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ENDOMORPHISM ALGEBRAS OF EXCEPTIONAL SEQUENCES

OVER PATH ALGEBRAS OF TYPE Ãn

BY
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The notion of exceptional sequences originates from the study of vec-
tor bundles (see, for instance, [GR, B]) and was carried over to modules
over hereditary artin algebras (see [CB, R2]). In this paper, we consider
the following situation: let k be a commutative field, Q be a finite con-
nected quiver without oriented cycles; then the path algebra A = kQ is
hereditary and we may study the exceptional sequences in the category
modA of finitely generated right A-modules. We recall that an indecom-
posable object E in modA is called exceptional if Ext1A(E,E) = 0. A se-
quence E = (E1, . . . , Et) of exceptional objects in modA is called an ex-
ceptional sequence if HomA(Ej , Ei) = 0 and Ext1A(Ej , Ei) = 0 for j > i.
An exceptional sequence E = (E1, . . . , Et) is called complete if t equals
the number of isomorphism classes of simple A-modules, and connected if
End(

⊕t
i=1 Ei) (which we denote briefly by End E) is a connected algebra.

Ringel has asked whether, if E is a complete exceptional sequence in the
module category over a representation-finite hereditary artin algebra, then
End E is also representation-finite. This question was answered affirmatively
in case A = kQ, where Q is of type An, first by H. Yao [Y] in case Q has
a linear orientation, then by H. Meltzer [M] in case Q has an arbitrary ori-
entation. It is reasonable to generalise Ringel’s question as follows: let E be
a complete exceptional sequence in the module category over a tame path
algebra; is it then true that End E is also tame? The objective of this paper
is to answer this latter question affirmatively whenever A = kQ, where Q is
of type Ãn. More precisely, we prove the following theorem.
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Theorem. Let k be a commutative field , Q be a quiver with underlying

graph Ãn, and A = kQ be its path algebra. Let E be a complete exceptional

sequence in modA. Then End E is either a direct product of one tilted alge-

bra of type Ãm (with m ≤ n) and tilted algebras of type Al (with l≤n−m), or
a direct product of tilted algebras of type Al (with l≤n+1). Each connected

subsequence of E is a partial tilting module.

We use essentially the description of the module category of a path al-
gebra of type Ãn, as in [DR, R1], and the structure of its indecomposable
modules, as in [BR]. Notice that, if (E1, . . . , Et) is an exceptional sequence
in modA, where A = kQ, then, in particular, each Ei is exceptional, hence
EndEi = k (see, for instance, [K], (11.9)). If Q is an Euclidean quiver, this
implies that Ei is postprojective, preinjective or regular lying in an excep-
tional tube of rank m (> 1), say, and, in this case, is of quasi-length at most
m− 1.

We use without further reference properties of the Auslander–Reiten
translations τ = DTr and τ−1 = TrD, and the Auslander–Reiten quiver
Γ (modA) of A as in [ARS, R1]. In particular, we frequently use the Aus-
lander–Reiten formulae

Ext1A(M,N) ∼= DHomA(N, τM) ∼= DHomA(τ
−1N,M).

For the classification results of tilted and iterated tilted algebras of type An

and Ãn, we refer to [A1, AH, AS, R, H].

1. Regular exceptional modules. The aim of this section is to show
that, if Γ is an exceptional tube of rank m, say, in the Auslander–Reiten
quiver of the path algebra A of an Euclidean quiver, and E is a connected
exceptional sequence all of whose terms lie in Γ , then End E is a tilted
algebra of type At.

In this situation, the tube Γ is standard, thus we may identify the points
in Γ with the corresponding indecomposable A-modules. Each point in
Γ will be given by two coordinates: the first is the quasi-length of the
corresponding indecomposable A-module (thus is a positive integer), and the
second represents its regular socle (and is chosen from Zm). The modules
Ei being exceptional, they have quasi-length at most m− 1. The figure on
the next page shows the full translation subquiver Γ ′ of Γ consisting of all
modules of quasi-length at most m− 1. Associated to each point M = (i, j)
in Γ ′ are four sectional paths in Γ ′, these are:

(i) (Mր), the portion of coray from M to the mouth (that is, the
sectional path from (i, j) to (1, j − i+ 1)),

(ii) (Mց), the portion of ray from M to infinity in Γ ′ (that is, the
sectional path from (i, j) to (m− 1, j)),
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(iii) (ցM), the portion of ray from the mouth toM (that is, the sectional
path from (1, j) to (i, j)), and

(iv) (րM), the portion of coray from infinity to M in Γ ′ (that is, the
sectional path from (m− 1,m− 1 + j − i) to (i, j)).

It also follows from the standardness of Γ that, if M = (i, j) is in Γ ′,
then the support SuppHomA(M,−)|Γ ′ of the restriction to Γ ′ of the functor
HomA(M,−) is a trapezoid with corners (i, j), (1, j− i+1), (m−1, j− i+1)
and (m− 1, j), bounded by the sectional paths (Mր), (Mց) and ((1, j −
i+1)ց). Similarly, SuppHomA(−,M)|Γ ′ is a trapezoid with corners (i, j),
(m−1,m−1+ j− i), (1, j) and (m−1,m−2+ j), bounded by the sectional
paths (ցM), (րM) and (ր(1, j)).

Lemma 1.1. Let M ∈ E , and M,N,L lie in Γ .

(a) Let N ∈ E. Then HomA(M,N) 6= 0 if and only if N ∈ (Mր) ∪
(Mց).

(b) Let L ∈ E. Then HomA(L,M) 6= 0 if and only if L ∈ (ցM)∪(րM).

