LIMITS OF FAMILIES OF MEASURE ALGEBRAS

BY
JOJI TAKAHASHI (KOBE)
The limit of a directed family of measure algebras is characterized as the unique complete Boolean algebra having a dense subset that is isomorphic to a canonical poset constructed from the given family.

Suppose that we are given a family $\mathcal{A}=\left\langle A_{\zeta}, \varrho_{\zeta \eta}\right\rangle_{\zeta, \eta \in W \wedge \zeta \unlhd \eta}$ satisfying the following conditions:
(GF1) $\langle W, \unlhd\rangle$ is a nonempty directed poset.
(GF2) For each $\eta \in W, A_{\zeta}$ is a complete Boolean algebra.
(GF3) For each pair $\langle\zeta, \eta\rangle(\zeta, \eta \in W$ and $\zeta \unlhd \eta)$, $\varrho_{\zeta \eta}$ is a complete embedding from A_{ζ} to A_{η}.
(GF4) For each triple $\langle\zeta, \eta, \xi\rangle(\zeta, \eta, \xi \in W$ and $\zeta \unlhd \eta \unlhd \xi), \varrho_{\zeta \xi}=\varrho_{\eta \xi} \circ \varrho_{\zeta \eta}$.
(GF5) For each $\zeta \in W$ and each $a \in A_{\zeta}, \varrho_{\zeta \zeta}(a)=a$.
It is then interesting to investigate limits of \mathcal{A}, i.e. families $\left\langle A, \varrho_{\zeta}\right\rangle_{\zeta \in W}$ having the following properties:
(L1) A is a complete Boolean algebra.
(L2) For each $\zeta \in W, \varrho_{\zeta}$ is a complete embedding from A_{ζ} to A.
(L3) For each pair $\langle\zeta, \eta\rangle(\zeta, \eta \in W$ and $\zeta \unlhd \eta), \varrho_{\zeta}=\varrho_{\eta} \circ \varrho_{\zeta \eta}$.
(L4) $\quad A$ is completely generated by $\bigcup_{\zeta \in W} \operatorname{Ran}\left(\varrho_{\zeta}\right)$.
Many different types of limits are known, the two best-known being the direct limit and the inverse limit ([Je, $\S \S 23$ and 36], [Ku, VIII, §5]).

Now suppose that, in addition to \mathcal{A}, we are given a family $\left\langle\mu_{\zeta}\right\rangle_{\zeta \in W}$ such that:
(GF6) For each $\zeta \in W, \mu_{\zeta}$ is a countably additive strictly positive probability measure on A_{ζ}.
(GF7) For each pair $\langle\zeta, \eta\rangle(\zeta, \eta \in W$ and $\zeta \unlhd \eta)$ and each $a \in A_{\zeta}$, $\mu_{\zeta}(a)=\mu_{\eta}\left(\varrho_{\zeta \eta}(a)\right)$.
We are then interested in limits of the expanded family

$$
\widetilde{\mathcal{A}}=\left\langle A_{\zeta}, \mu_{\zeta}, \varrho_{\zeta \eta}\right\rangle_{\zeta, \eta \in W \wedge \zeta \unlhd \eta},
$$

1991 Mathematics Subject Classification: Primary 03E40.
which should consist of a limit $\left\langle A, \varrho_{\zeta}\right\rangle_{\zeta \in W}$ of \mathcal{A} and an associated countably additive strictly positive probability measure μ on A such that
(L5) For each $\zeta \in W$ and each $a \in A_{\zeta}, \mu_{\zeta}(a)=\mu\left(\varrho_{\zeta}(a)\right)$.
The question of existence of limits in this sense is easily settled affirmatively. All one has to do is to express each A_{ζ} as the measure algebra of a probability measure space ($[\mathrm{Fr}, 2.6]$) and apply Kolmogorov's extension theorem ([Bo, 5.1]) to the family of these measure spaces. The objective of this note is to gain a more direct understanding of the limits of $\widetilde{\mathcal{A}}$. It will be shown that, like most of the known limits of the family \mathcal{A} of plain complete Boolean algebras, the complete Boolean algebras A in the limits $\left\langle A, \mu, \varrho_{\zeta}\right\rangle_{\zeta \in W}$ of $\widetilde{\mathcal{A}}$ can be characterized by the property of having a dense subset isomorphic to a certain poset constructed from $\widetilde{\mathcal{A}}$ in a natural fashion.

