LIMITS OF FAMILIES OF MEASURE ALGEBRAS

ВΥ

JOJI TAKAHASHI (KOBE)

The limit of a directed family of measure algebras is characterized as the unique complete Boolean algebra having a dense subset that is isomorphic to a canonical poset constructed from the given family.

Suppose that we are given a family $\mathcal{A} = \langle A_{\zeta}, \varrho_{\zeta\eta} \rangle_{\zeta,\eta \in W \land \zeta \leq \eta}$ satisfying the following conditions:

- (GF1) $\langle W, \preceq \rangle$ is a nonempty directed poset.
- (GF2) For each $\eta \in W$, A_{ζ} is a complete Boolean algebra.
- (GF3) For each pair $\langle \zeta, \eta \rangle$ ($\zeta, \eta \in W$ and $\zeta \leq \eta$), $\varrho_{\zeta\eta}$ is a complete embedding from A_{ζ} to A_{η} .
- (GF4) For each triple $\langle \zeta, \eta, \xi \rangle$ $(\zeta, \eta, \xi \in W \text{ and } \zeta \leq \eta \leq \xi)$, $\varrho_{\zeta\xi} = \varrho_{\eta\xi} \circ \varrho_{\zeta\eta}$.
- (GF5) For each $\zeta \in W$ and each $a \in A_{\zeta}$, $\varrho_{\zeta\zeta}(a) = a$.

It is then interesting to investigate limits of \mathcal{A} , i.e. families $\langle A, \varrho_{\zeta} \rangle_{\zeta \in W}$ having the following properties:

- (L1) A is a complete Boolean algebra.
- (L2) For each $\zeta \in W$, ϱ_{ζ} is a complete embedding from A_{ζ} to A.
- (L3) For each pair $\langle \zeta, \eta \rangle$ ($\zeta, \eta \in W$ and $\zeta \leq \eta$), $\varrho_{\zeta} = \varrho_{\eta} \circ \varrho_{\zeta\eta}$.
- (L4) A is completely generated by $\bigcup_{\zeta \in W} \operatorname{Ran}(\varrho_{\zeta})$.

Many different types of limits are known, the two best-known being the direct limit and the inverse limit ([Je, §§23 and 36], [Ku, VIII, §5]).

Now suppose that, in addition to \mathcal{A} , we are given a family $\langle \mu_{\zeta} \rangle_{\zeta \in W}$ such that:

- (GF6) For each $\zeta \in W$, μ_{ζ} is a countably additive strictly positive probability measure on A_{ζ} .
- (GF7) For each pair $\langle \zeta, \eta \rangle$ $(\zeta, \eta \in W \text{ and } \zeta \leq \eta)$ and each $a \in A_{\zeta}$, $\mu_{\zeta}(a) = \mu_{\eta}(\varrho_{\zeta\eta}(a))$.

We are then interested in limits of the expanded family

$$\widetilde{\mathcal{A}} = \langle A_{\zeta}, \mu_{\zeta}, \varrho_{\zeta\eta} \rangle_{\zeta, \eta \in W \land \zeta \triangleleft \eta},$$

1991 Mathematics Subject Classification: Primary 03E40.

which should consist of a limit $\langle A, \varrho_{\zeta} \rangle_{\zeta \in W}$ of \mathcal{A} and an associated countably additive strictly positive probability measure μ on A such that

(L5) For each
$$\zeta \in W$$
 and each $a \in A_{\zeta}$, $\mu_{\zeta}(a) = \mu(\varrho_{\zeta}(a))$.

The question of existence of limits in this sense is easily settled affirmatively. All one has to do is to express each A_{ζ} as the measure algebra of a probability measure space ([Fr, 2.6]) and apply Kolmogorov's extension theorem ([Bo, 5.1]) to the family of these measure spaces. The objective of this note is to gain a more direct understanding of the limits of $\widetilde{\mathcal{A}}$. It will be shown that, like most of the known limits of the family \mathcal{A} of plain complete Boolean algebras, the complete Boolean algebras A in the limits $\langle A, \mu, \varrho_{\zeta} \rangle_{\zeta \in W}$ of $\widetilde{\mathcal{A}}$ can be characterized by the property of having a dense subset isomorphic to a certain poset constructed from $\widetilde{\mathcal{A}}$ in a natural fashion.