P r o o f. We only show (a), since the proof of (b) is similar.

For M,N ∈ E , HomA(M,N) 6= 0 implies that (M,N) is a subsequence
of E so that HomA(τ

−1M,N) = 0, that is, N ∈ SuppHomA(M,−)|Γ ′ but
N /∈ SuppHomA(τ

−1M,−)|Γ ′ . Therefore N ∈ (Mր) ∪ (Mց). The con-
verse is trivial.

Lemma 1.2. There exists no path M → N → L in Γ with M = (i, j),
N = (i− l, j − l), l ≥ 1, L = (k, j − l), k > i− l, and M,N,L ∈ E.

P r o o f. Assume the contrary. Since N ∈ (Mր)∪(Mց) by Lemma 1.1,
we have in fact N ∈ (Mր). Similarly, L ∈ (Nց). But then we obtain
L ∈ SuppHomA(τ

−1M,−)|Γ ′ so that Ext1A(L,M) 6= 0, a contradiction to
the fact that (M,N,L) is a subsequence of E .

Lemma 1.3. Assume there exists a path M
f
→N

g
→L in Γ with M = (i, j),

N = (k, j), k > i, L = (k − l, j − l), 1 ≤ l < k and M,N,L ∈ E. Then

gf = 0.
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P r o o f. By Lemma 1.1 and the hypothesis, we have N ∈ (Mց). Also,
since (M,N,L) is a subsequence of E , we have L /∈ SuppHomA(τ

−1M,−)|Γ ′ ,
hence L /∈ SuppHomA(M,−)|Γ ′ . That is, HomA(M,L) = 0.

Lemma 1.4. Let E be a connected exceptional sequence lying in Γ . Then

the quiver of End E is a tree.

P r o o f. Assume the contrary; then the quiver of End E contains a cycle,
which, by [Y], Proposition 3.2, is not an oriented cycle. Let thus F be a
subsequence of E such that the quiver of EndF is a cycle. We agree to say
that F passes through two neighbouring corays (ր(1, j)) and (ր(1, j − 1))
if there is an arrow α of the quiver of EndF representing a sectional path
α1 . . . αr where α1, . . . , αr are arrows in Γ , and some 1 ≤ l ≤ r such that
αl is the arrow in Γ from (i, j + i− 1) to (i+ 1, j + i− 1). We also denote

by Γ̃ ′ the universal covering of the full translation subquiver Γ ′ of Γ of all
modules of quasi-length at most m − 1 (thus Γ̃ ′ ∼= ZAm−1). We consider
two cases:

(a) Assume that F passes through all pairs of neighbouring corays
(ր(1, j)) and (ր(1, j − 1)), where j ranges over Zm. Let M ∈ F ; then

there exist two points M0, M1 in Γ̃ ′ lifting M , and a path of length m+ 1
from M0 to M1. The corays passing through M0 and M1 determine a par-
allelogram abcd in Γ̃ ′ as shown:

d• • • • c

M0 • • M1

a• • • • b
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There exists a walk F̃ inside abcd lifting the non-oriented path F . Since
the horizontal size of abcd is m+1, while its vertical size is m− 1, the walk
F̃ must necessarily contain a subpath as in Lemma 1.2. We thus obtain a
contradiction.

(b) Assume that F does not pass through all pairs of neighbouring
corays. Without loss of generality, we may suppose that F does not pass
through the pair (ր(1, 1)), (ր(1,m)) and that there exists a point M of
F on the coray (ր(1,m)). We may further assume that M is the point of
F on (ր(1,m)) having the largest first coordinate (that is, quasi-length).

We construct as in (a) a point M0 of Γ̃ ′ lifting M , we consider the coray
from a = (m− 1,m− 2) to d = (1,m) passing through M0, then construct
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a parallelogram abcd, where b = (m− 1,m) and c = (1, 1). The hypothesis

(b) says that there exists a lifting F̃ of F which is entirely contained inside
abcd.

d=(1,m)
•

c=(1,1)
•

M0 •
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b=(m−1,m)
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We claim that M0 6= (1,m), M0 6= (m− 1, 1) and that M0 is a source in

F̃ . Indeed, if M0 = (1,m), then there is a single ray (M0ց) starting at M0,
no other paths in abcd starting or ending at M0, so that we cannot form
a cycle. If M0 = (m − 1, 1), then there is a single coray (M0ր) starting
at M0, no other paths starting or ending at M0, so that we cannot form
a cycle. Finally, let M0 6= (1,m), (m − 1,m − 2). Then, by the choice of

M , the only walks through M0 which may lie in F̃ start with arrows from
(M0ր) ∪ (M0ց), that is, M0 is a source in F̃ . But then F̃ must contain a
subpath as in Lemma 1.2, a contradiction.

Theorem 1.5. Let Γ be an exceptional tube in the Auslander–Reiten

quiver of the path algebra of a Euclidean quiver , and E = (E1, . . . , Et) be a

connected exceptional sequence whose terms lie in Γ . Then End E is a tilted

algebra of type At.

P r o o f. By [A1, H], we must show that the bound quiver of End E is
a gentle tree without double zeros. By Lemma 1.4, this quiver is a tree.
It follows from Lemma 1.1 that the number of arrows entering or leaving
a given point is at most two. By Lemmata 1.2 and 1.3, the bound quiver
of End E is gentle. Finally, Lemma 1.2 also implies that it has no double
zeros.

