AN ELEMENTARY PROOF OF THE WEITZENBÖCK THEOREM

BY

ANDRZEJ TYC (TORUŃ)

Introduction. The main aim of this paper is to give an elementary and self-contained proof of the following classical result.

Theorem (Weitzenböck [8]). Let \mathbb{C}^{+}be the additive group of the complex field \mathbb{C} and let V be a finite-dimensional rational representation of \mathbb{C}^{+}. Then the algebra $\mathbb{C}[V]^{\mathbb{C}^{+}}$of invariant polynomial functions on V is finitely generated.

The first modern proof of the theorem is due to Seshadri [6] and it is geometric. Our proof is an algebraic version of Seshadri's proof.

As a consequence of our considerations and the main result of [5] for $G=\operatorname{SL}(2, \mathbb{C})$ we get the following.

Theorem. Let V be a finite-dimensional, rational, non-trivial representation of \mathbb{C}^{+}determined by a nilpotent endomorphism f of the vector space V. Then

1. $\mathbb{C}[V]^{\mathbb{C}^{+}}$is a Gorenstein ring.
2. $\mathbb{C}[V]^{\mathbb{C}^{+}}$is a polynomial algebra if and only if $V=V_{0} \oplus V^{\prime}$ for some subrepresentations V_{0}, V^{\prime} of V such that V_{0} is trivial (that is, $f\left(V_{0}\right)=0$) and the Jordan matrix of $f_{\mid V^{\prime}}: V^{\prime} \rightarrow V^{\prime}$ is one of the following:

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

This theorem is equivalent to the following.
Theorem. Let $A=\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ and let $0 \neq d: A \rightarrow A$ be a locally nilpotent derivation such that $d(W) \subset W$, where $W=\mathbb{C} X_{1}+\ldots+\mathbb{C} X_{n} \subset A$. Then

1991 Mathematics Subject Classification: Primary 14A50.

1. $A^{d}(=\operatorname{Ker} d)$ is a Gorenstein ring.
2. A^{d} is a polynomial algebra if and only if $W=W_{0} \oplus W^{\prime}$ for some subspaces W_{0}, W^{\prime} of W such that $d\left(W_{0}\right)=0, d\left(W^{\prime}\right) \subset W^{\prime}$, and the Jordan matrix of the endomorphism $d_{\mid W^{\prime}}: W^{\prime} \rightarrow W^{\prime}$ is one of the above matrices.
3. Preliminaries and auxiliary lemmas. Throughout the paper all vector spaces, algebras, Lie algebras, and tensor products are defined over \mathbb{C}. All (associative) algebras are assumed to be commutative. We denote by L the simple Lie algebra $\operatorname{sl}(2, \mathbb{C})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathbb{C}): a+d=0\right\}$. Let

$$
x=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Then $\{x, y, h\}$ is a linear basis of L and $[x, y]=h,[h, x]=2 x,[h, y]=-2 y$. It is known (see for instance [2, Chap. II]) that every finite-dimensional L-module is semisimple, and for each $m=0,1, \ldots$ there exists only one (up to isomorphism) simple L-module $V_{m}=\left\langle v_{0}, \ldots, v_{m}\right\rangle$ (= linear span of v_{0}, \ldots, v_{m}) of dimension $m+1$ with

$$
\begin{aligned}
& x \cdot v_{i}=(m-i+1) v_{i-1}, \\
& y \cdot v_{i}=(i+1) v_{i+1}, \\
& h \cdot v_{i}=(m-2 i) v_{i}
\end{aligned}
$$

for $i=0, \ldots, m\left(v_{-1}=0=v_{m+1}\right)$. In particular, it follows that if W is a finite-dimensional L-module, then the endomorphism $w \rightarrow x . w$ of W, as a vector space, is nilpotent.

By a trivial L-module we mean an L-module W such that $t \cdot w=0$ for all $t \in L$ and $w \in W$.

Given an L-module W, the trivial submodule $\{w \in W: \forall t \in L$ t. $w=0\}$ of W is called the module of invariants of W and it is denoted by W^{L}. Notice that $W^{L}=\{w \in W: x . w=0=y . w\}$. If $f: W \rightarrow W^{\prime}$ is a homomorphism of L-modules, then $f\left(W^{L}\right) \subset W^{L}$, and $f^{L}: W^{L} \rightarrow W^{L}$ will denote the restriction of f to W^{L}. If W is an L-module, then W^{*} denotes the dual vector space provided with the L-module structure given by $\left(t . w^{*}\right)(w)=w^{*}(-t . w), t \in L, w^{*} \in W^{*}, w \in W$.

