]^{1 / 2}\right. \\
& \times\left.\right|_{\left.\left.\sum_{k=2^{i}}^{2^{i+1}-1} \frac{k}{2^{i}} w_{k}(x+s) \right\rvert\, d s\right)^{p} d x}
\end{aligned}
$$

Now, applying the formulas (1)-(3) we obtain

$$
\begin{aligned}
\int_{A_{1}}\left|T_{\lambda} a\right|^{p} \leq & 2^{-M(1-p / 2)} \sum_{i=N}^{\infty} \int_{2^{-N+r}}^{1}\left(\int_{0}^{2^{-N}}\left[\int_{0}^{1}|a(s, t)|^{2} d t\right]^{1 / 2}\right. \\
& \left.\times \sum_{l=0}^{i} 2^{l-i-1} D_{2^{i}}\left(x+s+2^{-l-1}\right) d s\right)^{p} d x \\
\leq & 2^{-M(1-p / 2)} \sum_{i=N}^{\infty} 2^{-(i+1) p} \\
& \times \int_{2^{-N+r}}^{1}\left(\sum_{l=0}^{N-r-1} 2^{l} 2_{0}^{-N}\left[\int_{0}^{1}|a(s, t)|^{2} d t\right]^{1 / 2}\right. \\
& \times D_{\left.2^{i}\left(x+s+2^{-l-1}\right) d s\right)^{p} d x}^{\leq} 2^{-M(1-p / 2)} \sum_{i=N}^{\infty} 2^{-(i+1) p} \\
& \times \sum_{l=0}^{N-r-1} 2^{p l} \int_{2^{-N+r}}^{1}\left(\int_{0}^{2}|a(s, t)|^{2} d t\right]^{1 / 2} \\
& \times D_{\left.2^{i}\left(x+s+2^{-l-1}\right) d s\right)^{p} d x}^{1} d x \\
= & 2^{-M(1-p / 2)} \sum_{i=N}^{\infty} 2^{-(i+1) p}
\end{aligned}
$$

$$
\begin{aligned}
& \times \sum_{l=0}^{N-r-1} 2^{p l} \int_{2^{-l-1}}^{2^{-l-1}+2^{-N}}\left(\int_{0}^{2^{-N}}\left[\int_{0}^{1}|a(s, t)|^{2} d t\right]^{1 / 2}\right. \\
& \left.\times D_{2^{i}}\left(x+s+2^{-l-1}\right) d s\right)^{p} d x \\
\leq & 2^{-M(1-p / 2)} \sum_{i=N}^{\infty} 2^{-(i+1) p} \\
& \times \sum_{l=0}^{N-r-1} 2^{p l} 2^{2^{-l-1}+2^{-N}}\left(\left[\int_{0}^{2^{-N}} \int_{0}^{1}|a(s, t)|^{2} d t d s\right]^{1 / 2}\right. \\
& \left.\times\left[2_{0}^{-l-1} D_{2^{i}}^{2}\left(x+s+2^{-l-1}\right) d s\right]^{1 / 2} p\right)^{p} d x \\
= & 2^{-M(1-p / 2)} \sum_{i=N}^{\infty} 2^{-(i+1) p} \|^{-N \|_{2}^{p}} \sum_{2}^{N-r-1} 2^{p l-N} 2^{i p / 2} \\
\leq & 2^{-M(1-p / 2)} 2^{-(N+M)(p / 2-1)} \sum_{l=0}^{\infty} 2^{-(i / 2+1) p-N} \sum_{l=0}^{N-r-1} 2^{p l} \\
\leq & C_{p} 2^{-N p / 2} 2^{-N p / 2} 2^{(N-r) p}=C_{p} 2^{-r p}
\end{aligned}
$$

Hence, (9) is true for $i=1$ with $\delta:=p$.
To show (9) for $i=2$ we refer to (10) and to the definition (7) of the atoms, which gives

$$
\begin{aligned}
& \int_{A_{2}}\left|T_{\lambda} a\right|^{p}=\int_{2^{-N}}^{1} \int_{2^{-M+r}}^{1}\left|T_{\lambda} a\right|^{p} \\
& \leq \sum_{i=N}^{\infty} \sum_{j=M}^{\infty} 2^{N+M} \int_{2^{-N}}^{1} \int_{2^{-M+r}}^{1}\left(\int_{0}^{2^{-N}} \int_{0}^{2^{-M}}\left|\sum_{k=2^{i}}^{2^{i+1}-1} \frac{k w_{k}(x+s)}{2^{i}}\right|\right. \\
& \left.\times\left|\sum_{l=2^{j}}^{2^{j+1}-1} \frac{l w_{l}(y \dot{+} t)}{2^{j}}\right| d s d t\right)^{p} d x d y \\
& \leq\left[\sum_{i=N}^{\infty} 2^{N} \int_{2^{-N}}^{1}\left(\int_{0}^{2^{-N}}\left|\sum_{k=2^{i}}^{2^{i+1}-1} \frac{k w_{k}(x+s)}{2^{i}}\right| d s\right)^{p} d x\right] \\
& \times\left[\sum_{j=M}^{\infty} 2^{M} \int_{2^{-M+r}}^{1}\left(\int_{0}^{2^{-M}}\left|\sum_{l=2^{j}}^{2^{j+1}-1} \frac{l w_{l}(y \dot{+} t)}{2^{j}}\right| d t\right)^{p} d y\right]=: A B
\end{aligned}
$$