2. Postprojective components. Let A = kQ be the path algebra
of a quiver Q of type Ãn, with an arbitrary orientation. Assume that Q
has p arrows in the counterclockwise sense, and q in the clockwise sense
(thus p + q = n + 1). We may clearly assume that p ≥ q. Let Q′ be the

quiver of type Ãn having just one source 1, and one sink n+ 1, and having
p arrows in the counterclockwise sense, and q in the clockwise sense, and
let B = kQ′.
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For a point i, we denote by Pi (or Ii) the corresponding indecompos-
able projective (or injective, respectively) module. There exists a tilting
B-module TB , which is the slice module of a complete slice in the post-
projective component P of Γ (modB), having as summand P1, such that
A = EndTB. The tilting module TB determines a torsion pair in each of
modB and mod A such that the full subcategory of modA consisting of
the postprojective A-modules is equivalent to the full subcategory of modB
consisting of the torsion postprojective B-modules [A2].

The postprojective component P contains two types of sectional paths,
those parallel to the path from Pn+1 to P1 via Pp, which we call (q)-paths,
and those parallel to the path from Pn+1 to P1 via Pn, which we call (p)-
paths. We denote by ∆ the full translation subquiver of P bounded by the
two paths from Pn+1 to P1, and the (q)-path, and the (p)-path starting at P1.
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The indecomposable modules in P are described by lines in Q̃′, the uni-
versal covering of Q′ (see [BR]). Thus, for any r ≥ 0, τ−rPn+1 is given by
the line

u+v︷ ︸︸ ︷

r2
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where the integers u, v, r1, r2 are defined by r = pu+ r1 = qv+ r2, u, v ≥ 0,
0 ≤ r1 < p, 0 ≤ r2 < q. For p < k ≤ n+ 1 and r ≥ 0, τ−rPk is given by the
line
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r1

where u, v, r1, r2 are as above, and v′, r′2 are defined by r2 + (n + 1 − k) =
v′q+ r′2, v

′ ≥ 0, 0 ≤ r′2 < q. Finally, for 1 ≤ l ≤ p and r ≥ 0, τ−rPl is given
by the line

u+u′+v′
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r′1

where u, v, r1, r2 are as above and u′, r′1 are defined by r1 + (p + 1 − l) =
u′p+ r′1, u

′ ≥ 0, 0 ≤ r′1 < p.

We call n + 1 − r2 (or n + 1 − r′2) the left endpoint and p + 1 − r1 (or
p+ 1− r′1) the right endpoint of the module.

Lemma 2.1. In P, the modules lying on a (p)-path have the same right

endpoint , and those lying on a (q)-path have the same left endpoint. Moreover ,
each path in the postprojective (or preinjective component) of Γ (modA) is a
monomorphism (or epimorphism, respectively).
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P r o o f. The first statement follows from the above description of the
modules in P, the second from this description and the tilting functor
HomB(T,−): modB → modA.

Let now E = (E1, . . . , Et) be an exceptional sequence in the postprojec-
tive component P of Γ (modB). Applying the functor τ = DExt1B(−, B),
we may assume that one of the modules of E is projective. But now, if M,N
are two modules in P, we have HomB(M,N) 6= 0 if and only if there exists
a path from M to N in P. Thus, (M,N) is a subsequence of E if and only if
there exists a path from M to N in P, but no path from M to τN . Since, for
any indecomposable projective B-module P , and indecomposable module X
which is not in ∆, there exists a path from P to τX, we deduce that E lies
entirely in ∆.

Lemma 2.2. Let E = (E1, . . . , Et) be an exceptional sequence in P. Then

there exists a complete slice S of P such that all terms of E lie on S.

P r o o f. Assume that Ei, Ej are two terms in E . We claim that Ei,
Ej belong to different τ -orbits in P. Indeed, if this is not the case, then
there exist an indecomposable projective module PB and integers r < s
such that Ei = τ−rP , Ej = τ−sP . But then HomB(Ei, Ej) 6= 0 implies
that (Ei, Ej) is a subsequence of E , and this contradicts Ext1B(Ej , Ei) ∼=
DHomB(τ

−1Ei, Ej) 6= 0.
Let again Ei, Ej be two terms of E . We may assume without loss of

generality that (Ei, Ej) is a subsequence of E and such that the τ -orbits of
Ei and Ej are neighbours among the orbits of the terms of E in the orbit
graph of P. Now HomB(τ

−1Ei, Ej) = 0 implies that Ej is not a successor
of τ−1Ei in ∆ and HomB(Ej , Ei) = 0 implies that Ej is not a predecessor
of Ei. This shows that, if there exists a path from Ei to Ej , then this path
is sectional. Consequently, Ei and Ej lie on a complete slice S of P, and
hence so do all terms in E .

Corollary 2.3. Let E = (E1, . . . , Et) be an exceptional sequence in the

postprojective component of Γ (modA). Then End E is a direct product of

path algebras of type Am (with m ≤ t), or is a connected path algebra of type

Ãt−1.

Lemma 2.4. If (M,N) is an exceptional sequence in modA, with M
postprojective and N preinjective, then HomA(M,N) = 0.

P r o o f. Applying the functor τ−1, we may assume that N is injective.
By Lemma 2.1, there exists a monomorphism f : M → τ−1M . Assume
that g : M → N is non-zero.The injectivity of N implies the existence of
g′ : τ−1M → N such that g = g′f . Thus g′ 6= 0. Hence Ext1A(N,M) ∼=
DHomA(τ

−1M,N) 6=0, a contradiction to the fact that (M,N) is an excep-
tional sequence.
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Lemma 2.5. Let E = (E1, . . . , Et, F1, . . . , Fs) be an exceptional sequence

in modA, with the Ei postprojective and the Fj preinjective, and t, s ≥ 1.