An L-module W is said to be locally finite if W is a union of its finitedimensional submodules. It is obvious that each locally finite L-module W is semisimple, that is, $W \cong \bigoplus_{i \in I} V_{m_{i}}$ for some set I. In particular, $W=$ $W^{L} \oplus L W$, where $L W=\left\{\sum t_{i} \cdot w_{i}: t_{i} \in L, w_{i} \in W\right\}$. Let $R_{W}: W \rightarrow W^{L}$ denote the natural projection. Then the R_{W} 's define the Reynold operator on the category of locally finite L-modules, which means that the following conditions hold.
(i) For any locally finite L-module $W, R_{W}: W \rightarrow W^{L}$ is a surjective homomorphism of L-modules and $R_{W}(w)=w$ for $w \in W^{L}$.
(ii) If $f: W \rightarrow W^{\prime}$ is a homomorphism of locally finite L-modules, then $f^{L} \circ R_{W}=R_{W^{\prime}} \circ f$.

In fact, (i) follows immediately from the definition of R_{W}, and (ii) holds because $f(L W) \subset L W^{\prime}$.

An algebra A is an L-module algebra if A is an L-module and for each $t \in L$ the map $d_{t}: A \rightarrow A, d_{t}(a)=t . a$, is a derivation of A. If A is an L-module algebra, then A^{L} is a subalgebra of A called the algebra of invariants. An L-module algebra A is called locally finite if A is locally finite as an L-module. If this is the case, then we have the Reynold operator $R=R_{A}: A \rightarrow A^{L}$. It turns out that R is an A^{L}-linear map, that is, $R(a y)=a R(y)$ for $a \in A^{L}$ and $y \in A$. To see this, it suffices to apply the condition (ii) of the Reynold operator to the homomorphism of L-modules $f: A \rightarrow A$ given by $f(y)=a y$.

Let W be an L-module. Then the symmetric algebra $S(W)$ will be viewed as an L-module algebra via

$$
t .\left(w_{1} \ldots w_{m}\right)=\sum_{i=1}^{m} w_{1} \ldots w_{i-1}\left(t . w_{i}\right) w_{i+1} \ldots w_{m}
$$

for $t \in L$ and $w_{1}, \ldots, w_{m} \in W \subset S(W)$. It is obvious that $S(W)$ is locally finite if W is finite-dimensional. In particular, for any finite-dimensional L-module W we have the locally finite L-module algebra $S\left(W^{*}\right)$.

Lemma 1. If W is a finite-dimensional L-module, then the algebra $S(W)^{L}$ of invariants is finitely generated.

Proof. Notice that $S(W)^{L}$ is a graded subalgebra of the graded algebra $S(W)=\bigoplus_{n=0}^{\infty} S^{n}(W)$. Therefore, in order to show that $S(W)^{L}$ is finitely generated it suffices to prove that the ring $S(W)^{L}$ is noetherian.

Let I be an ideal in $S(W)^{L}$. Since the ring $S(W)$ is noetherian, there are $a_{1}, \ldots, a_{n} \in I$ such that $I S(W)=a_{1} S(W)+\ldots+a_{n} S(W)$. Our claim is that $I=\left(a_{1}, \ldots, a_{n}\right)$. Obviously $\left(a_{1}, \ldots, a_{n}\right) \subset I$. Let $a \in I$. Then $a=$ $a_{1}=a_{1} y_{1}+\ldots+a_{n} y_{n}$ for some $y_{i} \in S(W)$. Hence $a=R(a)=a_{1} R\left(y_{1}\right)+$ $\ldots+a_{n} R\left(y_{n}\right) \in\left(a_{1}, \ldots, a_{n}\right)$, because $R=R_{A}$ is A^{L}-linear. This implies that $I=\left(a_{1}, \ldots, a_{n}\right)$, which means that the ring $S(W)^{L}$ is noetherian.

From now on, given a finite-dimensional vector space V (respectively, a finite-dimensional L-module $V), \mathbb{C}[V]$ will stand for the algebra $S\left(V^{*}\right)$ (respectively, for the L-module algebra $S\left(V^{*}\right)$) considered as the algebra of polynomial functions on V.