For each pair $\langle \zeta, \eta \rangle$ $(\zeta, \eta \in W \text{ and } \zeta \leq \eta)$, let $\pi_{\zeta\eta}$ denote the projection associated with $\varrho_{\zeta\eta}$, i.e. that map from A_{η} to A_{ζ} such that

$$\forall b \in A_{\eta} \colon \pi_{\zeta\eta}(b) = \bigwedge^{A_{\zeta}} \{ a \in A_{\zeta} \mid b \sqsubseteq \varrho_{\zeta\eta}(a) \}.$$

Let Π denote the set of all functions p defined on the index set W such that

$$\forall \zeta \in W \colon p(\zeta) \in A_{\zeta} - \{0_{A_{\zeta}}\} \quad \text{and} \quad$$

$$\forall \zeta, \eta \in W \ (\zeta \leq \eta) \colon p(\zeta) = \pi_{\zeta\eta}(p(\eta)).$$

Define the partial order \sqsubseteq on Π by

$$\forall p, q \in \Pi \colon [p \sqsubseteq q \Leftrightarrow \forall \zeta \in W \colon p(\zeta) \sqsubseteq q(\zeta)].$$

Many of the known limits $\langle A, \varrho_{\zeta} \rangle_{\zeta \in W}$ of \mathcal{A} satisfy condition (L4) in a rather strong sense. They have a dense subset arising from some set $P \subset \Pi$. More precisely, one can find a set $P \subset \Pi$ so that the map $p \mapsto \bigwedge_{\zeta \in W}^{A} \varrho_{\zeta}(p(\zeta))$ $(p \in P)$ is an isomorphism from the poset $\langle P, \sqsubseteq \rangle$ onto a dense subset of $A - \{0_A\}$. For example, we have the set

$$\{p \in \Pi \mid \exists \alpha \in W \colon \forall \zeta \in W \ (\alpha \leq \zeta) \colon p(\zeta) = \varrho_{\alpha\zeta}(p(\alpha))\}$$

for the direct limit of \mathcal{A} , and the set Π itself for the inverse limit. We will see that the relationship between the family $\widetilde{\mathcal{A}}$ of measure algebra and their measure algebra limits can also be captured in this way by means of a suitably defined subset of Π .

Let us define the set $P \subset \Pi$ that gives rise to a dense subset of the limit of $\widetilde{\mathcal{A}}$. We need to make sure that P consists only of those $p \in \Pi$ such that the Boolean values $p(\zeta)$ shrink nicely as ζ increases with respect to \leq . Those p such that $p(\zeta)$ contract too rapidly or in too unruly a manner must be weeded out. However, the standard method of selecting those p for which the set

$$\{\alpha \in W \mid \exists \zeta \in W \ (\alpha \leq \zeta \land \alpha \neq \zeta) : p(\zeta) = \varrho_{\alpha\zeta}(p(\alpha))\},$$

called the *support* of p, is in a suitable ideal of subsets of W is known not to work for measure algebras ([Ku, VIII, Exercise K6, p. 302]). It is necessary to take advantage of the measures μ_{ζ} as a means of assessing the manner of contraction of $p(\zeta)$ so that we can distinguish correctly between those p to be allowed into P and those to be kept out. Thus, for each triple $\langle p, \alpha, a \rangle$ such that $p \in \Pi$, $\alpha \in W$ and $a \in A_{\alpha}$, we put

$$\inf(p, \alpha, a) = \inf\{\mu_{\zeta}(p(\zeta) \land \varrho_{\alpha\zeta}(a)) \mid \alpha \leq \zeta \in W\},\$$

and define P to be the set of all $p \in \Pi$ such that

$$\forall \alpha \in W \colon \forall a \in A_{\alpha} (p(\alpha) \land a \neq 0_{A_{\alpha}}) \colon \inf(p, \alpha, a) > 0.$$