Then End(
⊕t

i=1 Ei) is not the path algebra of a quiver of type Ãt−1.

P r o o f. We assume that End(
⊕t

i=1Ei) is the path algebra of a quiver

of type Ãt−1 and show that E cannot contain any preinjective term.
Let the quiver Q of A have sources i1, . . . , ir and sinks j1, . . . , jr such that

we have paths from ik to jk−1 and jk, for each 1 < k ≤ r, and paths from i1
to jr and j1. Then, for each j lying on the reduced walk from jk−1 to jk con-
taining ik, we have HomA(Pik , Ij) 6= 0. Let m > 0 be an arbitrary integer.
By Lemma 2.1, there exists an epimorphism τmIj → Ij , hence an epimor-
phism HomA(Pik , τ

mIj) → HomA(Pik , Ij) so that HomA(Pik , τ
mIj) 6= 0.

Furthermore, for any monomorphism f : Pik → X with X postprojective
and morphism g : Pik → τmIj , there exists a morphism g′ : X → τmIj
such that g′f = g, because we may apply the functor τ−m to these modules.
Thus HomA(X, τmIj) 6= 0.

It follows from the proof of Lemma 2.2 that End(
⊕t

i=1Ei) is hereditary

of type Ãt−1 if and only if the terms Ei lie on a complete slice S, of which
all the sources and sinks are themselves terms of the sequence. If all of
Pi1 , . . . , Pir are terms of E , we are done. If Pik is not a term of E , there
exists a sink X of S that is a term of E , and such that Pik is a submodule
of X. Therefore E cannot contain any preinjective term.

3. The arrows from postprojective to regular. In this section, we
assume thatA is a hereditary algebra of type Ãn, and that E is an exceptional

sequence in modA such that some terms of E are postprojective, and some
are regular. It follows from the considerations at the beginning of Section 2
that we may assume A to be given by the following quiver:

p+1
• // ______ // n•

!!B
BB

BB
BB

BB

1 •

>>||||||||

  B
BB

BB
BB

BB
• n+1

•
2

// ______ // •
p

==|||||||||

Then Γ (modA) has two exceptional tubes Γp and Γq, of respective ranks p
and q. We denote, as in Section 1, by Γ ′

p andΓ
′

q the full translation subquiver
of Γp and Γq, respectively, consisting of the exceptional modules. We need
one more notation: let M be a mouth module in an exceptional tube; the
mitre M̂ ofM is the full translation subquiver consisting of those exceptional
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modules N in the tube such that there exist sectional paths X → . . . → N
for some X in (րM) and N → . . . → Y for some Y in (Mց).

Lemma 3.1. Let (M,N) be an exceptional sequence with M postprojective

and N regular. Assume the left endpoint of M is k (with p+1 ≤ k ≤ n+1)
and its right endpoint is l (with 2 ≤ l ≤ p or l = n+1). Then HomA(M,N)
6= 0 if and only if one of the following conditions is satisfied :

(a) N ∈ (ր(1, i)) in Γq , where i = 1 whenever k = n+1 and i = k−p+1
whenever p+ 1 ≤ k ≤ n, or

(b) N ∈ (ր(1, i)) in Γp, where i = 1 whenever l = n + 1 and i = l
whenever 2 ≤ l ≤ p.

P r o o f. By the description [DR] of the indecomposable regular A-mod-

ules, HomA(M,N) 6= 0 impliesN ∈ (1̂, i) and, since (M,N) is an exceptional

sequence, we have HomA(τ
−1M,N) = 0 so that N /∈ ( ̂1, i − 1).

We shall need the dual of Lemma 3.1, which we state here for future
reference.

Lemma 3.2. Let (M,N) be an exceptional sequence with M regular and

N preinjective. Assume the right endpoint of N is k (with k = 1 or p +
1 ≤ k ≤ n + 1) and the left endpoint of N is l (with 1 ≤ l ≤ p). Then

HomA(M,N) 6= 0 if and only if one of the following conditions is satisfied :

(a) M ∈ ((1, k)ց) in Γq, or
(b) M ∈ ((1, l)ց) in Γp.

Lemma 3.3. Let (M,N) be an exceptional sequence with M postprojective

and N regular. If HomA(M,N) 6= 0, there exists no L ∈ (Nց) such that

(M,N,L) is an exceptional sequence.

P r o o f. Indeed, if this is the case, then L ∈ ( ̂1, i − 1) so that we have
HomA(τ

−1M,L) 6= 0, a contradiction.

We shall again need the dual.

Lemma 3.4. Let (M,N) be an exceptional sequence with M regular and

N preinjective. If HomA(M,N) 6= 0, there exists no L ∈ (րM) such that

(L,M,N) is an exceptional sequence.

Lemma 3.5. Let E = (E1, . . . , Er, F1, . . . , Fs) be an exceptional sequence

with the Ei postprojective, the Fj regular , and (F1, . . . , Fs) connected. Then

there exist a unique Ei and a unique Fj such that HomA(Ei, Fj) 6= 0, and
the non-zero morphisms from Ei to Fj factor through no other module in E.