For each pair $\langle\zeta, \eta\rangle(\zeta, \eta \in W$ and $\zeta \unlhd \eta)$, let $\pi_{\zeta \eta}$ denote the projection associated with $\varrho_{\zeta \eta}$, i.e. that map from A_{η} to A_{ζ} such that

$$
\forall b \in A_{\eta}: \pi_{\zeta \eta}(b)=\bigwedge^{A_{\zeta}}\left\{a \in A_{\zeta} \mid b \sqsubseteq \varrho_{\zeta \eta}(a)\right\} .
$$

Let Π denote the set of all functions p defined on the index set W such that

$$
\begin{aligned}
& \forall \zeta \in W: p(\zeta) \in A_{\zeta}-\left\{0_{A_{\zeta}}\right\} \quad \text { and } \\
& \forall \zeta, \eta \in W(\zeta \unlhd \eta): p(\zeta)=\pi_{\zeta \eta}(p(\eta)) .
\end{aligned}
$$

Define the partial order \sqsubseteq on Π by

$$
\forall p, q \in \Pi:[p \sqsubseteq q \Leftrightarrow \forall \zeta \in W: p(\zeta) \sqsubseteq q(\zeta)] .
$$

Many of the known limits $\left\langle A, \varrho_{\zeta}\right\rangle_{\zeta \in W}$ of \mathcal{A} satisfy condition (L4) in a rather strong sense. They have a dense subset arising from some set $P \subset \Pi$. More precisely, one can find a set $P \subset \Pi$ so that the map $p \mapsto \bigwedge_{\zeta \in W}^{A} \varrho_{\zeta}(p(\zeta))$ $(p \in P)$ is an isomorphism from the poset $\langle P, \sqsubseteq\rangle$ onto a dense subset of $A-\left\{0_{A}\right\}$. For example, we have the set

$$
\left\{p \in \Pi \mid \exists \alpha \in W: \forall \zeta \in W(\alpha \unlhd \zeta): p(\zeta)=\varrho_{\alpha \zeta}(p(\alpha))\right\}
$$

for the direct limit of \mathcal{A}, and the set Π itself for the inverse limit. We will see that the relationship between the family $\widetilde{\mathcal{A}}$ of measure algeras and their measure algebra limits can also be captured in this way by means of a suitably defined subset of Π.

Let us define the set $P \subset \Pi$ that gives rise to a dense subset of the limit of $\widetilde{\mathcal{A}}$. We need to make sure that P consists only of those $p \in \Pi$ such that the Boolean values $p(\zeta)$ shrink nicely as ζ increases with respect to \unlhd. Those p such that $p(\zeta)$ contract too rapidly or in too unruly a manner must be weeded out. However, the standard method of selecting those p for which the set

$$
\left\{\alpha \in W \mid \exists \zeta \in W(\alpha \unlhd \zeta \wedge \alpha \neq \zeta): p(\zeta)=\varrho_{\alpha \zeta}(p(\alpha))\right\},
$$

called the support of p, is in a suitable ideal of subsets of W is known not to work for measure algebras ([Ku, VIII, Exercise K6, p. 302]). It is necessary to take advantage of the measures μ_{ζ} as a means of assessing the manner of contraction of $p(\zeta)$ so that we can distinguish correctly between those p to be allowed into P and those to be kept out. Thus, for each triple $\langle p, \alpha, a\rangle$ such that $p \in \Pi, \alpha \in W$ and $a \in A_{\alpha}$, we put

$$
\inf (p, \alpha, a)=\inf \left\{\mu_{\zeta}\left(p(\zeta) \wedge \varrho_{\alpha \zeta}(a)\right) \mid \alpha \unlhd \zeta \in W\right\}
$$

and define P to be the set of all $p \in \Pi$ such that

$$
\forall \alpha \in W: \forall a \in A_{\alpha}\left(p(\alpha) \wedge a \neq 0_{A_{\alpha}}\right): \inf (p, \alpha, a)>0
$$