Throughout the remainder of this note, we assume that

$$\widetilde{\mathcal{A}} = \langle A_{\zeta}, \mu_{\zeta}, \varrho_{\zeta\eta} \rangle_{\zeta, \eta \in W \land \zeta \leq \eta}$$

is a family satisfying (GF1)–(GF7), $\mathcal{A}=\langle A_\zeta,\varrho_{\zeta\eta}\rangle_{\zeta,\eta\in W\wedge\zeta\leq\eta}$ is the plain complete Boolean algebra portion of $\widetilde{\mathcal{A}}$, and $\langle A,\varrho_\zeta\rangle_{\zeta\in W}$ is a limit of \mathcal{A} as defined by (L1)–(L4). Also, let P denote the set defined as in the preceding paragraph, and θ the map $p\mapsto \bigwedge_{\zeta\in W}^A\varrho_\zeta(p(\zeta))$ from P to A. We will prove:

THEOREM 1. Suppose that θ " P is a dense subset of $A - \{0_A\}$. Then we have:

- (a) For any $p_1, p_2 \in P$, $p_1 \sqsubseteq p_2$ if and only if $\theta(p_1) \sqsubseteq \theta(p_2)$.
- (b) There is a countably additive strictly positive probability measure μ on A satisfying (L5).

Theorem 2. If there is a countably additive strictly positive probability measure μ on A satisfying (L5), then θ " P is a dense subset of $A - \{0_A\}$.

It follows from these two theorems that A carries a countably additive strictly positive probability measure μ satisfying (L5) if and only if θ is an order isomorphism from $\langle P, \sqsubseteq \rangle$ onto a dense subset of A– $\{0_A\}$. In particular, the limits of $\widetilde{\mathcal{A}}$ are all isomorphic to each other. Also note that Theorem 1 gives a direct proof of the existence of the limit of $\widetilde{\mathcal{A}}$ that does not depend on Kolmogorov's extension theorem.

Part (a) of Theorem 1 is easy to prove. All we need is the following fact.

LEMMA 1. For any $p_1 \in P$, any $\zeta \in W$ and any $a \in A_{\zeta}$ $(p_1(\zeta) \land a \neq 0_{A_{\zeta}})$, there is a $p_2 \in P$ such that $p_2 \sqsubseteq p_1$ and $p_2(\zeta) \sqsubseteq a$.

Proof. Suppose that p_1 , ζ and a are as above. Then there is a unique function p_2 on W such that

$$\forall \eta \in W \colon \forall \xi \in W (\zeta, \eta \leq \xi) \colon p_2(\eta) = \pi_{\eta \xi}(p_1(\xi) \land \varrho_{\zeta \xi}(a)).$$

We easily check that $p_2 \in \Pi$, $p_2 \sqsubseteq p_1$ and $p_2(\zeta) \sqsubseteq a$. Also, given any $\alpha \in W$ and any $a' \in A_{\alpha}$ $(p_2(\alpha) \land a' \neq 0_{A_{\alpha}})$, we can choose a $\beta \in W$ with ζ , $\alpha \leq \beta$,

and see that

$$\inf(p_2, \alpha, a') = \inf(p_2, \beta, \varrho_{\alpha\beta}(a')) = \inf(p_1, \beta, \varrho_{\zeta\beta}(a) \wedge \varrho_{\alpha\beta}(a')), \quad \text{and} \quad p_1(\beta) \wedge \varrho_{\zeta\beta}(a) \wedge \varrho_{\alpha\beta}(a') \neq 0_{A_{\alpha}}.$$

Since $p_1 \in P$, it follows that $\inf(p_2, \alpha, a') > 0$. Therefore $p_2 \in P$.