As in the proof for $i=1$ we get

$$
\begin{aligned}
A & \leq \sum_{i=N}^{\infty} 2^{N} \int_{2^{-N}}^{1}\left(\int_{0}^{2^{-N}} K_{2^{i}}(x \dot{+} s) d s\right)^{p} d x \\
& \leq \sum_{i=N}^{\infty} 2^{N-p(i+1)} \int_{2^{-N}}^{1}\left(\int_{0}^{2^{-N}} \sum_{l=0}^{N-1} 2^{l-1} D_{2^{i}}\left(x \dot{+} s \dot{+} 2^{-l-1}\right) d s\right)^{p} d x \\
& \leq \sum_{i=N}^{\infty} 2^{N-p(i+1)} \int_{2^{-N}}^{1} \sum_{l=0}^{N-1} 2^{p(l-1)}\left(\int_{0}^{2^{-N}} D_{2^{i}}\left(x \dot{+} s \dot{+} 2^{-l-1}\right) d s\right)^{p} d x \\
= & \sum_{i=N}^{\infty} 2^{N-p(i+1)} \sum_{l=0}^{N-1} 2^{p(l-1)} \\
& \times 2^{-l-1}+2^{-N} \\
= & \sum_{i=N}^{2^{-N}} 2^{2^{-l-1}} \int_{0}^{N-p(i+1)} \sum_{2^{i}(x+1}^{N-1} 2^{p(l-1)-N} \leq C_{p} .
\end{aligned}
$$

For B the proof is similar. The only difference is that we have to write the sum $\sum_{l=0}^{M-r-1}$ instead of $\sum_{l=0}^{N-1}$ (and, of course, M instead of N). Therefore

$$
B \leq \sum_{j=M}^{\infty} 2^{M-p(i+1)} \sum_{l=0}^{M-r-1} 2^{p(l-1)-M} \leq C_{p} 2^{-r p}
$$

This completes the proof of (9) with $\delta:=p$, that is, the Theorem is true for T_{λ}.

The proof for $T_{1 / \lambda}$ is much more complicated. Assume $1 / 2<p \leq 1$. As above it is enough to prove (9) for $i=1,2$ and for $T_{1 / \lambda}$ instead of T_{λ}. First we consider the case $i=1$. Let a be a rectangular p-atom supported on $\left[0,2^{-N}\right) \times\left[0,2^{-M}\right)$ for some $N, M=0,1, \ldots$ and let $r=0,1, \ldots$ Then-as in the proof for T_{λ}-we get

$$
\begin{aligned}
\int_{A_{1}}\left|T_{1 / \lambda} a\right|^{p} \leq & 2^{-M(1-p / 2)} \sum_{i=N}^{\infty} \int_{2^{-N+r}}^{1}\left(\int_{0}^{2^{-N}}\left[\int_{0}^{1}|a(s, t)|^{2} d t\right]^{1 / 2}\right. \\
& \left.\left.\times\left.\right|_{k=2^{i}} ^{2^{i+1}-1} \frac{2^{i}}{k} w_{k}(x+s) \right\rvert\, d s\right)^{p} d x
\end{aligned}
$$