Throughout the remainder of this note, we assume that

$$
\widetilde{\mathcal{A}}=\left\langle A_{\zeta}, \mu_{\zeta}, \varrho_{\zeta \eta}\right\rangle_{\zeta, \eta \in W \wedge \zeta \unlhd \eta}
$$

is a family satisfying (GF1)-(GF7), $\mathcal{A}=\left\langle A_{\zeta}, \varrho_{\zeta \eta}\right\rangle_{\zeta, \eta \in W \wedge \zeta \unlhd \eta}$ is the plain complete Boolean algebra portion of $\widetilde{\mathcal{A}}$, and $\left\langle A, \varrho_{\zeta}\right\rangle_{\zeta \in W}$ is a limit of \mathcal{A} as defined by (L1)-(L4). Also, let P denote the set defined as in the preceding paragraph, and θ the map $p \mapsto \bigwedge_{\zeta \in W}^{A} \varrho_{\zeta}(p(\zeta))$ from P to A. We will prove:

Theorem 1. Suppose that θ " P is a dense subset of $A-\left\{0_{A}\right\}$. Then we have:
(a) For any $p_{1}, p_{2} \in P, p_{1} \sqsubseteq p_{2}$ if and only if $\theta\left(p_{1}\right) \sqsubseteq \theta\left(p_{2}\right)$.
(b) There is a countably additive strictly positive probability measure μ on A satisfying (L5).

THEOREM 2. If there is a countably additive strictly positive probability measure μ on A satisfying (L5), then $\theta " P$ is a dense subset of $A-\left\{0_{A}\right\}$.

It follows from these two theorems that A carries a countably additive strictly positive probability measure μ satisfying (L5) if and only if θ is an order isomorphism from $\langle P, \sqsubseteq\rangle$ onto a dense subset of $A-\left\{0_{A}\right\}$. In particular, the limits of $\widetilde{\mathcal{A}}$ are all isomorphic to each other. Also note that Theorem 1 gives a direct proof of the existence of the limit of $\widetilde{\mathcal{A}}$ that does not depend on Kolmogorov's extension theorem.

Part (a) of Theorem 1 is easy to prove. All we need is the following fact.
Lemma 1. For any $p_{1} \in P$, any $\zeta \in W$ and any $a \in A_{\zeta}\left(p_{1}(\zeta) \wedge a \neq 0_{A_{\zeta}}\right)$, there is a $p_{2} \in P$ such that $p_{2} \sqsubseteq p_{1}$ and $p_{2}(\zeta) \sqsubseteq a$.

Proof. Suppose that p_{1}, ζ and a are as above. Then there is a unique function p_{2} on W such that

$$
\forall \eta \in W: \forall \xi \in W(\zeta, \eta \unlhd \xi): p_{2}(\eta)=\pi_{\eta \xi}\left(p_{1}(\xi) \wedge \varrho_{\zeta \xi}(a)\right)
$$

We easily check that $p_{2} \in \Pi, p_{2} \sqsubseteq p_{1}$ and $p_{2}(\zeta) \sqsubseteq a$. Also, given any $\alpha \in W$ and any $a^{\prime} \in A_{\alpha}\left(p_{2}(\alpha) \wedge a^{\prime} \neq 0_{A_{\alpha}}\right)$, we can choose a $\beta \in W$ with $\zeta, \alpha \unlhd \beta$,
and see that

$$
\begin{gathered}
\inf \left(p_{2}, \alpha, a^{\prime}\right)=\inf \left(p_{2}, \beta, \varrho_{\alpha \beta}\left(a^{\prime}\right)\right)=\inf \left(p_{1}, \beta, \varrho_{\zeta \beta}(a) \wedge \varrho_{\alpha \beta}\left(a^{\prime}\right)\right), \quad \text { and } \\
p_{1}(\beta) \wedge \varrho_{\zeta \beta}(a) \wedge \varrho_{\alpha \beta}\left(a^{\prime}\right) \neq 0_{A_{\alpha}} .
\end{gathered}
$$

