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LIMITS OF FAMILIES OF MEASURE ALGEBRAS

BY

JOJI TAKAHASH I (KOBE)

The limit of a directed family of measure algebras is characterized as the
unique complete Boolean algebra having a dense subset that is isomorphic
to a canonical poset constructed from the given family.

Suppose that we are given a family A = 〈Aζ , %ζη〉ζ,η∈W∧ζEη satisfying
the following conditions:

(GF1) 〈W,E〉 is a nonempty directed poset.
(GF2) For each η ∈W , Aζ is a complete Boolean algebra.
(GF3) For each pair 〈ζ, η〉 (ζ, η ∈ W and ζ E η), %ζη is a complete

embedding from Aζ to Aη.
(GF4) For each triple 〈ζ, η, ξ〉 (ζ, η, ξ ∈W and ζ E η E ξ), %ζξ = %ηξ◦%ζη.
(GF5) For each ζ ∈W and each a ∈ Aζ , %ζζ(a) = a.

It is then interesting to investigate limits ofA, i.e. families〈A, %ζ〉ζ∈W having
the following properties:

(L1) A is a complete Boolean algebra.
(L2) For each ζ ∈W , %ζ is a complete embedding from Aζ to A.
(L3) For each pair 〈ζ, η〉 (ζ, η ∈W and ζ E η), %ζ = %η ◦ %ζη.
(L4) A is completely generated by

⋃
ζ∈W Ran(%ζ).

Many different types of limits are known, the two best-known being the
direct limit and the inverse limit ([Je, §§23 and 36], [Ku, VIII, §5]).

Now suppose that, in addition to A, we are given a family 〈µζ〉ζ∈W such
that:

(GF6) For each ζ ∈W , µζ is a countably additive strictly positive prob-
ability measure on Aζ .

(GF7) For each pair 〈ζ, η〉 (ζ, η ∈ W and ζ E η) and each a ∈ Aζ ,
µζ(a) = µη(%ζη(a)).

We are then interested in limits of the expanded family

Ã = 〈Aζ , µζ , %ζη〉ζ,η∈W∧ζEη,
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which should consist of a limit 〈A, %ζ〉ζ∈W of A and an associated countably
additive strictly positive probability measure µ on A such that

(L5) For each ζ ∈W and each a ∈ Aζ , µζ(a) = µ(%ζ(a)).

The question of existence of limits in this sense is easily settled affirma-
tively. All one has to do is to express each Aζ as the measure algebra of
a probability measure space ([Fr, 2.6]) and apply Kolmogorov’s extension
theorem ([Bo, 5.1]) to the family of these measure spaces. The objective

of this note is to gain a more direct understanding of the limits of Ã. It
will be shown that, like most of the known limits of the family A of plain
complete Boolean algebras, the complete Boolean algebras A in the limits
〈A,µ, %ζ〉ζ∈W of Ã can be characterized by the property of having a dense

subset isomorphic to a certain poset constructed from Ã in a natural fashion.
For each pair 〈ζ, η〉 (ζ, η ∈ W and ζ E η), let πζη denote the projection

associated with %ζη, i.e. that map from Aη to Aζ such that

∀b ∈ Aη: πζη(b) =
∧Aζ

{a ∈ Aζ | b v %ζη(a)}.

Let Π denote the set of all functions p defined on the index set W such that

∀ζ ∈W : p(ζ) ∈ Aζ − {0Aζ} and

∀ζ, η ∈W (ζ E η): p(ζ) = πζη(p(η)).

Define the partial order v on Π by

∀p, q ∈ Π: [p v q ⇔ ∀ζ ∈W : p(ζ) v q(ζ)].

Many of the known limits 〈A, %ζ〉ζ∈W of A satisfy condition (L4) in a
rather strong sense. They have a dense subset arising from some set P ⊂ Π.
More precisely, one can find a set P ⊂ Π so that the map p 7→

∧A
ζ∈W %ζ(p(ζ))

(p ∈ P ) is an isomorphism from the poset 〈P,v〉 onto a dense subset of
A− {0A}. For example, we have the set

{p ∈ Π | ∃α ∈W : ∀ζ ∈W (α E ζ): p(ζ) = %αζ(p(α))}
for the direct limit of A, and the set Π itself for the inverse limit. We will
see that the relationship between the family Ã of measure algeras and their
measure algebra limits can also be captured in this way by means of a
suitably defined subset of Π.