from which by the formulas (1) and (5) it follows that

$$
\begin{aligned}
\int_{A_{1}}\left|T_{1 / \lambda} a\right|^{p} \leq & 2^{-M(1-p / 2)} \\
& \times \sum_{i=N}^{\infty} \int_{2^{-N+r}}^{1}\left(\int_{0}^{2^{-N}}\left[\int_{0}^{1}|a(s, t)|^{2} d t\right]^{1 / 2} K_{2^{i}}(x+s) d s\right)^{p} d x \\
& +2^{-M(1-p / 2)} \sum_{i=N}^{\infty} \int_{2^{-N+r}}^{1}\left(\int_{0}^{2^{-N}}\left[\int_{0}^{1}|a(s, t)|^{2} d t\right]^{1 / 2}\right. \\
& \times K_{\left.2^{i+1}(x+s) d s\right)^{p} d x} \\
& +2^{-M(1-p / 2)} \sum_{i=N}^{\infty} 2^{i p} \int_{2^{-N+r}}^{1}\left(\int_{0}^{2^{-N}}\left[\int_{0}^{1}|a(s, t)|^{2} d t\right]^{1 / 2}\right. \\
& \left.\left.\times\left.\right|_{l=2^{i}+1} ^{2^{i+1}-1} K_{l}(x+s)\left(\frac{1}{l-1}-\frac{1}{l+1}\right) \right\rvert\, d s\right)^{p} d x \\
= & \Sigma^{(1)}+\Sigma^{(2)}+\Sigma^{(3)} .
\end{aligned}
$$

Taking into account (1), (4) and the proof for T_{λ} we obtain

$$
\Sigma^{(i)} \leq C_{p} 2^{-r p} \quad(i=1,2) .
$$

Furthermore, (1) and (4) imply that

$$
\begin{aligned}
\Sigma^{(3)} \leq & C_{p} 2^{-M(1-p / 2)} \sum_{i=N}^{\infty} 2^{i p} \int_{2^{-N+r}}^{1}\left(\int_{0}^{2^{-N}}\left[\int_{0}^{1}|a(s, t)|^{2} d t\right]^{1 / 2}\right. \\
& \left.\times 2^{-i} \sum_{\nu=0}^{i} 2^{\nu-i} \sum_{m=\nu}^{i}\left(D_{2^{m}}(x+s)+D_{2^{m}}\left(x+s \dot{+} 2^{-\nu-1}\right)\right) d s\right)^{p} d x \\
\leq & C_{p} 2^{-M(1-p / 2)} \sum_{i=N}^{\infty} 2^{-i p} \int_{2^{-N+r}}^{1}\left(\int_{0}^{2^{-N}}\left[\int_{0}^{1}|a(s, t)|^{2} d t\right]^{1 / 2}\right. \\
& \left.\times \sum_{m=0}^{i} \sum_{\nu=0}^{m} 2^{\nu}\left(D_{2^{m}}(x \dot{+} s)+D_{2^{m}}\left(x \dot{+} s \dot{+} 2^{-\nu-1}\right)\right) d s\right)^{p} d x \\
\leq & C_{p} 2^{-M(1-p / 2)} \sum_{i=N}^{\infty} 2^{-i p} \int_{2^{-N+r}}^{1}\left(\int_{0}^{2^{-N}}\left[\int_{0}^{1}|a(s, t)|^{2} d t\right]^{1 / 2}\right. \\
& \times\left(\sum_{m=0}^{N-r-1} 2^{m} D_{2^{m}}(x+s)+\sum_{m=0}^{N-r-1} \sum_{\nu=0}^{m} 2^{\nu} D_{2^{m}}\left(x \dot{+} s \dot{+} 2^{-\nu-1}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\sum_{m=N-r}^{i} \sum_{\nu=0}^{m} 2^{\nu} D_{2^{m}}\left(x+s \dot{+} 2^{-\nu-1}\right)\right) d s\right)^{p} d x \\
& \leq C_{p} 2^{-M(1-p / 2)} \sum_{i=N}^{\infty} 2^{-i p} \int_{2^{-N+r}}^{1}\left(\int_{0}^{2^{-N}}\left[\int_{0}^{1}|a(s, t)|^{2} d t\right]^{1 / 2}\right. \\
& \left.\times \sum_{m=0}^{N-r-1} 2^{m} D_{2^{m}}(x \dot{+} s) d s\right)^{p} d x \\
& +C_{p} 2^{-M(1-p / 2)} \sum_{i=N}^{\infty} 2^{-i p} \int_{2^{-N+r}}^{1}\left(\int_{0}^{2-N}\left[\int_{0}^{1}|a(s, t)|^{2} d t\right]^{1 / 2}\right. \\
& \left.\times \sum_{m=0}^{N-r-1} \sum_{\nu=0}^{m} 2^{\nu} D_{2^{m}}\left(x+s \dot{+} 2^{-\nu-1}\right) d s\right)^{p} d x \\
& +C_{p} 2^{-M(1-p / 2)} \sum_{i=N}^{\infty} 2^{-i p} \int_{2^{-N+r}}^{1}\left(\int_{0}^{2^{-N}}\left[\int_{0}^{1}|a(s, t)|^{2} d t\right]^{1 / 2}\right. \\
& \left.\times \sum_{m=N-r}^{i} \sum_{\nu=0}^{m} 2^{\nu} D_{2^{m}}\left(x+s+2^{-\nu-1}\right) d s\right)^{p} d x \\
& =: \Sigma^{(31)}+\Sigma^{(32)}+\Sigma^{(33)} \text {. }
\end{aligned}
$$