Since $p_{1} \in P$, it follows that $\inf \left(p_{2}, \alpha, a^{\prime}\right)>0$. Therefore $p_{2} \in P$.
Proof of Theorem 1(a). Let $p_{1}, p_{2} \in P$. The "only if" part is obvious. For the converse, if $p_{1} \nsubseteq p_{2}$, then $p_{1}(\zeta) \nsubseteq p_{2}(\zeta)$ for some $\zeta \in W$. Using Lemma 1, we can choose a $p_{3} \in P$ so that $p_{3} \sqsubseteq p_{1}$ and $p_{3}(\zeta) \wedge p_{2}(\zeta)=0_{A_{C}}$. It follows that $\theta\left(p_{3}\right) \sqsubseteq \theta\left(p_{1}\right)$ and $\theta\left(p_{3}\right) \wedge \theta\left(p_{2}\right)=0_{A}$. Furthermore, $\theta\left(p_{3}\right) \neq 0_{A}$. Thus $\theta\left(p_{1}\right) \nsubseteq \theta\left(p_{2}\right)$.

Proving part (b) of Theorem 1 and Theorem 2 requires more preliminary work. We need to know more about the structure of the poset $\langle P, \sqsubseteq\rangle$.

The elements of Π are characterized by the property that $p(\zeta) \in$ $A_{\zeta}-\left\{0_{A_{\zeta}}\right\}, p(\eta) \in A_{\eta}-\left\{0_{A_{\eta}}\right\}$ and $p(\zeta)=\pi_{\zeta \eta}(p(\eta))$ whenever $\zeta, \eta \in W$ and $\zeta \unlhd \eta$. Sometimes it will turn out necessary to deal with functions p having the somewhat weaker peoperty that $p(\zeta) \in A_{\zeta}, p(\eta) \in A_{\eta}$ and $p(\eta) \sqsubseteq \varrho_{\zeta \eta}(p(\zeta))$ for all $\zeta, \eta \in W$ with $\zeta \unlhd \eta$. We denote the set of all functions having this latter property by $\Pi^{\#}$, and extend the partial order \sqsubseteq on Π to one on $\Pi^{\#}$. Note that the operation $\inf (p, \alpha, a)$ makes sense not only for $p \in \Pi$ but for $p \in \Pi^{\#}$.

In what follows, $\mathbb{R}^{>0}$ and $\mathbb{R}^{\geq 0}$ will denote the set of all positive real numbers and that of all nonnegative real numbers respectively.

Lemma 2. For any $q \in \Pi^{\#}$, any $\alpha \in W$ and any pairwise disjoint $X \subset A_{\alpha}$, we have

$$
\inf \left(q, \alpha, \bigvee^{A_{\alpha}} X\right)=\sum_{a \in X} \inf (q, \alpha, a)
$$

Proof. Let $q \in \Pi^{\#}$ and $\alpha \in W$. It is easily checked that the equality above holds for any finite pairwise disjoint $X \subset A_{\alpha}$. Let X be an arbitrary pairwise disjoint subset of A_{α}, and put $a_{1}=\bigvee^{A_{\alpha}} X$.

Let us first show that the left-hand side is less than or equal to the right-hand side. For this, it suffices to prove that

$$
\forall \delta \in \mathbb{R}^{>0}: \inf \left(q, \alpha, a_{1}\right)<\sum_{a \in X} \inf (q, \alpha, a)+\delta .
$$

Given a $\delta \in \mathbb{R}^{>0}$, choose a finite $Y \subset X$ so that

$$
\mu_{\alpha}\left(a_{1} \wedge\left(-a_{2}\right)\right)<\delta,
$$

where $a_{2}=\bigvee^{A_{\alpha}} Y$. Then

$$
\inf \left(q, \alpha, a_{1}\right)=\inf \left(q, \alpha, a_{2}\right)+\inf \left(q, \alpha, a_{1} \wedge\left(-a_{2}\right)\right) .
$$

But

$$
\inf \left(q, \alpha, a_{2}\right)=\sum_{a \in Y} \inf (q, \alpha, a) \leq \sum_{a \in X} \inf (q, \alpha, a)
$$

and

$$
\inf \left(q, \alpha, a_{1} \wedge\left(-a_{2}\right)\right) \leq \mu_{\alpha}\left(a_{1} \wedge\left(-a_{2}\right)\right)<\delta
$$

Thus

$$
\inf \left(q, \alpha, a_{1}\right)<\sum_{a \in X} \inf (q, \alpha, a)+\delta
$$