Let us define the set P ⊂Π that gives rise to a dense subset of the limit
of Ã. We need to make sure that P consists only of those p ∈ Π such that
the Boolean values p(ζ) shrink nicely as ζ increases with respect to E. Those
p such that p(ζ) contract too rapidly or in too unruly a manner must be
weeded out. However, the standard method of selecting those p for which
the set

{α ∈W | ∃ζ ∈W (α E ζ ∧ α 6= ζ): p(ζ) = %αζ(p(α))},
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called the support of p, is in a suitable ideal of subsets of W is known not to
work for measure algebras ([Ku, VIII, Exercise K6, p. 302]). It is necessary
to take advantage of the measures µζ as a means of assessing the manner of
contraction of p(ζ) so that we can distinguish correctly between those p to
be allowed into P and those to be kept out. Thus, for each triple 〈p, α, a〉
such that p ∈ Π, α ∈W and a ∈ Aα, we put

inf(p, α, a) = inf{µζ(p(ζ) ∧ %αζ(a)) | α E ζ ∈W},
and define P to be the set of all p ∈ Π such that

∀α ∈W : ∀a ∈ Aα (p(α) ∧ a 6= 0Aα): inf(p, α, a) > 0.

Throughout the remainder of this note, we assume that

Ã = 〈Aζ , µζ , %ζη〉ζ,η∈W∧ζEη
is a family satisfying (GF1)–(GF7), A = 〈Aζ , %ζη〉ζ,η∈W∧ζEη is the plain

complete Boolean algebra portion of Ã, and 〈A, %ζ〉ζ∈W is a limit of A as
defined by (L1)–(L4). Also, let P denote the set defined as in the preceding

paragraph, and θ the map p 7→
∧A
ζ∈W %ζ(p(ζ)) from P to A. We will prove:

Theorem 1. Suppose that θ”P is a dense subset of A−{0A}. Then we
have:

(a) For any p1, p2 ∈ P , p1 v p2 if and only if θ(p1) v θ(p2).
(b) There is a countably additive strictly positive probability measure µ

on A satisfying (L5).

Theorem 2. If there is a countably additive strictly positive probability
measure µ on A satisfying (L5), then θ”P is a dense subset of A− {0A}.

It follows from these two theorems that A carries a countably additive
strictly positive probability measure µ satisfying (L5) if and only if θ is an
order isomorphism from 〈P,v〉 onto a dense subset of A−{0A}. In particular,

the limits of Ã are all isomorphic to each other. Also note that Theorem 1
gives a direct proof of the existence of the limit of Ã that does not depend
on Kolmogorov’s extension theorem.

Part (a) of Theorem 1 is easy to prove. All we need is the following fact.

Lemma 1. For any p1 ∈ P , any ζ ∈W and any a ∈ Aζ (p1(ζ)∧a 6= 0Aζ ),
there is a p2 ∈ P such that p2 v p1 and p2(ζ) v a.

P r o o f. Suppose that p1, ζ and a are as above. Then there is a unique
function p2 on W such that

∀η ∈W : ∀ξ ∈W (ζ, η E ξ): p2(η) = πηξ(p1(ξ) ∧ %ζξ(a)).

We easily check that p2 ∈ Π, p2 v p1 and p2(ζ) v a. Also, given any α ∈W
and any a′ ∈ Aα (p2(α)∧ a′ 6= 0Aα), we can choose a β ∈W with ζ, α E β,
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and see that

inf(p2, α, a
′) = inf(p2, β, %αβ(a′)) = inf(p1, β, %ζβ(a) ∧ %αβ(a′)), and

p1(β) ∧ %ζβ(a) ∧ %αβ(a′) 6= 0Aα .

Since p1 ∈ P , it follows that inf(p2, α, a
′) > 0. Therefore p2 ∈ P .

Proof of Theorem 1(a). Let p1, p2 ∈ P . The “only if ” part is obvious. For
the converse, if p1 6v p2, then p1(ζ) 6v p2(ζ) for some ζ ∈W . Using Lemma 1,
we can choose a p3 ∈ P so that p3 v p1 and p3(ζ) ∧ p2(ζ) = 0Aζ . It follows
that θ(p3) v θ(p1) and θ(p3) ∧ θ(p2) = 0A. Furthermore, θ(p3) 6= 0A. Thus
θ(p1) 6v θ(p2).

Proving part (b) of Theorem 1 and Theorem 2 requires more preliminary
work. We need to know more about the structure of the poset 〈P,v〉.