For $\Sigma^{(31)}$ it follows that

$$
\begin{aligned}
\Sigma^{(31)} \leq & C_{p} 2^{-M(1-p / 2)} \sum_{i=N}^{\infty} 2^{-i p} \sum_{m=0}^{N-r-1} 2^{p m} \\
& \times \int_{2^{-N+r}}^{1}\left(\int_{0}^{2^{-N}}\left[\int_{0}^{1}|a(s, t)|^{2} d t\right]^{1 / 2} D_{2^{m}}(x+s) d s\right)^{p} d x \\
\leq & C_{p} 2^{-M(1-p / 2)}\|a\|_{2}^{p} \sum_{i=N}^{\infty} 2^{-i p} \sum_{m=0}^{N-r-1} 2^{p m} \\
& \left.\times \sum_{l=2^{r}}^{2^{N-m}-1} \int_{l 2^{-N}}^{(l+1) 2^{-N}} \int_{0}^{2^{-N}} \int_{0}^{2} D_{2^{m}}^{2}(x+s) d s\right)^{p / 2} d x \\
\leq & C_{p} 2^{-M(1-p / 2)} 2^{-(N+M)(p / 2-1)} 2^{-p N} \\
& \times \sum_{m=0}^{N-r-1} 2^{p m} \sum^{2^{N-m}-1} 2^{-N}\left(2^{2 m-N}\right)^{p / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq C_{p} 2^{-N p / 2} 2^{N} 2^{-p N} \sum_{m=0}^{N-r-1} 2^{2 p m} 2^{-N} 2^{N-m} 2^{-N p / 2} \\
& =C_{p} 2^{-2 p N} 2^{N} 2^{(2 p-1)(N-r)} \\
& =C_{p} 2^{-r(2 p-1)}
\end{aligned}
$$

Now, we estimate $\Sigma^{(32)}$ as follows:

$$
\begin{aligned}
& \Sigma^{(32)} \leq C_{p} 2^{-M(1-p / 2)-p N} \int_{2^{-N+r}}^{1}\left(\int_{0}^{2^{-N}}\left[\int_{0}^{1}|a(s, t)|^{2} d t\right]^{1 / 2}\right. \\
& \left.\times \sum_{\nu=0}^{N-r-1} 2^{\nu} \sum_{m=\nu}^{N-r-1} D_{2^{m}}\left(x+\dot{+}+2^{-\nu-1}\right) d s\right)^{p} d x \\
& \leq C_{p} 2^{-M(1-p / 2)-p N} \sum_{\nu=0}^{N-r-1} 2^{\nu p} \int_{2^{-N+r}}^{1}\left(\int_{0}^{2^{-N}}\left[\int_{0}^{1}|a(s, t)|^{2} d t\right]^{1 / 2}\right. \\
& \left.\times \sum_{m=\nu}^{N-r-1} D_{2^{m}}\left(x \dot{+} s \dot{+} 2^{-\nu-1}\right) d s\right)^{p} d x \\
& \leq C_{p} 2^{-M(1-p / 2)-p N}\|a\|_{2}^{p} \sum_{\nu=0}^{N-r-1} 2^{\nu p} \\
& \times \int_{2^{-N+r}}^{1}\left(\int_{0}^{2^{-N}}\left(\sum_{m=\nu}^{N-r-1} D_{2^{m}}\left(x \dot{+} s \dot{+} 2^{-\nu-1}\right)\right)^{2} d s\right)^{p / 2} d x \\
& =C_{p} 2^{-M(1-p / 2)-p N}\|a\|_{2}^{p} \sum_{\nu=0}^{N-r-1} 2^{\nu p} \\
& \times\left(\sum_{b=0}^{N-r-\nu-2} \int_{2^{b-N+r}}^{b-N+r+1}\left(\int_{0}^{2^{-N}} D_{2^{\nu}}^{2}\left(x \dot{+} s \dot{+} 2^{-\nu-1}\right)\right) d s\right)^{p / 2} d x \\
& \left.+\int_{2^{-\nu-1}}^{2^{-\nu}}\left(\int_{0}^{2^{-N}}\left(\sum_{m=\nu}^{N-r-1} D_{2^{m}}\left(x+s+2^{-\nu-1}\right)\right)^{2} d s\right)^{p / 2} d x\right) \\
& =: \Sigma_{1}^{(32)}+\Sigma_{2}^{(32)} \text {, }
\end{aligned}
$$