On the other hand, we have

$$
\begin{aligned}
\sum_{a \in X} \inf (q, \alpha, a) & =\sup \left\{\sum_{a \in Y} \inf (q, \alpha, a) \mid Y \subset X \wedge Y \text { is finite }\right\} \\
& =\sup \left\{\inf \left(q, \alpha, \bigvee^{A_{\alpha}} Y\right) \mid Y \subset X \wedge Y \text { is finite }\right\} \\
& \leq \inf \left(q, \alpha, a_{1}\right)
\end{aligned}
$$

For each $p \in \Pi^{\#}$, put $\inf (p)=\inf \left\{\mu_{\zeta}(p(\zeta)) \mid \zeta \in W\right\}$.
Lemma 3. For any $q \in \Pi^{\#}$ with $\inf (q)>0$, there is a $p \in P$ such that $p \sqsubseteq q$ and $\inf (p)=\inf (q)$.

Proof. Suppose that $q \in \Pi^{\#}$ and $\inf (q)>0$. Define the functions q^{\prime} and p on W as follows:
$\forall \zeta \in W: q^{\prime}(\zeta)=\bigvee^{A_{\zeta}}\left\{a \in A_{\zeta} \mid \inf (q, \zeta, a)=0\right\}, \quad \forall \zeta \in W: p(\zeta)=-q^{\prime}(\zeta)$.
Clearly, $p \in \Pi^{\#}$ and $p \sqsubseteq q$.
Claim 1. For any $\zeta \in W$ and $a \in A_{\zeta}, a \sqsubseteq q^{\prime}(\zeta)$ if and only if $\inf (q, \zeta, a)=0$.

Proof. The "if" part is immediate from the definition of q^{\prime}. To prove the "only if" part, suppose that $a_{1} \sqsubseteq q^{\prime}(\zeta)\left(\zeta \in W\right.$ and $\left.a_{1} \in A_{\zeta}\right)$. Then there is a pairwise disjoint $X \subset A_{\zeta}$ such that

$$
a_{1}=\bigvee^{A_{\zeta}} X \quad \text { and } \quad \forall a \in X: \inf (q, \zeta, a)=0
$$

and it follows from Lemma 2 that $\inf \left(q, \zeta, a_{1}\right)=0$.
Claim 2. For any $\alpha \in W$ and $a \in A_{\alpha}, \inf (p, \alpha, a)=\inf (q, \alpha, a)$.
Proof. Let $\alpha \in W$ and $a \in A_{\alpha}$. Since $p \sqsubseteq q$, we have

$$
\inf (p, \alpha, a) \leq \inf (q, \alpha, a)
$$

On the other hand, for any $\zeta \in W$ with $\alpha \unlhd \zeta$,

$$
\begin{aligned}
\inf (q, \alpha, a) & =\inf \left(q, \zeta, \varrho_{\alpha \zeta}(a)\right) \\
& =\inf \left(q, \zeta, p(\zeta) \wedge \varrho_{\alpha \zeta}(a)\right)+\inf \left(q, \zeta, q^{\prime}(\zeta) \wedge \varrho_{\alpha \zeta}(a)\right)
\end{aligned}
$$

But
$\inf \left(q, \zeta, p(\zeta) \wedge \varrho_{\alpha \zeta}(a)\right) \leq \mu_{\zeta}\left(q(\zeta) \wedge p(\zeta) \wedge \varrho_{\alpha \zeta}(a)\right)=\mu_{\zeta}\left(p(\zeta) \wedge \varrho_{\alpha \zeta}(a)\right)$,
and, by Claim 1,

$$
\inf \left(q, \zeta, q^{\prime}(\zeta) \wedge \varrho_{\alpha \zeta}(a)\right)=0
$$

Therefore

$$
\inf (q, \alpha, a) \leq \mu_{\zeta}\left(p(\zeta) \wedge \varrho_{\alpha \zeta}(a)\right)
$$