Lemma 2. Let V be a finite-dimensional vector space.
(i) If $f: V \rightarrow V$ is a nilpotent endomorphism of V, then there exists a unique (up to isomorphism) L-module structure $\psi: L \times V \rightarrow V$ on V such that $f(v)=x . v$, where x.v $=\psi(x, v)$. More precisely, (V, ψ) is isomorphic to $V_{m_{1}} \oplus \ldots \oplus V_{m_{s}}$, where $m_{1}+1, \ldots, m_{s}+1$ are the dimensions of the Jordan cells of f.
(ii) If $d: \mathbb{C}[V] \rightarrow \mathbb{C}[V]$ is a locally nilpotent derivation of $\mathbb{C}[V]$ with $d\left(V^{*}\right) \subset V^{*}$, then there exists a (unique) L-module structure $\psi: L \times V \rightarrow V$ on V such that $d=d_{x}: \mathbb{C}[(V, \psi)] \rightarrow \mathbb{C}[(V, \psi)]$.

Proof. (i) The Jordan matrix of f equals

$$
\left(\begin{array}{ccc}
A_{1} & & 0 \\
& \ddots & \\
0 & & A_{s}
\end{array}\right)
$$

where all A_{i} 's (the Jordan cells of f) are of the form

$$
\left(\begin{array}{cccc}
0 & 1 & & 0 \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
0 & & & 0
\end{array}\right)
$$

Let $m_{i}=\operatorname{dim} A_{i}-1$ for $i=1, \ldots, s$. We can assume that $m_{1} \leq \ldots \leq m_{s}$. Then $V=W_{1} \oplus \ldots \oplus W_{s}$ and $f=f_{1} \oplus \ldots \oplus f_{s}$ for some subspaces W_{i} of dimension $m_{i}+1$ and nilpotent endomorphisms $f_{i}: W_{i} \rightarrow W_{i}$ with Jordan matrices $A_{i}, i=1, \ldots, s$.

First assume that $s=1$. Then there exists a basis $v_{0}^{\prime}, \ldots, v_{m}^{\prime}, m=$ $\operatorname{dim} V-1$, of V with $f\left(v_{i}^{\prime}\right)=v_{i-1}^{\prime}$ for $i=0, \ldots, m\left(v_{-1}^{\prime}=0\right)$. Set $v_{i}=$ $v_{i}^{\prime} /(m-i)!, i=0, \ldots, m$. Then $f\left(v_{i}\right)=(m-i+1) v_{i-1}$, so that putting $\psi\left(x, v_{i}\right)=(m-i+1) v_{i-1}, \psi\left(y, v_{i}\right)=(i+1) v_{i+1}$, and $\psi\left(h, v_{i}\right)=(m-2 i) v_{i}$, $i=0, \ldots, m\left(v_{m+1}=0\right)$, we get an L-module structure $\psi: L \times V \rightarrow V$ such that $(V, \psi)=V_{m}$.

If s is arbitrary, then we apply the above procedure to each $f_{i}, i=$ $1, \ldots, s$. As a result one obtains an L-module structure $\psi: L \times V \rightarrow V$ such that $(V, \psi)=V_{m_{1}} \oplus \ldots \oplus V_{m_{s}}$.

It remains to prove the uniqueness of ψ. Suppose that $\psi^{\prime}: L \times V \rightarrow V$ makes V an L-module in such a way that $f(v)=\psi^{\prime}(x, v)$ for all $v \in V$. Then $\left(V, \psi^{\prime}\right) \cong V_{n_{1}} \oplus \ldots \oplus V_{n_{r}}$ for some $0 \leq n_{1} \leq \ldots \leq n_{r}$. But the relation $f(v)=\psi^{\prime}(x, v), v \in V$, implies that $r=s$ and $n_{1}=m_{1}, \ldots, n_{s}=m_{s}$. This proves part (i).
(ii) Since the evaluation map ev : $V \rightarrow V^{* *}, \operatorname{ev}(v)\left(v^{*}\right)=v^{*}(v), v^{*} \in V^{*}$, $v \in V$, is an isomorphism, there is an endomorphism f of V such that the following diagram commutes:

where $g(s)\left(v^{*}\right)=-s\left(d\left(v^{*}\right)\right), s \in V^{* *}, v^{*} \in V^{*}$. It is obvious that f is nilpotent because $d_{\mid V^{*}}: V^{*} \rightarrow V^{*}$ is nilpotent. So, applying (i) to f we get an L-module structure $\psi: L \times V \rightarrow V$ such that $f(v)=\psi(x, v)$ for all $v \in V$. In particular, we have the induced derivation $d_{x}: \mathbb{C}[(V, \psi)] \rightarrow \mathbb{C}[(V, \psi)]$. For $v^{*} \in V^{*}, v \in V$,

$$
\begin{aligned}
d_{x}\left(v^{*}\right)(v) & =v^{*}(-\psi(x, v))=-v^{*}(f(v))=-\operatorname{ev}(f(v))\left(v^{*}\right) \\
& =-g \circ \operatorname{ev}(v)\left(d\left(v^{*}\right)\right)=d\left(v^{*}\right)(v)
\end{aligned}
$$

which means that $d_{x}=d$ on $V^{*} \subset \mathbb{C}[V]$. This, however, implies that $d_{x}=d$.

Below, U will denote the vector space \mathbb{C}^{2} provided with the natural L-module structure given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{z_{1}}{z_{2}}=\binom{a z_{1}+b z_{2}}{c z_{1}+d z_{2}} .
$$

Then $\mathbb{C}[U]=\mathbb{C}[X, Y]$, where $X, Y \in\left(\mathbb{C}^{2}\right)^{*}, X\left(z_{1}, z_{2}\right)=z_{1}, Y\left(z_{1}, z_{2}\right)=z_{2}$, and the L-module algebra structure on $\mathbb{C}[U]$ is determined by

$$
\begin{equation*}
d_{x}(X)=-Y, \quad d_{x}(Y)=0=d_{y}(X), \quad d_{y}(Y)=-X \tag{1}
\end{equation*}
$$

If A, B are L-module algebras, then the tensor product $A \otimes B$ is an L-module algebra via $t .(a \otimes b)=t . a \otimes b+a \otimes t . b$, where $t \in L, a \in A, b \in B$. In particular, for any L-module algebra A we have the L-module algebra $A[X, Y]=A \otimes \mathbb{C}[U]$. Observe that $A[X, Y]=\mathbb{C}[V \oplus U]$ whenever $A=\mathbb{C}[V]$ for some finite-dimensional L-module V.

Lemma 3. Let A be a locally finite L-module algebra. Then the homomorphism of algebras $\Phi: A[X, Y] \rightarrow A, \Phi(f(X, Y))=f(1,0)$, induces an isomorphism of algebras $\Phi: A[X, Y]^{L} \rightarrow A^{x}$, where $A^{x}=\{a \in A: x \cdot a=0\}$ $=\left\{a \in A: d_{x}(a)=0\right\}$.

Proof. Let $f=\sum_{k=0}^{s} f_{k}(X) Y^{k} \in A[X, Y]$ and let $f_{k}(X)=\sum_{j \geq 0} a_{j}^{(k)} X^{j}$, $k=0, \ldots, s$. Using the formulas (1), we easily verify that $d_{x}(f)=\overline{0}=d_{y}(f)$ if and only if the following conditions hold:

$$
\begin{array}{cl}
d_{x}\left(a_{j}^{(0)}\right)=0=f_{s}^{\prime}(X), \quad d_{x}\left(a_{j}^{(k)}\right)=(j+1) a_{j+1}^{(k-1)}, \quad k=1, \ldots, s, j \geq 0 \tag{2}\\
& k=0, \ldots, s \\
d_{y}\left(a_{0}^{(k)}\right)=0, & \\
d_{y}\left(a_{j}^{(k)}\right)=(k+1) a_{j-1}^{(k+1)}, \quad k=0, \ldots, s-1, j \geq 1
\end{array}
$$

From (3), by induction on k, we get

$$
\begin{equation*}
a_{j}^{(k+1)}=\frac{1}{(k+1)!} d_{y}^{k+1}\left(a_{j+k+1}^{(0)}\right), \quad k=0, \ldots, s-1, j \geq 0 \tag{4}
\end{equation*}
$$

It turns out that also

$$
\begin{equation*}
d_{h}\left(a_{j}^{(0)}\right)=j a_{j}^{(0)} \quad \text { for } j \geq 0 \tag{5}
\end{equation*}
$$

In fact, by (2) and (3), $d_{h}\left(a_{j}^{(0)}\right)=d_{x} d_{y}\left(a_{j}^{(0)}\right)-d_{y} d_{x}\left(a_{j}^{(0)}\right)=d_{x} d_{y}\left(a_{j}^{(0)}\right)=$ $d_{x}\left(a_{j-1}^{(1)}\right)=j a_{j}^{(0)}$ if $j \geq 1$, and $d_{h}\left(a_{0}^{(0)}\right)=0$ because $d_{y}\left(a_{0}^{(0)}\right)=0$.