Proof of Theorem 1(a). Let $p_1, p_2 \in P$. The "only if" part is obvious. For the converse, if $p_1 \not\sqsubseteq p_2$, then $p_1(\zeta) \not\sqsubseteq p_2(\zeta)$ for some $\zeta \in W$. Using Lemma 1, we can choose a $p_3 \in P$ so that $p_3 \sqsubseteq p_1$ and $p_3(\zeta) \wedge p_2(\zeta) = 0_{A_{\zeta}}$. It follows that $\theta(p_3) \sqsubseteq \theta(p_1)$ and $\theta(p_3) \wedge \theta(p_2) = 0_A$. Furthermore, $\theta(p_3) \neq 0_A$. Thus $\theta(p_1) \not\sqsubseteq \theta(p_2)$.

Proving part (b) of Theorem 1 and Theorem 2 requires more preliminary work. We need to know more about the structure of the poset $\langle P, \sqsubseteq \rangle$.

The elements of Π are characterized by the property that $p(\zeta) \in A_{\zeta} - \{0_{A_{\zeta}}\}$, $p(\eta) \in A_{\eta} - \{0_{A_{\eta}}\}$ and $p(\zeta) = \pi_{\zeta\eta}(p(\eta))$ whenever $\zeta, \eta \in W$ and $\zeta \leq \eta$. Sometimes it will turn out necessary to deal with functions p having the somewhat weaker peoperty that $p(\zeta) \in A_{\zeta}$, $p(\eta) \in A_{\eta}$ and $p(\eta) \sqsubseteq \varrho_{\zeta\eta}(p(\zeta))$ for all $\zeta, \eta \in W$ with $\zeta \leq \eta$. We denote the set of all functions having this latter property by $\Pi^{\#}$, and extend the partial order \sqsubseteq on Π to one on $\Pi^{\#}$. Note that the operation $\inf(p, \alpha, a)$ makes sense not only for $p \in \Pi$ but for $p \in \Pi^{\#}$.

In what follows, $\mathbb{R}^{>0}$ and $\mathbb{R}^{\geq 0}$ will denote the set of all positive real numbers and that of all nonnegative real numbers respectively.

LEMMA 2. For any $q \in \Pi^{\#}$, any $\alpha \in W$ and any pairwise disjoint $X \subset A_{\alpha}$, we have

$$\inf\left(q,\alpha,\bigvee\nolimits^{A_{\alpha}}X\right) = \sum_{a\in X}\inf(q,\alpha,a).$$

Proof. Let $q \in \Pi^{\#}$ and $\alpha \in W$. It is easily checked that the equality above holds for any finite pairwise disjoint $X \subset A_{\alpha}$. Let X be an arbitrary pairwise disjoint subset of A_{α} , and put $a_1 = \bigvee^{A_{\alpha}} X$.

Let us first show that the left-hand side is less than or equal to the right-hand side. For this, it suffices to prove that

$$\forall \delta \in \mathbb{R}^{>0}$$
: $\inf(q, \alpha, a_1) < \sum_{a \in X} \inf(q, \alpha, a) + \delta$.

Given a $\delta \in \mathbb{R}^{>0}$, choose a finite $Y \subset X$ so that

$$\mu_{\alpha}(a_1 \wedge (-a_2)) < \delta$$

where $a_2 = \bigvee^{A_\alpha} Y$. Then

$$\inf(q, \alpha, a_1) = \inf(q, \alpha, a_2) + \inf(q, \alpha, a_1 \wedge (-a_2)).$$

But

$$\inf(q, \alpha, a_2) = \sum_{a \in Y} \inf(q, \alpha, a) \le \sum_{a \in X} \inf(q, \alpha, a),$$

and

$$\inf(q, \alpha, a_1 \wedge (-a_2)) \le \mu_{\alpha}(a_1 \wedge (-a_2)) < \delta.$$