Thus $\inf (q, \alpha, a) \leq \inf (p, \alpha, a)$.
By Claim 2, $\inf (p)=\inf (q)$.
Claim 3. $p \in \Pi$.
Proof. Since $\inf (p)=\inf (q)>0$, we see that

$$
\forall \zeta \in W: p(\zeta) \in A_{\zeta}-\left\{0_{A_{\zeta}}\right\}
$$

Also, for any $\zeta, \eta \in W(\zeta \unlhd \eta)$ and any $a \in A_{\zeta}$,

$$
\begin{aligned}
p(\eta) \sqsubseteq \varrho_{\zeta \eta}(a) & \Leftrightarrow \varrho_{\zeta \eta}(-a) \sqsubseteq q^{\prime}(\eta) \\
& \Leftrightarrow \inf \left(q, \eta, \varrho_{\zeta \eta}(-a)\right)=0 \quad \text { (by Claim 1) } \\
& \Leftrightarrow \inf (q, \zeta,-a)=0 \\
& \Leftrightarrow-a \sqsubseteq q^{\prime}(\zeta) \quad \text { (by Claim 1) } \\
& \Leftrightarrow p(\zeta) \sqsubseteq a,
\end{aligned}
$$

whence $\forall \zeta, \eta \in W(\zeta \unlhd \eta)$: $p(\zeta)=\pi_{\zeta \eta}(p(\eta))$.
Claim 4. For any $\alpha \in W$ and $a \in A_{\alpha}\left(p(\alpha) \wedge a \neq 0_{A_{\alpha}}\right), \inf (p, \alpha, a)>0$.
Proof. If $\alpha \in W, a \in A_{\alpha}$ and $\inf (p, \alpha, a)=0$, then $a \sqsubseteq q^{\prime}(\alpha)$ by Claims 1 and 2, so that $p(\alpha) \wedge a=0_{A_{\alpha}}$.

By Claims 3 and $4, p \in P$. Lemma 3 is proved.
Lemma 4. For any $p_{1}, p_{2} \in P, p_{1}$ and p_{2} are compatible in the poset $\langle P, \sqsubseteq\rangle$ if and only if $\inf \left(p_{1} \wedge p_{2}\right)>0$, where $p_{1} \wedge p_{2}$ is that element of $\Pi^{\#}$ such that

$$
\forall \zeta \in W:\left(p_{1} \wedge p_{2}\right)(\zeta)=p_{1}(\zeta) \wedge p_{2}(\zeta)
$$

Proof. The "if" direction follows from Lemma 3, while the "only if" direction is obvious.

Lemma 5. For any $X \subset P$ and $q \in P$, we have:
(a) If $p \sqsubseteq q$ for all $p \in X$ and X is pairwise incompatible in $\langle P, \sqsubseteq\rangle$, then $\sum_{p \in X} \inf (p) \leq \inf (q)$.
(b) If X is predense below q in $\langle P, \sqsubseteq\rangle$, then $\sum_{p \in X} \inf (p) \geq \inf (q)$.

Proof. (a) Suppose that $p \sqsubseteq q$ for all $p \in X$ and X is pairwise incompatible in $\langle P, \sqsubseteq\rangle$. Without loss of generality, we may assume that X is finite. We will show that

$$
\forall \delta \in \mathbb{R}^{>0}: \sum_{p \in X} \inf (p) \leq \inf (q)+2 \delta
$$

Let $\delta \in \mathbb{R}^{>0}$. By Lemma 4,

$$
\forall p_{1}, p_{2} \in X\left(p_{1} \neq p_{2}\right): \inf \left(p_{1} \wedge p_{2}\right)=0
$$

So, since X is finite, there is a $\xi \in W$ such that

$$
t=\sum_{p_{1}, p_{2} \in X \wedge p_{1} \neq p_{2}} \mu_{\xi}\left(p_{1}(\xi) \wedge p_{2}(\xi)\right) \leq \delta \quad \text { and } \quad \mu_{\xi}(q(\xi)) \leq \inf (q)+\delta
$$

We then have

$$
\begin{aligned}
\sum_{p \in X} \inf (p) & \leq \sum_{p \in X} \mu_{\xi}(p(\xi)) \leq \mu_{\xi}\left(\bigvee_{p \in X}^{A_{\xi}} p(\xi)\right)+t \\
& \leq \mu_{\xi}(q(\xi))+t \leq \inf (q)+2 \delta
\end{aligned}
$$