From (5) it follows that the set $\left\{a_{j}^{(0)}: j \geq 0\right\} \backslash\{0\}$ is linearly independent (over \mathbb{C}). From (2) we know that if $f \in A[X, Y]^{L}$, then $\Phi(f)=f(1,0)=$ $f_{0}(1)=\sum_{j \geq 0} a_{j}^{(0)} \in A^{x}$. Therefore, the homomorphism of algebras Φ induces a homomorphism of algebras

$$
\Phi: A[X, Y]^{L} \rightarrow A^{x}
$$

If $\Phi(f)=0$ for some $f \in A[X, Y]^{L}$, that is, $\sum_{j \geq 0} a_{j}^{(0)}=0$, then $a_{j}^{(0)}=0$ for all $j \geq 0$, because the set $\left\{a_{j}^{(0)}: j \geq 0\right\} \backslash\{0\}$ is linearly independent. In view of (4), this yields $f=0$.

It remains to prove that Φ is surjective. Since A is locally finite as an L module, $A=\bigoplus_{i \in I} V_{m_{i}}$ for some set I. It follows that $A=\bigoplus_{j \in \mathbb{Z}} A_{j}$, where $A_{j}=\left\{a \in A: d_{h}(a)=j a\right\}$. Observe also that $\left\{v \in V_{m}: x . v=0\right\}=\left\langle v_{0}\right\rangle$ for each $m \geq 0$. Hence

$$
\begin{equation*}
A^{x}=\bigoplus_{j \geq 0} A_{j} \cap A^{x} \tag{6}
\end{equation*}
$$

Now we show the following:

$$
\begin{equation*}
\text { If } a \in A_{m} \cap A^{x} \text { for some } m \geq 0 \text {, then } d_{y}^{m+1}(a)=0 \text { and } d_{x} d_{y}^{j}(a)= \tag{7}
\end{equation*}
$$

$$
(m-j+1) j d_{y}^{j-1}(a) \text { for } j=1, \ldots, m+1
$$

Let $d_{h}(a)=m a$ and $d_{x}(a)=0$ for some $a \in A$ and $m \geq 0$. We can assume that $a \in V_{m_{i}}$ for some $i \in I$. Then obviously $m_{i}=m$ and $a=\alpha v_{0}$ for an $\alpha \in \mathbb{C}$, whence $d_{y}^{j}(a)=\alpha j!v_{j}$ for all $j \geq 1\left(v_{j}=0\right.$ if $\left.j>m\right)$. In particular, $d_{y}^{m+1}(a)=0$. Furthermore, $d_{x} d_{y}^{j}(a)=d_{x}\left(\alpha j!v_{j}\right)=\alpha j!x \cdot v_{j}=$ $\alpha(m-j+1) j(j-1)!v_{j-1}=(m-j+1) j d_{y}^{j-1}(a), j=1, \ldots, m+1$. So, the statement (7) is proved.

In order to prove that $\Phi: A[X, Y]^{L} \rightarrow A^{x}$ is surjective take an $a \in A^{x}$. By (6), we can assume that $a \in A_{s} \cap A^{x}$ for some $s \geq 0$. Set

$$
f_{k}(X)=\frac{1}{k!} d_{y}^{k}(a) X^{s-k}, \quad k=0, \ldots, s
$$

and let

$$
f(X, Y)=f_{0}(X)+f_{1}(X) Y+\ldots+f_{s}(X) Y^{s}
$$

Making use of (2), (3), and (7), one easily checks that $f \in A[X, Y]^{L}$. Moreover, $\psi(f)=f(1,0)=f_{0}(1)=a$. This completes the proof of Lemma 3.