where

$$
\begin{aligned}
\Sigma_{2}^{(32)} \leq & C_{p} 2^{-M(1-p / 2)-p N} 2^{-(N+M)(p / 2-1)} \\
& \times \sum_{\nu=0}^{N-r-1} 2^{\nu p} \sum_{b=0}^{N-r-\nu-2} 2^{b-N+r}\left(2^{2 \nu-N}\right)^{p / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq C_{p} 2^{-p N-N(p / 2-1)} \sum_{\nu=0}^{N-r-1} 2^{2 \nu p} 2^{-N p / 2-N+r} 2^{N-r-\nu} \\
& \leq C_{p} 2^{-2 p N+N} 2^{(2 p-1)(N-r)} \\
& =C_{p} 2^{-r(2 p-1)}
\end{aligned}
$$

The analogous estimate for $\Sigma_{2}^{(32)}$ can be verified in the following way:

$$
\begin{aligned}
& \Sigma_{2}^{(32)} \leq C_{p} 2^{-M(1-p / 2)-p N}\|a\|_{2}^{p} \sum_{\nu=0}^{N-r-1} 2^{\nu p} \\
& \times \int_{0}^{2^{-\nu}}\left(\int_{0}^{2^{-N}}\left(\sum_{m=\nu}^{N-r-1} D_{2^{m}}(x+s)\right)^{2} d s\right)^{p / 2} d x \\
& =C_{p} 2^{-M(1-p / 2)-p N}\|a\|_{2}^{p} \sum_{\nu=0}^{N-r-1} 2^{\nu p} \\
& \times\left(\int_{0}^{2^{-N+r}}\left(\int_{0}^{2^{-N}}\left(\sum_{m=\nu}^{N-r-1} D_{2^{m}}(x \dot{+} s)\right)^{2} d s\right)^{p / 2} d x\right. \\
& \left.+\sum_{d=1}^{N-r-\nu} \int_{2^{-\nu-d}}^{2^{-\nu-d+1}}\left(\int_{0}^{2^{-N}}\left(\sum_{m=\nu}^{\nu+d-1} D_{2^{m}}(x+s)\right)^{2} d s\right)^{p / 2} d x\right) \\
& \leq C_{p} 2^{-M(1-p / 2)-p N}\|a\|_{2}^{p} \sum_{\nu=0}^{N-r-1} 2^{\nu p} \\
& \times\left(2^{-N+r} 2^{-N p / 2} 2^{(N-r) p}+\sum_{d=1}^{N-\nu-r} 2^{-\nu-d} 2^{-N p / 2} 2^{p(\nu+d)}\right) \\
& =C_{p} 2^{-M(1-p / 2)-2 p N}\|a\|_{2}^{p} \sum_{\nu=0}^{N-r-1} 2^{(2 p-1) \nu} \\
& \times\left(2^{(N-r)(p-1)}+\sum_{d=1}^{N-r-\nu} 2^{(p-1) d}\right) \\
& \leq C_{p} 2^{-M(1-p / 2)-2 p N} 2^{-(N+M)(p / 2-1)} \\
& \times \sum_{\nu=0}^{N-r-1}(N-r-\nu) 2^{(2 p-1) \nu} \\
& \leq C_{p} 2^{-2 p N-N(p / 2-1)} 2^{(2 p-1)(N-r)} \\
& \leq C_{p} 2^{-r(2 p-1)} \text {. }
\end{aligned}
$$

To complete the proof for $i=1$ we have to estimate $\Sigma^{(33)}$:

$$
\begin{aligned}
\Sigma^{(33)} \leq & C_{p} 2^{-M(1-p / 2)} \sum_{i=N}^{\infty} 2^{-i p} \\
& \times \sum_{m=N-r}^{i} \int_{2^{-N+r}}^{1}\left(\int_{0}^{2^{-N}}\left[\int_{0}^{1}|a(s, t)|^{2} d t\right]^{1 / 2}\right. \\
& \left.\times \sum_{\nu=0}^{m} 2^{\nu} D_{2^{m}}\left(x \dot{+} s \dot{+} 2^{-\nu-1}\right) d s\right)^{p} d x \\
= & C_{p} 2^{-M(1-p / 2)} \sum_{i=N}^{\infty} 2^{-i p} \\
& \times \sum_{m=N-r}^{i} \sum_{l=0}^{N-r-12^{-l-1}} \int_{2^{-l-1}}^{+2^{-m}}\left(\int_{0}^{2^{-N}}\left[\int_{0}^{1}|a(s, t)|^{2} d t\right]^{1 / 2}\right. \\
& \left.\times 2^{l} D_{2^{m}}\left(x+s \dot{+} 2^{-\nu-1}\right) d s\right)^{p} d x \\
\leq & C_{p} 2^{-M(1-p / 2)} \sum_{i=N}^{\infty} 2^{-i p} \sum_{m=N-r}^{i}\|a\|_{2}^{p} \sum_{l=0}^{N-r-1} 2^{p l} \\
& \times \int_{2^{-l-1}+2^{-m}}^{2^{-N}}\left(\int_{0}^{2^{-N}} D_{2^{m}}^{2}\left(x \dot{+} s \dot{+} 2^{-\nu-1}\right) d s\right)^{p / 2} d x \\
\leq & C_{p} 2^{-M(1-p / 2)}\|a\|_{2}^{p} \sum_{i=N}^{\infty} 2^{-i p} \\
& \times\left(\sum_{m=N-r}^{N} 2^{-m} \sum_{l=0}^{N-r-1} 2^{p l}\left(2^{2 m-N}\right)^{p / 2}\right. \\
& \left.+\sum_{m=N+1}^{i} 2^{-m} \sum_{l=0}^{N-r-1} 2^{p l} 2^{m p / 2}\right) \\
\leq & C_{p} 2^{-M(1-p / 2)}\|a\|_{2}^{p} \sum_{i=N}^{\infty} 2^{-i p} \\
& \times\left(2^{-N p / 2} \sum_{m=N-r}^{N} 2^{(p-1) m} 2^{p(N-r)}\right. \\
& \left.+2^{p(N-r)} \sum_{m=N+1}^{i} 2^{p / 2-1-m}\right) . \\
&
\end{aligned}
$$

If $p<1$, then

$$
\begin{aligned}
\Sigma^{(33)} \leq & C_{p} 2^{-M(1-p / 2)}\|a\|_{2}^{p} \sum_{i=N}^{\infty} 2^{-i p} \\
& \times\left(2^{-N p / 2} 2^{p(N-r)} 2^{(p-1)(N-r)}+2^{p(N-r)} 2^{(p / 2-1) N}\right) \\
\leq & C_{p} 2^{-N(p / 2-1)} 2^{p(N-r)-p N}\left(2^{-N p / 2+p N-N-(p-1) r}+2^{p N / 2-N}\right) \\
\leq & C_{p} 2^{-r p} .
\end{aligned}
$$

On the other hand, for $p=1$ we obtain

$$
\begin{aligned}
\Sigma^{(33)} & \leq C_{1} 2^{-M / 2}\|a\|_{2} \sum_{i=N}^{\infty} 2^{-i} r\left(2^{-N / 2} 2^{N-r}+2^{N-r} 2^{-N / 2}\right) \\
& \leq C_{1} r 2^{-r} \leq C_{1} 2^{-r / 2}
\end{aligned}
$$

Finally, we consider the case $i=2$:

$$
\begin{aligned}
\int_{A_{2}}\left|T_{1 / \lambda} a\right|^{p} \leq & {\left[\sum_{i=N}^{\infty} 2^{N} \int_{2^{-N}}^{1}\left(\int_{0}^{2^{-N}}\left|\sum_{k=2^{i}}^{2^{i+1}-1} \frac{2^{i}}{k} w_{k}(x \dot{+} s)\right| d s\right)^{p} d x\right] } \\
& \times\left[\sum_{j=M}^{\infty} 2^{M} \int_{2^{-M}}^{1}\left(\int_{0}^{2^{-M}}\left|\sum_{l=2^{j}}^{2^{j+1}-1} \frac{2^{j}}{l} w_{l}(y \dot{+} t)\right| d t\right)^{p} d y\right]=: R V
\end{aligned}
$$

where $R \leq C_{p}$ by the one-dimensional case (see Simon [2]). We will show a stronger estimate, that is, $V \leq C_{p} 2^{-r \delta}$ with a suitable $\delta>0$ independent of a, r and M. To this end, estimate V as follows (see the analogous situation above):

$$
\begin{aligned}
V \leq & C_{p} \sum_{j=M}^{\infty} 2^{M+j p} \\
& \times \int_{2^{-M+r}}^{1}\left(\left.\left.\int_{0}^{2^{-M}}\right|_{l=2^{j}+1} ^{2^{j+1}-1} K_{l}(y \dot{+} t)\left(\frac{1}{l-1}-\frac{1}{l+1}\right) \right\rvert\, d t\right)^{p} d y \\
& +C_{p} \sum_{j=M}^{\infty} 2^{M} \int_{2^{-M+r}}^{1}\left[\left(\int_{0}^{2^{-M}} K_{2^{j}}(y \dot{+} t) d t\right)^{p}\right. \\
& \left.+\left(\int_{0}^{2^{-M}} K_{2^{j+1}}(y \dot{+} t) d t\right)^{p}\right] d y \\
= & V_{1}+V_{2} .
\end{aligned}
$$