P r o o f. Since (F1, . . . , Fs) is connected, we may assume without loss of
generality that the Fj lie in Γp. By Lemma 3.1, we must consider the right
endpoint of any postprojective term of E which maps non-trivially to them.
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Assume that Ei1 → . . . → Eiu in E , where all these modules have the
same right endpoint l; then, by Lemma 2.1, these modules are linearly or-
dered by inclusion. If these modules map non-trivially to some regular term
in E , then these regular terms Fj1 → . . . → Fjv belong to (ր(1, t)), where
t = l if 2 ≤ l ≤ p, or t = 1 if l = n + 1, and hence are linearly ordered by
the quotient relation. Since

End E =
[⊕

HomA(Eif , Eig )
]
⊕

[⊕
HomA(Eig , Fjh)

]

⊕
[⊕

HomA(Fjh , Fjk)
]

we choose Ei = Eiu and Fj = Fj1 . By construction, HomA(Ei, Fj) 6= 0 and
the non-zero morphisms from Ei to Fj factor through no other module in E .

It remains to prove the uniqueness of the pair (Ei, Fj). Since, clearly, any
pair satisfying the conditions of the statement is constructed in the above
way, assume that there exist Ei′ with right endpoint l′ 6= l, and Fj′ , on the
line (ր(1, t′)) where t′ = l′ if 2 ≤ l′ ≤ p and t′ = 1 if l′ = n+ 1.

Since HomA(τ
−1Ei, Fj′) = 0, we have Fj′ /∈ ( ̂1, t− 1). Also, notice that

Fj′ /∈ (ր(1, t)) by construction of Fj . Since HomA(τ
−1Ei′ , Fj) = 0, we have

similarly Fj ∈ ( ̂1, t′ − 1). Therefore, Fj′ belongs to the shaded area in the
figure below.

(1,t)
•

(1,t−1)
• • •

(1,t)
•

Fj′

Fj• •Fj

• • • • •

������������������������ ??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
?? ������������������������

������������������������

??
??

??
??

? ������������������������

By Lemma 3.3, there is no L ∈ E such that L ∈ (ցFj) or L ∈ (ցFj′).
By Lemma 1.2, there is no path Fj → L → L′ (or Fj′ → L → L′) with
L ∈ (Fjր) (or L∈ (Fj′ր), respectively) and L′∈ (Lց). Therefore, Fj and
Fj′ are disconnected in Γp, a contradiction.

Lemma 3.6. With the assumptions and notation of Lemma 3.3, we have:

(a) If End(
⊕r

l=1 El) is representation-infinite, then Ei is a sink of S.

(b) If we have two morphisms f : El → Ei, g : El′ → Ei, where f is

induced by a (q)-path, and g is induced by a (p)-path, and if h : Ei → Fj is

a non-zero morphism, then hf = 0 whenever Fj ∈ Γp and hg = 0 whenever

Fj ∈ Γq.
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P r o o f. (a) This follows from the choice of Ei in Lemma 3.5, and the
structure of the complete slice S (see Lemma 2.2).

(b) This follows from the description of the indecomposable A-mod-
ules.

4. Proof of the main result. Assume now that A is a tame hereditary
algebra of type Ãn (with any orientation), and that E = (E1, . . . , En+1)
is a complete exceptional sequence in modA. It follows easily from the
considerations of Sections 2 and 3 that it suffices to consider the case where
there exist t, s such that (E1, . . . , Et) are postprojective, (Et+1, . . . , Es) are
regular and (Es+1, . . . , En+1) are preinjective.

We first recall the classification results from [AS, R, H] that will be
needed. A triangular algebra is called gentle if it is isomorphic to a bound
quiver algebra kQ/I, where (Q, I) satisfies:

(a) The number of arrows in Q with a given source or target is at most
two.

(b) For any α ∈ Q1, there is at most one β ∈ Q1 and one γ ∈ Q1 such
that αβ, γα /∈ I.

(c) For any α ∈ Q1, there is at most one ξ ∈ Q1 and one ζ ∈ Q1 such
that αξ, ζα ∈ I.

(d) I is generated by a set of paths of length two.

Then we have:

Theorem 4.1 [AS]. An algebra is iterated tilted of type Ãn if and only if it

is gentle and its quiver contains a unique (non-oriented) cycle on which the

number of clockwise oriented relations equals the number of counterclockwise

oriented relations.

Theorem 4.2 [R, H]. An iterated tilted algebra of type Ãn is tilted if and

only if it contains no full subcategory of one of the following forms or their

duals:

(a) •
1

α // •
2

β // •
3

___ •
t−2

γ // •
t−1

δ // •
t

with t ≥ 4, αβ = 0, γδ = 0.

(b) •
1

•
2

αoo •
3

βoo ___ •
t−2

γ // •
t−1

δ // •
t

with t ≥ 4, βα = 0, γδ = 0, 1 and 2 lie on the cycle while t−1 and t do not.
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(c) 1
•

•
3

β

\\::::::::
• ___ •

t−2

γ // •
t−1

δ // •
t

•
2

α

BB��������

with t ≥ 6, αβ = 0, γδ = 0, 1, 2 and 3 lie on the cycle while t− 2, t− 1 and

t do not.

(d) • 1

α

��

• t

•
2

•
3

βoo ___ •
t−2

γ // •
t−1

δ

OO

or

• 1

α

��

• t

•
2

•
3

βoo ___ •
t−2

δ

OO

•
t−1

γoo

with t ≥ 5, αβ = 0 γδ = 0, all points i with 2 ≤ i ≤ t − 1 lie on the cycle

while 1 and t do not.

In each case, there are no other relations than the specified ones, and
the arrows between 3 and t− 2 are oriented arbitrarily.

Lemma 4.3. If (E,F ) is an exceptional sequence in modA with E post-

projective and F preinjective, then:

(a) E belongs to the rectangle in the postprojective component P consist-

ing of the (p)-paths starting at Pn+1 and P3, and the (q)-paths starting at

Pn+1 and Pp+2.