Thus

$$\inf(q, \alpha, a_1) < \sum_{a \in X} \inf(q, \alpha, a) + \delta.$$

On the other hand, we have

$$\begin{split} \sum_{a \in X} \inf(q, \alpha, a) &= \sup \Big\{ \sum_{a \in Y} \inf(q, \alpha, a) \, \Big| \, Y \subset X \wedge Y \text{ is finite} \Big\} \\ &= \sup \Big\{ \inf \Big(q, \alpha, \bigvee^{A_{\alpha}} Y \Big) \, \Big| \, Y \subset X \wedge Y \text{ is finite} \Big\} \\ &\leq \inf(q, \alpha, a_1). \quad \blacksquare \end{split}$$

For each $p \in \Pi^{\#}$, put $\inf(p) = \inf\{\mu_{\zeta}(p(\zeta)) \mid \zeta \in W\}$.

LEMMA 3. For any $q \in \Pi^{\#}$ with $\inf(q) > 0$, there is a $p \in P$ such that $p \sqsubseteq q$ and $\inf(p) = \inf(q)$.

Proof. Suppose that $q \in \Pi^{\#}$ and $\inf(q) > 0$. Define the functions q' and p on W as follows:

$$\forall \zeta \in W \colon q'(\zeta) = \bigvee^{A_{\zeta}} \{ a \in A_{\zeta} \mid \inf(q, \zeta, a) = 0 \}, \quad \forall \zeta \in W \colon p(\zeta) = -q'(\zeta).$$

Clearly, $p \in \Pi^{\#}$ and $p \sqsubseteq q$.

CLAIM 1. For any $\zeta \in W$ and $a \in A_{\zeta}$, $a \sqsubseteq q'(\zeta)$ if and only if $\inf(q, \zeta, a) = 0$.

Proof. The "if" part is immediate from the definition of q'. To prove the "only if" part, suppose that $a_1 \sqsubseteq q'(\zeta)$ ($\zeta \in W$ and $a_1 \in A_{\zeta}$). Then there is a pairwise disjoint $X \subset A_{\zeta}$ such that

$$a_1 = \bigvee^{A_{\zeta}} X$$
 and $\forall a \in X$: $\inf(q, \zeta, a) = 0$,

and it follows from Lemma 2 that $\inf(q, \zeta, a_1) = 0$.

CLAIM 2. For any $\alpha \in W$ and $a \in A_{\alpha}$, $\inf(p, \alpha, a) = \inf(q, \alpha, a)$.

Proof. Let $\alpha \in W$ and $a \in A_{\alpha}$. Since $p \sqsubseteq q$, we have

$$\inf(p, \alpha, a) \le \inf(q, \alpha, a).$$

On the other hand, for any $\zeta \in W$ with $\alpha \leq \zeta$,

$$\inf(q, \alpha, a) = \inf(q, \zeta, \varrho_{\alpha\zeta}(a))$$

=
$$\inf(q, \zeta, p(\zeta) \wedge \varrho_{\alpha\zeta}(a)) + \inf(q, \zeta, q'(\zeta) \wedge \varrho_{\alpha\zeta}(a)).$$

But

$$\inf(q,\zeta,p(\zeta)\wedge\varrho_{\alpha\zeta}(a))\leq\mu_{\zeta}(q(\zeta)\wedge p(\zeta)\wedge\varrho_{\alpha\zeta}(a))=\mu_{\zeta}(p(\zeta)\wedge\varrho_{\alpha\zeta}(a)),$$
 and, by Claim 1,

$$\inf(q, \zeta, q'(\zeta) \wedge \varrho_{\alpha\zeta}(a)) = 0.$$

Therefore

$$\inf(q, \alpha, a) \le \mu_{\zeta}(p(\zeta) \land \varrho_{\alpha\zeta}(a)).$$

Thus $\inf(q, \alpha, a) \leq \inf(p, \alpha, a)$.