The elements of Π are characterized by the property that p(ζ) ∈
Aζ − {0Aζ}, p(η) ∈ Aη − {0Aη} and p(ζ) = πζη(p(η)) whenever ζ, η ∈ W
and ζ E η. Sometimes it will turn out necessary to deal with functions
p having the somewhat weaker peoperty that p(ζ) ∈ Aζ , p(η) ∈ Aη and
p(η) v %ζη(p(ζ)) for all ζ, η ∈W with ζ E η. We denote the set of all func-
tions having this latter property by Π#, and extend the partial order v on
Π to one on Π#. Note that the operation inf(p, α, a) makes sense not only
for p ∈ Π but for p ∈ Π#.

In what follows, R>0 and R≥0 will denote the set of all positive real
numbers and that of all nonnegative real numbers respectively.

Lemma 2. For any q ∈ Π#, any α ∈ W and any pairwise disjoint
X ⊂ Aα, we have

inf
(
q, α,

∨Aα
X
)

=
∑
a∈X

inf(q, α, a).

P r o o f. Let q ∈ Π# and α ∈ W . It is easily checked that the equality
above holds for any finite pairwise disjoint X ⊂ Aα. Let X be an arbitrary
pairwise disjoint subset of Aα, and put a1 =

∨Aα X.

Let us first show that the left-hand side is less than or equal to the
right-hand side. For this, it suffices to prove that

∀δ ∈ R>0: inf(q, α, a1) <
∑
a∈X

inf(q, α, a) + δ.

Given a δ ∈ R>0, choose a finite Y ⊂ X so that

µα(a1 ∧ (−a2)) < δ,

where a2 =
∨Aα Y . Then

inf(q, α, a1) = inf(q, α, a2) + inf(q, α, a1 ∧ (−a2)).



LIMITS OF FAMILIES OF MEASURE ALGEBRAS 23

But

inf(q, α, a2) =
∑
a∈Y

inf(q, α, a) ≤
∑
a∈X

inf(q, α, a),

and

inf(q, α, a1 ∧ (−a2)) ≤ µα(a1 ∧ (−a2)) < δ.

Thus

inf(q, α, a1) <
∑
a∈X

inf(q, α, a) + δ.

On the other hand, we have∑
a∈X

inf(q, α, a) = sup
{∑
a∈Y

inf(q, α, a)
∣∣∣Y ⊂ X ∧ Y is finite

}
= sup

{
inf
(
q, α,

∨Aα
Y
) ∣∣∣Y ⊂ X ∧ Y is finite

}
≤ inf(q, α, a1).

For each p ∈ Π#, put inf(p) = inf{µζ(p(ζ)) | ζ ∈W}.
Lemma 3. For any q ∈ Π# with inf(q) > 0, there is a p ∈ P such that

p v q and inf(p) = inf(q).

P r o o f. Suppose that q ∈ Π# and inf(q) > 0. Define the functions q′

and p on W as follows:

∀ζ ∈W : q′(ζ) =
∨Aζ

{a ∈ Aζ | inf(q, ζ, a) = 0}, ∀ζ ∈W : p(ζ) = −q′(ζ).

Clearly, p ∈ Π# and p v q.
Claim 1. For any ζ ∈ W and a ∈ Aζ , a v q′(ζ) if and only if

inf(q, ζ, a) = 0.

P r o o f. The “if ” part is immediate from the definition of q′. To prove
the “only if ” part, suppose that a1 v q′(ζ) (ζ ∈ W and a1 ∈ Aζ). Then
there is a pairwise disjoint X ⊂ Aζ such that

a1 =
∨Aζ

X and ∀a ∈ X: inf(q, ζ, a) = 0,

and it follows from Lemma 2 that inf(q, ζ, a1) = 0.

Claim 2. For any α ∈W and a ∈ Aα, inf(p, α, a) = inf(q, α, a).

P r o o f. Let α ∈W and a ∈ Aα. Since p v q, we have

inf(p, α, a) ≤ inf(q, α, a).

On the other hand, for any ζ ∈W with α E ζ,

inf(q, α, a) = inf(q, ζ, %αζ(a))

= inf(q, ζ, p(ζ) ∧ %αζ(a)) + inf(q, ζ, q′(ζ) ∧ %αζ(a)).
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But

inf(q, ζ, p(ζ) ∧ %αζ(a)) ≤ µζ(q(ζ) ∧ p(ζ) ∧ %αζ(a)) = µζ(p(ζ) ∧ %αζ(a)),

and, by Claim 1,

inf(q, ζ, q′(ζ) ∧ %αζ(a)) = 0.