(b) Suppose that $\sum_{p \in X} \inf (p)<\inf (q)$, and let $\delta \in \mathbb{R}^{>0}$ be such that

$$
\inf (q)-\sum_{p \in X} \inf (p) \geq 2 \delta
$$

Since $\sum_{p \in X} \inf (p)$ is finite, X must be at most countable. So there are numbers $\delta_{p} \in \mathbb{R}^{>0}(p \in X)$ such that

$$
\sum_{p \in X} \delta_{p} \leq \delta
$$

Then we can choose elements $\xi_{p} \in W(p \in X)$ so that

$$
\forall p \in X: \mu_{\xi_{p}}\left(p\left(\xi_{p}\right)\right) \leq \inf (p)+\delta_{p}
$$

Now define the function q^{\prime} on W by

$$
\forall \zeta \in W: q^{\prime}(\zeta)=q(\zeta) \wedge\left(-\bigvee^{A_{\zeta}}\left\{\varrho_{\xi_{p} \zeta}\left(p\left(\xi_{p}\right)\right) \mid p \in X \wedge \xi_{p} \unlhd \zeta\right\}\right)
$$

Clearly, $q^{\prime} \in \Pi^{\#}$ and $q^{\prime} \sqsubseteq q$. Also, for any $\zeta \in W$,

$$
\begin{aligned}
\mu_{\zeta}\left(q^{\prime}(\zeta)\right) & \geq \mu_{\zeta}(q(\zeta))-\sum_{p \in X \wedge \xi_{p} \unlhd \zeta} \mu_{\xi_{p}}\left(p\left(\xi_{p}\right)\right) \\
& \geq \inf (q)-\sum_{p \in X}\left(\inf (p)+\delta_{p}\right)=\left(\inf (q)-\sum_{p \in X} \inf (p)\right)-\sum_{p \in X} \delta_{p} \geq \delta .
\end{aligned}
$$

Hence $\inf \left(q^{\prime}\right)>0$. Therefore, by Lemma 3, we get a $q^{\prime \prime} \in P$ such that $q^{\prime \prime} \sqsubseteq q^{\prime}$. Then $q^{\prime \prime} \sqsubseteq q$, and since

$$
\forall p \in X: \exists \zeta \in W: p(\zeta) \wedge q^{\prime}(\zeta)=0_{A_{\zeta}}
$$

we also have

$$
\forall p \in X: \exists \zeta \in W: p(\zeta) \wedge q^{\prime \prime}(\zeta)=0_{A_{\zeta}},
$$

whence $q^{\prime \prime}$ is incompatible with all $p \in X$. Thus X is not predense below q.
Proof of Theorem 1(b). The natural way to define a measure μ as required is as follows:

Given an $a \in A$, choose a pairwise incompatible $X \subset P$ such that $a=\bigvee^{A} \theta^{\prime \prime} X$, and put $\mu(a)=\sum_{p \in X} \inf (p)$.
This is, in fact, the approach that we will take. First we have to show that the value of $\mu(a)$ does not depend on the choice of the set X.

Claim. If X and $Y(X, Y \subset P)$ are pairwise incompatible and $\bigvee^{A} \theta^{\prime \prime} X$ $=\bigvee^{A} \theta^{\prime \prime} Y$, then $\sum_{p \in X} \inf (p)=\sum_{q \in Y} \inf (q)$.

Proof. Without loss of generality, assume that X is a refinement of Y, i.e.

$$
\forall p \in X: \exists q \in Y: p \sqsubseteq q,
$$

so that we have

$$
\forall q \in Y: \theta(q)=\bigvee^{A} \theta^{\prime \prime} X_{q},
$$

where for each $q \in Y$,

$$
X_{q}=\{p \in X \mid p \sqsubseteq q\} .
$$

It follows from Lemma 5 that

$$
\forall q \in Y: \sum_{p \in X_{q}} \inf (p)=\inf (q) .
$$

Hence

$$
\sum_{p \in X} \inf (p)=\sum_{q \in Y} \sum_{p \in X_{q}} \inf (p)=\sum_{q \in Y} \inf (q) .
$$

By the claim, we can define the map $\mu: A \rightarrow \mathbb{R}^{\geq 0}$ so that for any $a \in A$ and any $X \subset P$,
X is pairwise incompatible in $\langle P, \sqsubseteq\rangle \wedge a=\bigvee^{A} \theta^{\prime \prime} X \Rightarrow \mu(a)=\sum_{p \in X} \inf (p)$.
It is then routine to check that μ is a countably additive strictly positive probability measure on A such that

$$
\forall \zeta \in W: \forall a \in A_{\zeta}: \mu_{\zeta}(a)=\mu\left(\varrho_{\zeta}(a)\right) .
$$