Given a derivation d of an algebra B, B^{d} will denote the algebra of constants of d, i.e., $B^{d}=\operatorname{Ker} d$.
2. Results. Let \mathbb{C}^{+}denote the additive group of the complex field \mathbb{C}. We consider \mathbb{C}^{+}as an algebraic group with the algebra of regular functions $\mathbb{C}[X]$. Then a rational representation of \mathbb{C}^{+}is a linear space V together with an action of \mathbb{C}^{+}on V such that, given $z \in \mathbb{C}^{+}, v \in V$,

$$
z . v=\sum_{i \geq 0} \frac{f^{i}(v)}{i!} z^{i}
$$

for some locally nilpotent endomorphism $f: V \rightarrow V$. The endomorphism f is uniquely determined by the action, and f is nilpotent whenever V is finite-dimensional.

Let V be a finite-dimensional rational representation of \mathbb{C}^{+}determined by the endomorphism $f: V \rightarrow V$. Then we have the induced action of \mathbb{C}^{+} on the algebra $\mathbb{C}[V]$ defined by $(z . a)(v)=a(-z . v)$ for $a \in \mathbb{C}[V], z \in \mathbb{C}^{+}$, $v \in V$. It is easy to check that this action is given by

$$
\begin{equation*}
z . a=\sum_{i \geq 0} \frac{d^{i}(a)}{i!} z^{i} \tag{*}
\end{equation*}
$$

where d is the derivation of $\mathbb{C}[V]$ determined by $d\left(v^{*}\right)=-v^{*} \circ f$ for $v^{*} \in$ $V^{*} \subset \mathbb{C}[V]$. This implies that $\mathbb{C}[V]^{\mathbb{C}^{+}}=\left\{a \in \mathbb{C}[V]: \forall z \in \mathbb{C}^{+} z . a=a\right\}=$ $\mathbb{C}[V]^{d}$. Notice also that d is locally nilpotent and $d\left(V^{*}\right) \subset V^{*}$.

Theorem 1. If V is a finite-dimensional rational representation of \mathbb{C}^{+}, then the algebra $\mathbb{C}[V]^{\mathbb{C}^{+}}$is finitely generated.

Proof. As stated above, the action of \mathbb{C}^{+}on $\mathbb{C}[V]$ is given by $(*)$, where $d: \mathbb{C}[V] \rightarrow \mathbb{C}[V]$ is a locally nilpotent derivation such that $d\left(V^{*}\right) \subset V^{*}$ and $\mathbb{C}[V]^{\mathbb{C}^{+}}=\mathbb{C}[V]^{d}$.

Using Lemma 2(ii) we see that there exists an L-module structure on V such that $d=d_{x}$. Applying Lemma 3 to $A=\mathbb{C}[V]$ and taking into account that $A[X, Y]=\mathbb{C}[V \oplus U]$ we obtain

$$
\mathbb{C}[V]^{\mathbb{C}^{+}}=\mathbb{C}[V]^{d}=\mathbb{C}[V]^{d_{x}} \cong \mathbb{C}[V \oplus U]^{L}
$$

Now from Lemma 1 it follows that $\mathbb{C}[V]^{\mathbb{C}^{+}}$is a finitely generated algebra.
For the proof of the next theorem we have to recall some well-known links between locally finite L-modules and rational G-modules (= rational representations of G), where $G=\mathrm{SL}(2, \mathbb{C})=\left\{M \in M_{2}(\mathbb{C}): \operatorname{det} M=1\right\}$. Since L is the Lie algebra of the algebraic group G, for any rational G-module
structure $\varphi: G \times V \rightarrow V$ on a vector space V we have the associated locally finite L-module structure $\widetilde{\varphi}: L \times V \rightarrow V$ on V (analytically, $\widetilde{\varphi}(t, v)=$ $(\partial / \partial s) \varphi(\exp (s t), v)_{\mid s=0}$ for $\left.t \in L, v \in V\right)$. The map $\widetilde{\varphi}$ uniquely determines φ and $(V, \varphi)^{G}=\left\{v \in V^{\prime}: \forall g \in G \varphi(g, v)=v\right\}=\{v \in V: \forall t \in L \widetilde{\varphi}(t, v)=$ $0\}=(V, \widetilde{\varphi})^{L}$. Moreover, if (V, φ) is a rational G-module and $\Phi: G \times S(V) \rightarrow$ $S(V)$ is the induced action of G on the symmetric algebra $S(V)$, then $\widetilde{\Phi}$: $L \times S(V) \rightarrow S(V)$ is the previously defined L-module algebra structure on $S(V)$. In particular, $S(V, \varphi)^{G}=S(V, \widetilde{\varphi})^{L}$.