Therefore

inf(q, α, a) ≤ µζ(p(ζ) ∧ %αζ(a)).

Thus inf(q, α, a) ≤ inf(p, α, a).

By Claim 2, inf(p) = inf(q).

Claim 3. p ∈ Π.

P r o o f. Since inf(p) = inf(q) > 0, we see that

∀ζ ∈W : p(ζ) ∈ Aζ − {0Aζ}.

Also, for any ζ, η ∈W (ζ E η) and any a ∈ Aζ ,

p(η) v %ζη(a)⇔ %ζη(−a) v q′(η)

⇔ inf(q, η, %ζη(−a)) = 0 (by Claim 1)

⇔ inf(q, ζ,−a) = 0

⇔ −a v q′(ζ) (by Claim 1)

⇔ p(ζ) v a,

whence ∀ζ, η ∈W (ζ E η): p(ζ) = πζη(p(η)).

Claim 4. For any α ∈W and a ∈ Aα (p(α)∧a 6= 0Aα), inf(p, α, a) > 0.

P r o o f. If α ∈ W , a ∈ Aα and inf(p, α, a) = 0, then a v q′(α) by
Claims 1 and 2, so that p(α) ∧ a = 0Aα .

By Claims 3 and 4, p ∈ P . Lemma 3 is proved.

Lemma 4. For any p1, p2 ∈ P , p1 and p2 are compatible in the poset
〈P,v〉 if and only if inf(p1 ∧ p2) > 0, where p1 ∧ p2 is that element of Π#

such that

∀ζ ∈W : (p1 ∧ p2)(ζ) = p1(ζ) ∧ p2(ζ).

P r o o f. The “if ” direction follows from Lemma 3, while the “only if ”
direction is obvious.

Lemma 5. For any X ⊂ P and q ∈ P , we have:

(a) If p v q for all p ∈ X and X is pairwise incompatible in 〈P,v〉,
then

∑
p∈X inf(p) ≤ inf(q).

(b) If X is predense below q in 〈P,v〉, then
∑
p∈X inf(p) ≥ inf(q).
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P r o o f. (a) Suppose that p v q for all p ∈ X and X is pairwise incom-
patible in 〈P,v〉. Without loss of generality, we may assume that X is finite.
We will show that

∀δ ∈ R>0:
∑
p∈X

inf(p) ≤ inf(q) + 2δ.

Let δ ∈ R>0. By Lemma 4,

∀p1, p2 ∈ X (p1 6= p2): inf(p1 ∧ p2) = 0.

So, since X is finite, there is a ξ ∈W such that

t =
∑

p1,p2∈X∧p1 6=p2

µξ(p1(ξ) ∧ p2(ξ)) ≤ δ and µξ(q(ξ)) ≤ inf(q) + δ.

We then have∑
p∈X

inf(p) ≤
∑
p∈X

µξ(p(ξ)) ≤ µξ
(∨Aξ

p∈X
p(ξ)

)
+ t

≤ µξ(q(ξ)) + t ≤ inf(q) + 2δ.

(b) Suppose that
∑
p∈X inf(p) < inf(q), and let δ ∈ R>0 be such that

inf(q)−
∑
p∈X

inf(p) ≥ 2δ.

Since
∑
p∈X inf(p) is finite, X must be at most countable. So there are

numbers δp ∈ R>0 (p ∈ X) such that∑
p∈X

δp ≤ δ.

Then we can choose elements ξp ∈W (p ∈ X) so that

∀p ∈ X: µξp(p(ξp)) ≤ inf(p) + δp.

Now define the function q′ on W by

∀ζ ∈W : q′(ζ) = q(ζ) ∧
(
−
∨Aζ

{%ξpζ(p(ξp)) | p ∈ X ∧ ξp E ζ}
)
.

Clearly, q′ ∈ Π# and q′ v q. Also, for any ζ ∈W ,

µζ(q
′(ζ)) ≥ µζ(q(ζ))−

∑
p∈X∧ξpEζ

µξp(p(ξp))

≥ inf(q)−
∑
p∈X

(inf(p) + δp) =
(

inf(q)−
∑
p∈X

inf(p)
)
−
∑
p∈X

δp ≥ δ.