(b) F belongs to the rectangle in the preinjective component Q consisting

of the (p)-paths ending at Ip−1 and I1, and the (q)-paths ending at In−1

and I1.

P r o o f. This follows from the fact that, if E is a module of the form

1
•

��
��
��

//
//

//

__ __

•
n+1

•
n+1
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and F is any preinjective module, then HomA(E,F ) 6= 0. Dually, if E is any
postprojective module, while F is a module of the form

1
•

1
•

__ __

•
n+1

//////

������

then HomA(E,F ) 6= 0.

Lemma 4.4. Let (E,M1, . . . ,Ms, F ) be a connected shortest walk in the

exceptional sequence E , with E postprojective, F preinjective and all the Ml

regular lying in the same exceptional tube. Then s = 1.

P r o o f. We may assume that all theMl belong to Γp. The connectedness
of the given walk implies that HomA(E,Mi) 6= 0 and HomA(Mj , F ) 6= 0
for some 1 ≤ i, j ≤ s. Let l be the right endpoint of E. Since (E,Mi) is
an exceptional sequence with HomA(E,Mi) 6= 0, we see, by Lemma 3.1,
that Mi ∈ (ր(1, l)) whenever 2 ≤ l ≤ p, and Mi ∈ (ր(1, 1)) whenever
l = n + 1. Dually, if k is the left endpoint of F , then, by Lemma 3.2, we
have Mj ∈ ((1, k)ց). Denote by Ri the point (1, l) if 2 ≤ l ≤ p, or (1, 1) if
l = n+ 1, and by Rj the point (1, k). By Lemma 3.5, we may assume that
E is a sink (among the terms of E) in a (p)-path, Mi is a source in (րRi),
Mj is a sink in (ցRj), and F is a source in a (p)-path.

Since HomA(τ
−1E,Mj) ∼= DExt1A(Mj , E) = 0, it follows that Mj ∈

( ̂1, l − 1) when 2 ≤ l ≤ p, and Mj /∈ (1̂, p) when l = n + 1. Dually, since

HomA(Mi, τF ) ∼= DExt1A(F,Mi) = 0, we have Mi /∈ ( ̂1, k + 1) when k 6= p,

and Mi /∈ (1̂, p) when k = p. Letting M be the module of least quasi-length
in the intersection of (րRi) and (ցRj), we find that Mi,Mj lie on the sides
of the triangle RiMRj . Similarly, if 1 ≤ l ≤ s, then Ml belongs neither to

( ̂1, l − 1) when 2 ≤ l ≤ p, to (1̂, p) when l = p + 1, nor to ( ̂1, k + 1) when

k 6= p, to (1̂, p) when k = p. The connectedness of the given walk then
implies that Ml belongs to the triangle RiMRj .

R j R i

Mi

M
j

M

We claim that Mi= Mj . Assume that Mi 6= Mj and that HomA(Mj ,Mi)
6= 0. Then Mi ∈ SuppHomA(Mj ,−) but Mi /∈ SuppHomA(τ

−1Mj ,−).
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Hence Mi = M , and this contradicts the assumption that Mj is a sink in
(ցRj). On the other hand, if Mi 6= Mj and HomA(Mj ,Mi) = 0, then, by
Lemma 1.1, there exists Ml inside the triangle RiMRj such that
HomA(Mi,Ml) 6= 0 or HomA(Ml,Mi) 6= 0, that is, Ml ∈ (Miր) or Ml ∈
(ցMi), since Mi is a source in (րRi). By the connectedness of the given
sequence, there exists Mh such that HomA(Ml,Mh) 6= 0 or HomA(Mh,Ml)
6= 0, that is, Mh ∈ (Mlր)∪ (Mlց) or Mh ∈ (ցMl)∪ (րMl). By induction
and Lemma 1.2, we obtain a walk of the form

�
�
�

•

Mh•

;;wwwwwwwwww

""F
FFF

FFFF
F

•Ml

Mi•

<<xxxxxxxxx

or

�
�
�

•

##G
GG

GG
GG

GG

•Mh

Ml•

<<xxxxxxxx

""F
FF

FFF
FF

•Mi

Thus we cannot reachMj , a contradiction. This shows thatMi = Mj . Hence
s = 1.

Lemma 4.5. Let (E,M,F ) be a connected subsequence of E , with E
postprojective, M regular and F preinjective. Then the simple module Sn+1

is a direct summand of the socle of M .

P r o o f. We observe that Sn+1 is a direct summand of socM if and only if

M 6=

i
i+ 1
...

i+ k

(with 2 ≤ i ≤ p, i + k < p + 1 if M ∈ Γp or p + 1 ≤ i ≤ n, i+ k < n + 1 if

M ∈ Γq), or, equivalently, if and only if M ∈ R̂ (where

R =

1
p+ 1
...
n

n+ 1
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if M ∈ Γp, or

R =

1
2
...
p

n+ 1

if M ∈ Γq). If Sn+1 is not a direct summand of socM , and M ∈ Γp, then
the right endpoint of E is i, and the left endpoint of F is i+k. Therefore the
left endpoint of τF is i+ k + 1. Hence Ext1A(F,E) = DHomA(E, τF ) 6= 0,
a contradiction. The proof is similar if M ∈ Γq.

Lemma 4.6. Let (E1,M1, F1) and (E2,M2, F2) be two connected sub-

sequences of E , with E1, E2 postprojective, M1, M2 regular and F1, F2

preinjective. If M1 6= M2, then M1 and M2 lie in two different tubes.