As in the proof for $i=1$ (see the estimation of B) we get $V_{2} \leq C_{p} 2^{-r p}$. For V_{1} we follow the method of the proof for the case $i=1$ (see the estimation
of $\left.\Sigma^{(3)}\right)$. Hence,

$$
\begin{aligned}
V_{1} \leq & C_{p} 2^{M} \sum_{j=M}^{\infty} 2^{-j p} \int_{2^{-M+r}}^{1}\left(\int _ { 0 } ^ { 2 ^ { - M } } \left[\sum_{m=0}^{M-r-1} 2^{m} D_{2^{m}}(y \dot{+} t)\right.\right. \\
& +\sum_{m=0}^{M-r-1} \sum_{\nu=0}^{m} 2^{\nu} D_{2^{m}}\left(y \dot{+} t \dot{+} 2^{-\nu-1}\right) \\
& \left.\left.+\sum_{m=M-r}^{j} \sum_{\nu=0}^{m} 2^{\nu} D_{2^{m}}\left(y \dot{+} t \dot{+} 2^{-\nu-1}\right)\right] d t\right)^{p} d y \\
\leq & C_{p} 2^{M} \sum_{j=M}^{\infty} 2^{-j p} \int_{2^{-M+r}}^{1}\left[\left(\int_{0}^{2^{-M}} \sum_{m=0}^{M-r-1} 2^{m} D_{2^{m}}(y \dot{+} t) d t\right)^{p}\right. \\
& +\left(\int_{0}^{2^{-M} M-r-1} \sum_{m=0}^{m} \sum_{\nu=0}^{m} 2^{\nu} D_{2^{m}}\left(y \dot{+} t \dot{+} 2^{-\nu-1}\right) d t\right)^{p} \\
& \left.+\left(\int_{0}^{2^{-M}} \sum_{m=M-r}^{j} \sum_{\nu=0}^{m} 2^{\nu} D_{2^{m}}\left(y \dot{+} t \dot{+} 2^{-\nu-1}\right) d t\right)^{p}\right] d y \\
= & V_{1}^{(1)}+V_{1}^{(2)}+V_{1}^{(3)} .
\end{aligned}
$$

Now, for $V_{1}^{(1)}$ we have (see the examination of $\Sigma^{(31)}$ in the proof for the case $i=1$)

$$
\begin{aligned}
V_{1}^{(1)} \leq & C_{p} 2^{M} \sum_{j=M}^{\infty} 2^{-j p} \sum_{m=0}^{M-r-1} 2^{p m} \\
& \times \sum_{l=2^{r}}^{2^{M-m}-1} \int_{l 2^{-M}}^{(l+1) 2^{-M}}\left(\int_{0}^{2^{-M}} D_{2^{m}}(y \dot{+} t) d t\right)^{p} d y \\
\leq & C_{p} 2^{M-p M} \sum_{m=0}^{M-r-1} 2^{p m} \sum_{l=2^{r}}^{2^{M-m}-1} 2^{-M}\left(2^{m-M}\right)^{p} \\
\leq & C_{p} 2^{-2 p M} \sum_{m=0}^{M-r-1} 2^{2 p m} 2^{M-m} \\
\leq & C_{p} 2^{-r(2 p-1)}
\end{aligned}
$$

Similarly to the estimation of $\Sigma^{(32)}$ in the case $i=2$ we have

$$
V_{1}^{(2)} \leq C_{p} 2^{M-p M} \sum_{\nu=0}^{M-r-1} 2^{\nu p}
$$

$$
\begin{aligned}
& \times\left[\sum_{b=0}^{M-r-\nu-2} \int_{2^{b-M+r}}^{b-M+r+1}\right. \\
2^{2-M} & \left.\int_{0}^{-M} D_{2^{\nu}}\left(y \dot{+} t \dot{+} 2^{-\nu-1}\right) d t\right)^{p} d y \\
& +\int_{2^{-\nu-1}}^{2^{-\nu}}\left(\int_{0}^{2^{-M}}\left(\sum_{m=\nu}^{M-r-1} D_{2^{m}}\left(y \dot{+} t \dot{+} 2^{-\nu-1}\right) d t\right)^{p} d y\right] \\
= & V_{11}^{(2)}+V_{12}^{(2)},
\end{aligned}
$$

where

$$
V_{11}^{(2)} \leq C_{p} 2^{M-p M} \sum_{\nu=0}^{M-r-1} 2^{\nu p} \sum_{b=0}^{M-r-\nu-2} 2^{b-M+r}\left(2^{\nu-M}\right)^{p} \leq C_{p} 2^{-r(2 p-1)}
$$