It is known ([7, Chap. 3]) that every rational G-module is semisimple and that for any $m \geq 0$ there exists a unique (up to isomorphism) simple rational G-module ϱ_{m} of dimension $m+1$. It is not difficult to show that the L-module associated with ϱ_{m} is isomorphic to V_{m} for all $m \geq 0$. As a consequence of the above facts we get the following.

Corollary 4. Let V be a finite-dimensional vector space. Then for any L-module structure $\psi: L \times V \rightarrow V$ on V there exists a unique rational G-module structure $\varphi: G \times V \rightarrow V$ on V such that the following conditions hold.
(a) $\widetilde{\varphi}=\psi$,
(b) $(V, \varphi) \cong \varrho_{m_{1}} \oplus \ldots \oplus \varrho_{m_{s}}$ for some m_{1}, \ldots, m_{s} if and only if $(V, \psi) \cong$ $V_{m_{1}} \oplus \ldots \oplus V_{m_{s}}$.
(c) $S(V, \psi)^{L} \cong S(V, \varphi)^{G}$.

The G-module (V, φ) is called the lifting of the L-module (V, ψ).
Theorem 2. Let V be a finite-dimensional rational representation determined by a non-zero nilpotent endomorphism f of the vector space V. Then

1. $\mathbb{C}[V]^{\mathbb{C}^{+}}$is a Gorenstein ring.
2. $\mathbb{C}[V]^{\mathbb{C}^{+}}$is a polynomial algebra if and only if $V=V_{(0)} \oplus V^{\prime}$ for some subrepresentations $V_{(0)}, V^{\prime}$ of V such that \mathbb{C}^{+}acts trivially on $V_{(0)}$ (i.e., $f\left(V_{(0)}\right)=0$) and the Jordan matrix of $f^{\prime}: V^{\prime} \rightarrow V^{\prime}, f^{\prime}(v)=f(v)$, is one of the following:

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Proof. As in the proof of Theorem $1, \mathbb{C}[V]^{\mathbb{C}^{+}} \cong \mathbb{C}[V \oplus U]^{L}$ for some L-module structure $\psi: L \times V \rightarrow V$ such that $\psi(x, v)=f(v)$ for $v \in V$. But U, being a simple L-module of dimension 2 , is isomorphic to V_{1}, so that $\mathbb{C}[V]^{\mathbb{C}^{+}} \cong \mathbb{C}\left[V \oplus V_{1}\right]^{L}$. According to Corollary 4 , there exists a unique rational $G=\operatorname{SL}(2, \mathbb{C})$-module structure φ on V such that $\widetilde{\varphi}=\psi$. This implies
that $\mathbb{C}[V]^{\mathbb{C}^{+}} \cong \mathbb{C}\left[(V, \varphi) \oplus \varrho_{1}\right]^{G}$, because ϱ_{1} is the lifting of V_{1}. Now part 1 of the theorem follows, because, as is well known, $\mathbb{C}[W]^{G}$ is a Gorenstein ring for any finite-dimensional rational G-module W (see [1, Remark 6.5.5]).

For part 2 , in view of [5, Example following Thm. 3], $\mathbb{C}[V]^{\mathbb{C}^{+}} \cong \mathbb{C}[(V, \varphi) \oplus$ $\left.\varrho_{1}\right]^{G}$ is a polynomial algebra if and only if there exists a trivial submodule V_{t} of the G-module (V, φ) such that $(V, \varphi) \oplus \varrho_{1}$ is isomorphic to one of the G-modules: $V_{t} \oplus \varrho_{1} \oplus \varrho_{1}, V_{t} \oplus \varrho_{2} \oplus \varrho_{1}, V_{t} \oplus \varrho_{1} \oplus \varrho_{1} \oplus \varrho_{1}$. It follows that $\mathbb{C}[V]^{\mathbb{C}^{+}}$is a polynomial algebra if and only if (V, φ) is isomorphic to one of the G-modules: $V_{t} \oplus \varrho_{1}, V_{t} \oplus \varrho_{2}, V_{t} \oplus \varrho_{1} \oplus \varrho_{1}$. By Corollary $4(\mathrm{~b})$, this in turn implies that $\mathbb{C}[V]^{\mathbb{C}^{+}}$is a polynomial algebra if and only if the L-module (V, ψ) is isomorphic to one of the L-modules: $V_{(0)} \oplus V_{1}, V_{(0)} \oplus V_{2}$, $V_{(0)} \oplus V_{1} \oplus V_{1}$, where $V_{(0)}$ is the trivial L-module structure on V_{t} as a vector space. The conclusion now follows from Lemma 2(i) applied to $f: V \rightarrow V$. The theorem is proved.