P r o o f. Assume that this is not the case, and that both M1 and M2 lie
in Γp (say). Suppose the right endpoint of E1, and therefore of M1, is l1
where 3 ≤ l1 ≤ p, or l1 = n+1, by Lemma 4.3, and similarly that the right
endpoint of E2, and therefore of M2, is l2, where 3 ≤ l2 ≤ p, or l2 = n+ 1.

(a) Assume l1 = l2 = l, say; then M1,M2 ∈ (ր(1, l)) when l ≤ p,
or (ր(1, 1)) whenever l = n + 1. Without loss of generality, we may
assume that HomA(M1,M2) 6= 0. Now, HomA(M2, F2) 6= 0, therefore
HomA(F2,M1) = 0 (or, equivalently, (M1, F2) is a subsequence of E). Let-
ting k2 denote the left endpoint of M2 and F2, where k2 = 1, 2, . . . , p − 1,

we get M1 /∈ (1̂, k2) and this contradicts the fact that M1 ∈ (րM2).

(b) If l1 < l2, then M1 ∈ (1̂, l2) when l2 ≤ p, or M1 ∈ (1̂, 1) when l2 =

n+1. Hence HomA(E2,M1) 6= 0. On the other hand, M1 ∈ ( ̂1, l2 − 1) when

l2 6= n + 1, and M1 ∈ (1̂, p) when l2 = n + 1, thus HomA(τ
−1E2,M1) 6= 0,

that is, Ext1A(M1, E2) 6= 0. This is impossible, since E2, M1 belong to the
same exceptional sequence E .

Lemma 4.7. Let (E,M) be a connected subsequence of E , with E post-

projective and a sink on a (p)-path (among the terms of E), and M ∈ Γp.

Then

(a) HomA(E
′, E) 6= 0, with E′ postprojective and in E , implies that the

path from E′ to E is a (p)-path.

(b) HomA(E,E′′) 6= 0, with E′′ postprojective and in E , implies that the

path from E to E′′ is a (q)-path.

Furthermore, there cannot exist at the same time in E terms such as E′

and E′′ above.
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P r o o f. To show (a), assume that the path from E′ to E is a (q)-path.

The right endpoint of E′ is larger than the right endpoint of E, and M ∈ R̂,
where R is regular having the same right endpoint as that of τ−1E′, a
contradiction. (b) is proven similarly. The last statement follows from the
fact that, if E′ and E′′ both occur, then the points E′, E, E′′ cannot lie on
a complete slice, a contradiction to Lemma 2.2.

We shall also need the dual statement.

Lemma 4.8. Let (M,F ) be a connected subsequence of E , with F prein-

jective and a source on a (q)-path (among the terms of E), and M ∈ Γq.

Then

(a) HomA(F,F
′) 6= 0, with F ′ preinjective and in E , implies that the path

from F to F ′ is a (q)-path.

(b) HomA(F
′′, F ) 6= 0, with F ′′ preinjective and in E , implies that the

path from F ′′ to F is a (p)-path.

Furthermore, there cannot exist at the same time in E terms such as F ′

and F ′′ above.

Lemma 4.9. If (E,M,F ) is a connected subsequence of E , with E post-

projective, M regular and F preinjective, then HomA(E,F ) = 0. Further ,
if M1, M2 are regular and HomA(M1,M) 6= 0, HomA(M,M2) 6= 0, then
M1 ∈ (ցM), M2 ∈ (Mր) and HomA(M1,M2) = 0.

P r o o f. The first statement is clear by Lemma 2.4. The second state-
ment follows from Lemmata 1.1, 3.3, 3.4 and 1.3.

Proposition 4.10. Let A = kQ be a path algebra of type Ãn, and E
be an exceptional sequence in modA. Assume that E contains a cycle C
consisting of postprojective, regular and preinjective terms. Then the con-

nected component of End E containing the cycle corresponding to C is a

representation-finite tilted algebra of type Ãl, with l ≤ n.

P r o o f. It follows from Lemmata 4.6, 4.4, 4.7, 4.8 and Theorem 1.5 that,
if E belongs to C, and E′ belongs to E\C, and both are postprojective, then

HomA(E,E′) = 0 and HomA(E
′, E) = 0,

and, dually, if F belongs to C, and F ′ belongs to E\C, and both are prein-
jective, then

HomA(F,F
′) = 0 and HomA(F

′, F ) = 0;

consequently, the quiver of the connected component of End E containing
the points corresponding to the cycle C is as follows:



288 I. ASSEM AND Y. B. ZHANG

α β

γ δ

B

B '

where αβ = 0, γδ = 0, all unoriented edges on the cycle may be oriented
arbitrarily, and B,B′ are tilted algebras of type Am. The statement then
follows from Theorem 4.2.

We may thus assume that, if a cycle occurs in the bound quiver of End E ,
then all the points of this cycle are postprojective (or, dually, preinjective).
The main theorem follows from the next two lemmata.

Lemma 4.11. With the above notation, End E is either a direct product

of one representation-infinite iterated tilted algebra of type Ãn (with m ≤ n)
and iterated tilted algebras of type Al (with l ≤ n − m), or else a direct

product of iterated tilted algebras of type Al (with l ≤ n+ 1).

P r o o f. By Theorem 1.5, Corollary 2.3 and Lemmata 2.5, 3.5, the ordi-
nary quiver of End E contains at most one cycle and, if it does, then this
cycle is not bound by any relation. We thus only need to show that End E is
a gentle algebra. Assume that F = (F1, . . . , Ft) is a connected subsequence
of E . If F lies entirely in the regular part, then, by Theorem 1.5, EndF
is gentle. If F lies in the postprojective (or the preinjective) component
then, by Corollary 2.3, EndF is also gentle. Assume that we have non-zero
morphisms

Ei1

f

��?
??