By Claim 2, $\inf(p) = \inf(q)$.

Claim 3. $p \in \Pi$.

Proof. Since $\inf(p) = \inf(q) > 0$, we see that

$$\forall \zeta \in W \colon p(\zeta) \in A_{\zeta} - \{0_{A_{\zeta}}\}.$$

Also, for any $\zeta, \eta \in W \ (\zeta \leq \eta)$ and any $a \in A_{\zeta}$,

$$p(\eta) \sqsubseteq \varrho_{\zeta\eta}(a) \Leftrightarrow \varrho_{\zeta\eta}(-a) \sqsubseteq q'(\eta)$$

$$\Leftrightarrow \inf(q, \eta, \varrho_{\zeta\eta}(-a)) = 0 \quad \text{(by Claim 1)}$$

$$\Leftrightarrow \inf(q, \zeta, -a) = 0$$

$$\Leftrightarrow -a \sqsubseteq q'(\zeta) \quad \text{(by Claim 1)}$$

$$\Leftrightarrow p(\zeta) \sqsubseteq a,$$

whence $\forall \zeta, \eta \in W \ (\zeta \leq \eta) \colon p(\zeta) = \pi_{\zeta\eta}(p(\eta))$.

CLAIM 4. For any $\alpha \in W$ and $a \in A_{\alpha}$ $(p(\alpha) \land a \neq 0_{A_{\alpha}})$, $\inf(p, \alpha, a) > 0$.

Proof. If $\alpha \in W$, $a \in A_{\alpha}$ and $\inf(p, \alpha, a) = 0$, then $a \sqsubseteq q'(\alpha)$ by Claims 1 and 2, so that $p(\alpha) \wedge a = 0_{A_{\alpha}}$.

By Claims 3 and 4, $p \in P$. Lemma 3 is proved.

LEMMA 4. For any $p_1, p_2 \in P$, p_1 and p_2 are compatible in the poset $\langle P, \sqsubseteq \rangle$ if and only if $\inf(p_1 \wedge p_2) > 0$, where $p_1 \wedge p_2$ is that element of $\Pi^{\#}$ such that

$$\forall \zeta \in W \colon (p_1 \wedge p_2)(\zeta) = p_1(\zeta) \wedge p_2(\zeta).$$

Proof. The "if" direction follows from Lemma 3, while the "only if" direction is obvious. \blacksquare

LEMMA 5. For any $X \subset P$ and $q \in P$, we have:

- (a) If $p \sqsubseteq q$ for all $p \in X$ and X is pairwise incompatible in $\langle P, \sqsubseteq \rangle$, then $\sum_{p \in X} \inf(p) \leq \inf(q)$.
 - (b) If X is predense below q in $\langle P, \sqsubseteq \rangle$, then $\sum_{p \in X} \inf(p) \ge \inf(q)$.

Proof. (a) Suppose that $p \sqsubseteq q$ for all $p \in X$ and X is pairwise incompatible in $\langle P, \sqsubseteq \rangle$. Without loss of generality, we may assume that X is finite. We will show that

$$\forall \delta \in \mathbb{R}^{>0} : \sum_{p \in X} \inf(p) \le \inf(q) + 2\delta.$$

Let $\delta \in \mathbb{R}^{>0}$. By Lemma 4,

$$\forall p_1, p_2 \in X (p_1 \neq p_2) : \inf(p_1 \land p_2) = 0.$$

So, since X is finite, there is a $\xi \in W$ such that

$$t = \sum_{p_1, p_2 \in X \land p_1 \neq p_2} \mu_{\xi}(p_1(\xi) \land p_2(\xi)) \leq \delta \quad \text{and} \quad \mu_{\xi}(q(\xi)) \leq \inf(q) + \delta.$$

We then have

$$\sum_{p \in X} \inf(p) \le \sum_{p \in X} \mu_{\xi}(p(\xi)) \le \mu_{\xi} \left(\bigvee_{p \in X}^{A_{\xi}} p(\xi) \right) + t$$
$$\le \mu_{\xi}(q(\xi)) + t \le \inf(q) + 2\delta.$$