Hence inf(q′) > 0. Therefore, by Lemma 3, we get a q′′ ∈ P such that
q′′ v q′. Then q′′ v q, and since

∀p ∈ X: ∃ζ ∈W : p(ζ) ∧ q′(ζ) = 0Aζ ,
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we also have

∀p ∈ X: ∃ζ ∈W : p(ζ) ∧ q′′(ζ) = 0Aζ ,

whence q′′ is incompatible with all p ∈ X. Thus X is not predense below q.

Proof of Theorem 1(b). The natural way to define a measure µ as re-
quired is as follows:

Given an a ∈ A, choose a pairwise incompatible X ⊂ P such that
a =

∨A
θ”X, and put µ(a) =

∑
p∈X inf(p).

This is, in fact, the approach that we will take. First we have to show that
the value of µ(a) does not depend on the choice of the set X.

Claim. If X and Y (X, Y ⊂ P ) are pairwise incompatible and
∨A

θ”X

=
∨A

θ”Y , then
∑
p∈X inf(p) =

∑
q∈Y inf(q).

P r o o f. Without loss of generality, assume that X is a refinement of Y ,
i.e.

∀p ∈ X: ∃q ∈ Y : p v q,
so that we have

∀q ∈ Y : θ(q) =
∨A

θ”Xq,

where for each q ∈ Y ,

Xq = {p ∈ X | p v q}.
It follows from Lemma 5 that

∀q ∈ Y :
∑
p∈Xq

inf(p) = inf(q).

Hence ∑
p∈X

inf(p) =
∑
q∈Y

∑
p∈Xq

inf(p) =
∑
q∈Y

inf(q).

By the claim, we can define the map µ : A→ R≥0 so that for any a ∈ A
and any X ⊂ P ,

X is pairwise incompatible in 〈P,v〉 ∧ a=
∨A

θ”X⇒ µ(a) =
∑
p∈X

inf(p).

It is then routine to check that µ is a countably additive strictly positive
probability measure on A such that

∀ζ ∈W : ∀a ∈ Aζ : µζ(a) = µ(%ζ(a)).

Proof of Theorem 2. We will show that

∀a ∈ A: ∃X ⊂ P : a =
∨A

θ”X.
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By (L4), it suffices to prove that the set A′ of all a ∈ A such that

∃X ⊂ P : a =
∨A

θ”X

is a complete subalgebra of A including
⋃
ζ∈W Ran(%ζ) as a subset.

Since, for any ζ ∈ W and any a ∈ Aζ − {0Aζ}, that function p in Π
such that p(η) = %ζη(a) for all η ∈ W (ζ E η) is an element of P , we
have

⋃
ζ∈W Ran(%ζ) ⊂ A′. It is obvious that A′ is closed under the join

operation
∨

.

Showing that A′ is closed under Boolean complementation requires two
claims.

Claim 1. For any incompatible p1, p2 ∈ P , θ(p1) ∧ θ(p2) = 0A.

P r o o f. If p1 and p2 are incompatible, then

µ(θ(p1) ∧ θ(p2)) = inf(p1 ∧ p2) = 0 (by Lemma 4).

Hence θ(p1) ∧ θ(p2) = 0A.

Claim 2. For any predense X ⊂ P ,
∨A

θ”X = 1A.

P r o o f. Let X be an arbitrary predense subset of P . Since there is a
pairwise incompatible predense set X ′ ⊂ P such that

∀p′ ∈ X ′: ∃p ∈ X: p′ v p,

there is no loss of generality in assuming that X is pairwise incompatible
to begin with. Then, by Claim 1, the elements θ(p) (p ∈ X) are pairwise
disjoint in A. So

µ
(∨A

θ”X
)

=
∑
p∈X

µ(θ(p)).

But ∑
p∈X

µ(θ(p)) =
∑
p∈X

inf(p) ≥ 1 (by Lemma 5(b)).

Thus µ(
∨A

θ”X) ≥ 1, and we conclude that
∨A

θ”X = 1A.

Proving that A′ is also closed under the complement operation on the
basis of Claims 1 and 2 is quite standard. Consider an arbitrary element
a =

∨A
θ”X (X ⊂ P ) of A′. If we put

Y = {q ∈ P | q is incompatible with all p ∈ X} and b =
∨A

θ”Y,

then a∧ b = 0A by Claim 1, and a∨ b =
∨A

θ”(X ∪Y ) = 1A by Claim 2, so
that −a = b ∈ A′.
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