??
??

Ei3
h // Ei4

Ei2

g
??�������
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where Ei1 , Ei2 , Ei3 are postprojective, and Ei4 is regular (and Ei1 and Ei2

are not necessarily distinct). Then, by Lemma 3.6, we have either hf = 0
or hg = 0. Finally, assume that we have non-zero morphisms

Ei1

f // Ei2

g // Ei3

which do not factor through other modules in E , with Ei1 postprojective, and
Ei2 , Ei3 regular. Then by Lemma 3.1, there exists no non-zero morphism
h : Ei2 → Ei4 with Ei4 ∈ E regular and distinct from Ei3 and such that Ei2

does not factor through other modules in E . Furthermore, if there exists a
non-zero morphism h : Ei4 → Ei2 with Ei4 ∈ E regular and such that h
does not factor through other modules in E , then, by Lemmata 3.1, 3.5, we
have gh = 0. Invoking the duality between postprojective and preinjective
modules completes the proof.

Lemma 4.12. With the notation above, each of the connected components

of End E is in fact a tilted algebra.

P r o o f. By Theorem 1.5, Corollary 2.3 and Lemma 3.5, if a cycle occurs
in the bound quiver of End E , then the corresponding terms of E are all
postprojective (and then E has no preinjective terms, by Lemma 2.5) or all
preinjective (and then, dually, E has no postprojective terms). Assume thus
that a cycle occurs and that the corresponding terms of E all lie in P. Then
E = (E1, . . . , Er, Er+1, . . . , En+1) with E1, . . . , Er ∈ P, Er+1, . . . , En+1 ∈
Γp ∨ Γq (here, 2 ≤ r ≤ n) and End(

⊕r
i=1Ei) is a path algebra of type

Ãr−1. In order to show our claim, we need to prove that the bound quiver
of End E contains no full bound subquiver of one of the forms (a)–(d) listed
in Theorem 4.2.

We first notice that the arrows between P and Γp ∨ Γq are all from P
to Γp ∨Γq, therefore case (c) cannot occur. Assume that (a) occurs, that is,
there exists a walk of the form

•
1

α // •
2

β // •
3

___ •
t−2

γ // •
t−1

δ // •
t

with αβ = 0, γδ = 0 and t ≥ 4, in the bound quiver of End E . Then,
by Theorem 1.5 and Corollary 2.3, not all the terms of E corresponding to
the points of this walk lie in the same component. Since End(

⊕r
i=1 Ei) is

hereditary, this means that the terms corresponding to 1, 2, . . . , t− 2 are all

regular. But this is impossible by Lemmata 1.2, 3.3. Thus (a) does not occur.
Finally, for (b) and (d), we notice that the only possibility of occurrence of
two zero-relations in the same walk pointing in different directions is of the
form
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Ej′• •Ej

Ei′• • •Ei

• • • •

__???????

??
??

??
?
oo

___

__________ //
�������

??�������

where the dotted lines indicate zero-relations. Therefore (b) and (d) do not
occur. This completes the proof in case the bound quiver of End E contains
a cycle.

If the bound quiver of End E contains no cycle we need to show that it
contains no walk of the form

•
1

α // •
2

β // •
3

___ •
t−2

γ // •
t−1

δ // •
t

with αβ = 0, γδ = 0 and t ≥ 4. If there is no path from P to the preinjective
component I in E , we are done by the argument above. If there exists such
a path, then we have a subsequence (E,F,G) of E with E ∈ P, F ∈ Γp∨Γq,
G ∈ I and HomA(E,F ) 6= 0, HomA(F,G) 6= 0 by Lemmata 3.3, 3.4. Assume
that F ∈ Γp (the other case is similar) with right endpoint l, and 2 ≤ l ≤ p,
then E has right endpoint l, by Lemma 3.1, and G has left endpoint l, by
Lemma 3.2. Then, if l 6= 2, τ−1E has right endpoint l− 1 or τ−1E is given
by a line of the form

1
•

2•�
�

��
��
��
��
�

//
//

//
//

//
//

___

n+1• •n+1

(see [BR]). Since G has l as left endpoint, we have HomA(τ
−1E,G) 6= 0, a

contradiction.

Remark 4.13. (a) With the above notation
⊕n+1

i=1 Ei is generally not a
tilting module; for instance, if A is given by the quiver

6
• // 7•

��?
??

??
??

?

1•

??��������

��?
??

??
??

? • 8

•
2

// •
3

// •
4

// •
5

??��������



ENDOMORPHISM ALGEBRAS OF EXCEPTIONAL SEQUENCES 291

then the sequence (S2, S3) consisting of the simple modules corresponding
to the points 2, 3 is clearly exceptional, but Ext1A(S2, S3) 6= 0 shows that
S2 ⊕ S3 is not a partial tilting module.

(b) The methods of Section 1 can be used with only slight modifications
to prove the following theorem:

Theorem. Let k be a commutative field , Q be a quiver with underlying

graph An, and A = kQ be its path algebra. Let E be an exceptional sequence

in modA. Then End E is a direct product of tilted algebras of type Al (with
l ≤ n). Each connected subsequence of E is a partial tilting module.

This strengthens the result of [Y]. We omit the proof, since we learned
later that it was proved independently by Meltzer [M], using the derived
category. In the same paper, Meltzer gives an example showing that a
similar statement does not hold for other Dynkin diagrams.
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Université de Sherbrooke Beijing 100875, China
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