Proof of Theorem 2. We will show that

$$
\forall a \in A: \exists X \subset P: a=\bigvee^{A} \theta^{\prime \prime} X
$$

By (L4), it suffices to prove that the set A^{\prime} of all $a \in A$ such that

$$
\exists X \subset P: a=\bigvee^{A} \theta " X
$$

is a complete subalgebra of A including $\bigcup_{\zeta \in W} \operatorname{Ran}\left(\varrho_{\zeta}\right)$ as a subset.
Since, for any $\zeta \in W$ and any $a \in A_{\zeta}-\left\{0_{A_{\zeta}}\right\}$, that function p in Π such that $p(\eta)=\varrho_{\zeta \eta}(a)$ for all $\eta \in W(\zeta \unlhd \eta)$ is an element of P, we have $\bigcup_{\zeta \in W} \operatorname{Ran}\left(\varrho_{\zeta}\right) \subset A^{\prime}$. It is obvious that A^{\prime} is closed under the join operation \bigvee.

Showing that A^{\prime} is closed under Boolean complementation requires two claims.

Claim 1. For any incompatible $p_{1}, p_{2} \in P, \theta\left(p_{1}\right) \wedge \theta\left(p_{2}\right)=0_{A}$.
Proof. If p_{1} and p_{2} are incompatible, then

$$
\mu\left(\theta\left(p_{1}\right) \wedge \theta\left(p_{2}\right)\right)=\inf \left(p_{1} \wedge p_{2}\right)=0 \quad(\text { by Lemma } 4)
$$

Hence $\theta\left(p_{1}\right) \wedge \theta\left(p_{2}\right)=0_{A}$.
Claim 2. For any predense $X \subset P, \bigvee^{A} \theta " X=1_{A}$.
Proof. Let X be an arbitrary predense subset of P. Since there is a pairwise incompatible predense set $X^{\prime} \subset P$ such that

$$
\forall p^{\prime} \in X^{\prime}: \exists p \in X: p^{\prime} \sqsubseteq p
$$

there is no loss of generality in assuming that X is pairwise incompatible to begin with. Then, by Claim 1 , the elements $\theta(p)(p \in X)$ are pairwise disjoint in A. So

$$
\mu\left(\bigvee^{A} \theta " X\right)=\sum_{p \in X} \mu(\theta(p))
$$

But

$$
\sum_{p \in X} \mu(\theta(p))=\sum_{p \in X} \inf (p) \geq 1 \quad(\text { by Lemma } 5(\mathrm{~b}))
$$

Thus $\mu\left(\bigvee^{A} \theta " X\right) \geq 1$, and we conclude that $\bigvee^{A} \theta " X=1_{A}$.
Proving that A^{\prime} is also closed under the complement operation on the basis of Claims 1 and 2 is quite standard. Consider an arbitrary element $a=\bigvee^{A} \theta " X(X \subset P)$ of A^{\prime}. If we put

$$
Y=\{q \in P \mid q \text { is incompatible with all } p \in X\} \quad \text { and } \quad b=\bigvee^{A} \theta " Y
$$

then $a \wedge b=0_{A}$ by Claim 1, and $a \vee b=\bigvee^{A} \theta "(X \cup Y)=1_{A}$ by Claim 2, so that $-a=b \in A^{\prime}$.
[Bo] S. Bochner, Harmonic Analysis and the Theory of Probability, Univ. of California Press, 1955.
[Fr] D. H. Fremlin, Measure Algebras, in: Handbook of Boolean Algebras, Vol. 3, J. D. Monk (ed.), Elsevier, Amsterdam, 1989, 877-980.
[Je] T. Jech, Set Theory, Pure Appl. Math. 79, Academic Press, New York, 1978.
[Ku] K. Kunen, Set Theory, Stud. Logic Found. Math. 102, North-Holland, Amsterdam, 1980.

Tsurukabuto 3-11
Nada Ku
Kobe
657-8501 Japan
E-mail: takaj@kobe-u.ac.jp