and

$$
\begin{aligned}
V_{12}^{(2)} \leq & C_{p} 2^{M-p M} \sum_{\nu=0}^{M-r-1} 2^{\nu p}\left[\int _ { 0 } ^ { 2 ^ { - M + r } } \left(\int_{0}^{2^{-M}}\left(\sum_{m=\nu}^{M-r-1} D_{2^{m}}(y \dot{+} t) d t\right)^{p} d y\right.\right. \\
& \left.+\sum_{d=1}^{M-r-\nu} \int_{2^{-\nu-d}}^{2^{-\nu-d+1}}\left(\int_{0}^{2^{-M}} \sum_{m=\nu}^{\nu+d-1} D_{2^{m}}(y+t) d t\right)^{p} d y\right] \\
\leq & C_{p} 2^{M-p M} \sum_{\nu=0}^{M-r-1} 2^{\nu p} \\
& \times\left(2^{-M+r} 2^{-M p} 2^{(M-r) p}+\sum_{d=1}^{M-r-\nu} 2^{-\nu-d} 2^{-M p} 2^{p(\nu+d)}\right) \\
\leq & C_{p} 2^{-r(2 p-1)} .
\end{aligned}
$$

To examine $V_{1}^{(3)}$ we apply again the argument from the case $i=1$, i.e. similarly to the estimation of $\Sigma^{(33)}$ we get

$$
\begin{aligned}
V_{1}^{(3)} \leq & C_{p} 2^{M} \sum_{j=M}^{\infty} 2^{-j p} \\
& \times \sum_{m=M-r}^{j} \int_{2^{-M+r}}^{1}\left(\int_{0}^{2^{-M}} \sum_{\nu=0}^{m} 2^{\nu} D_{2^{m}}\left(y \dot{+} t \dot{+} 2^{-\nu-1}\right) d t\right)^{p} d y \\
\leq & C_{p} 2^{M} \sum_{j=M}^{\infty} 2^{-j p} \\
& \times \sum_{m=M-r}^{j} \sum_{l=0}^{M-r-1} 2^{p l} \int_{2^{-l-1}}^{2^{-l-1}+2^{-m}}\left(\int_{0}^{2^{-M}} 2^{l} D_{2^{m}}\left(y \dot{+} t \dot{+} 2^{-\nu-1}\right) d t\right)^{p} d y
\end{aligned}
$$

$$
\begin{aligned}
& \leq C_{p} 2^{M} \sum_{j=M}^{\infty} 2^{-j p} \\
& \times\left(\sum_{m=M-r}^{M} 2^{-m} \sum_{l=0}^{M-r-1} 2^{p l}\left(2^{m-M}\right)^{p}+\sum_{m=M+1}^{j} 2^{-m} \sum_{l=0}^{M-r-1} 2^{p l}\right) \\
& \leq C_{p} 2^{M} \sum_{j=M}^{\infty} 2^{-j p}\left(2^{-p M} \sum_{m=M-r}^{M} 2^{p m-m+p(M-r)}+2^{-j+p(M-r)}\right) \\
& \leq C_{p} \begin{cases}2^{-r(2 p-1)} \\
2^{-r / 2} & (p<1),\end{cases} \\
& \hline
\end{aligned}
$$

This completes the proof of the theorem.

REFERENCES

[1] F. Schipp, W. R. Wade, P. Simon and J. Pál, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Akadémiai Kiadó, Budapest, and Adam Hilger, Bristol, 1990.
[2] P. Simon, Hardy spaces and multipliers, Acta Sci. Math. (Szeged), to appear.
[3] G.-I. Sunouchi, On the Walsh-Kaczmarz series, Proc. Amer. Math. Soc. 2 (1951), 5-11.
[4] -, Strong summability of Walsh-Fourier series, Tôhoku Math. J. 16 (1969), 228-237.
[5] F. Weisz, Martingale Hardy Spaces and their Applications in Fourier-Analysis, Springer, 1994.
[6] -, Strong summability of two-dimensional Walsh-Fourier series, Acta Sci. Math. (Szeged) 60 (1995), 779-803.
[7] -, The boundedness of the two-dimensional Sunouchi operators on Hardy spaces, Acta Math. Hungar. 72 (1996), 121-152.

Department of Numerical Analysis
Eötvös L. University
Múzeum krt. 6-8
H-1088 Budapest, Hungary
E-mail: simon@ludens.elte.hu

[^0]: 1991 Mathematics Subject Classification: Primary 42C10, 43A22; Secondary 47B38, 60G46.

 This research was supported by the Hungarian Scientific Research Funds (OTKA) T020497.