Remark. Part 1 of the theorem was announced in [4].
Corollary 5. Let $A=\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ and let $d \neq 0$ be a locally nilpotent derivation of A with $d(W) \subset(W)$, where $W=\mathbb{C} X_{1}+\ldots+\mathbb{C} X_{n} \subset A$.

1. A^{d} is a Gorenstein ring.
2. A^{d} is a polynomial algebra if and only if $W=W_{0} \oplus W^{\prime}$ for some subspaces W_{0}, W^{\prime} of W such that $d\left(W_{0}\right)=0, d\left(W^{\prime}\right) \subset W^{\prime}$, and the Jordan matrix of $d_{\mid W^{\prime}}: W^{\prime} \rightarrow W^{\prime}$ is one of the three matrices appearing in Theorem 2.

Proof. We can consider A as the algebra $\mathbb{C}[V]$, where $V=\mathbb{C}^{n}$. Then $W=V^{*}$, and hence there exists an endomorphism $f: V \rightarrow V$ such that $-f^{*}=d_{\mid W}: W \rightarrow W$. Since $d_{\mid W}$ is nilpotent, the endomorphism f is also nilpotent. Therefore, the formula

$$
z . v=\sum_{i \geq 0} \frac{f^{i}(v)}{i!} z^{i}, \quad z \in \mathbb{C}^{+}, v \in V
$$

makes V a rational representation of \mathbb{C}^{+}such that $\mathbb{C}[V]^{\mathbb{C}^{+}}=\mathbb{C}[V]^{d}=$ A^{d}. Now, the corollary is a consequence of Theorem 2, because the Jordan matrices of f and $\pm f^{*}$ coincide.

REmARK 6. It is easy to see that the corollary is equivalent to Theorem 2.
REMARK 7. Let $M=\left(a_{i j}\right) \in M_{n}(\mathbb{C})$ be a nilpotent matrix and let $d: A \rightarrow A, A=\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$, be the locally nilpotent derivation defined by

$$
d\left(X_{i}\right)=\sum_{i=1}^{n} a_{i j} X_{j}, \quad i=1, \ldots, n
$$

Essentially, the implication \Leftarrow in part 2 of Corollary 5 says that A^{d} is a polynomial algebra if M is one of the three matrices appearing in Theorem 2. But this follows also from [3], where it was shown that

- $A^{d}=\mathbb{C}\left[X_{1}\right]$ if $n=2$ and $M=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ (this is obvious),
- $A^{d}=\mathbb{C}\left[X_{1}, X_{2}^{2}-2 X_{1} X_{3}\right]$ if $n=3$ and $M=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ [3, Ex. 6.8.1], and
- $A^{d}=\mathbb{C}\left[X_{1}, X_{3}, X_{2} X_{3}-X_{1} X_{4}\right]$ if $n=4$ and $M=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$ [3, Prop. 6.9.5].

In fact, since $\operatorname{tr} \operatorname{deg}_{\mathbb{C}} A^{D}=n-1$ for any locally nilpotent derivation $D: A \rightarrow A, D \neq 0$, the generators of A^{d} in the above three cases are algebraically independent.

REFERENCES

[1] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Stud. Adv. Math. 39, Cambridge Univ. Press, 1993.
[2] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Grad. Texts in Math. 9, Springer, New York, 1972.
[3] A. Nowicki, Polynomial Derivations and Their Rings of Constants, University Press, Toruń, 1994.
[4] N. Onoda, Linear actions of G_{a} on polynomial rings, in: Proc. 25th Sympos. Ring Theory (Matsumoto, 1992), Okayama Univ., Okayama, 1992, 11-16.
[5] V. L. Popov, Finiteness theorem for representations with a free algebra of invariants, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 347-370 (in Russian).
[6] C. S. Seshadri, On a theorem of Weitzenböck in invariant theory, J. Math. Kyoto Univ. 1 (1961), 403-409.
[7] T. A. Springer, Invariant Theory, Lecture Notes in Math. 585, Springer, New York, 1977.
[8] R. Weitzenböck, Über die Invarianten von linearen Gruppen, Acta Math. 58 (1932), 230-250.

Faculty of Mathematics and Informatics
Nicholas Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: atyc@mat.uni.torun.pl