(b) Suppose that $\sum_{p \in X} \inf(p) < \inf(q)$, and let $\delta \in \mathbb{R}^{>0}$ be such that

$$\inf(q) - \sum_{p \in X} \inf(p) \ge 2\delta.$$

Since $\sum_{p \in X} \inf(p)$ is finite, X must be at most countable. So there are numbers $\delta_p \in \mathbb{R}^{>0}$ $(p \in X)$ such that

$$\sum_{p \in X} \delta_p \le \delta.$$

Then we can choose elements $\xi_p \in W \ (p \in X)$ so that

$$\forall p \in X: \mu_{\xi_p}(p(\xi_p)) \le \inf(p) + \delta_p.$$

Now define the function q' on W by

$$\forall \zeta \in W \colon q'(\zeta) = q(\zeta) \land \left(- \bigvee^{A_{\zeta}} \{ \varrho_{\xi_{p}\zeta}(p(\xi_{p})) \mid p \in X \land \xi_{p} \leq \zeta \} \right).$$

Clearly, $q' \in \Pi^{\#}$ and $q' \sqsubseteq q$. Also, for any $\zeta \in W$,

$$\mu_{\zeta}(q'(\zeta)) \geq \mu_{\zeta}(q(\zeta)) - \sum_{p \in X \land \xi_p \leq \zeta} \mu_{\xi_p}(p(\xi_p))$$

$$\geq \inf(q) - \sum_{p \in X} (\inf(p) + \delta_p) = \left(\inf(q) - \sum_{p \in X} \inf(p)\right) - \sum_{p \in X} \delta_p \geq \delta.$$

Hence $\inf(q') > 0$. Therefore, by Lemma 3, we get a $q'' \in P$ such that $q'' \sqsubseteq q'$. Then $q'' \sqsubseteq q$, and since

$$\forall p \in X : \exists \zeta \in W : p(\zeta) \land q'(\zeta) = 0_{A_{\zeta}},$$

we also have

$$\forall p \in X : \exists \zeta \in W : p(\zeta) \land q''(\zeta) = 0_{A_{\zeta}},$$

whence q'' is incompatible with all $p \in X$. Thus X is not predense below q.

Proof of Theorem 1(b). The natural way to define a measure μ as required is as follows:

Given an $a \in A$, choose a pairwise incompatible $X \subset P$ such that $a = \bigvee^A \theta^n X$, and put $\mu(a) = \sum_{p \in X} \inf(p)$.

This is, in fact, the approach that we will take. First we have to show that the value of $\mu(a)$ does not depend on the choice of the set X.

CLAIM. If X and Y $(X, Y \subset P)$ are pairwise incompatible and $\bigvee^A \theta^* X = \bigvee^A \theta^* Y$, then $\sum_{p \in X} \inf(p) = \sum_{q \in Y} \inf(q)$.

 ${\bf P}\,{\bf r}\,{\bf o}\,{\bf o}\,{\bf f}.$ Without loss of generality, assume that X is a refinement of Y, i.e.

$$\forall p \in X : \exists q \in Y : p \sqsubseteq q,$$

so that we have

$$\forall q \in Y : \theta(q) = \bigvee^A \theta "X_q,$$

where for each $q \in Y$,

$$X_q = \{ p \in X \mid p \sqsubseteq q \}.$$

It follows from Lemma 5 that

$$\forall q \in Y : \sum_{p \in X_q} \inf(p) = \inf(q).$$

Hence

$$\sum_{p \in X} \inf(p) = \sum_{q \in Y} \sum_{p \in X_q} \inf(p) = \sum_{q \in Y} \inf(q). \blacksquare$$

By the claim, we can define the map $\mu:A\to\mathbb{R}^{\geq 0}$ so that for any $a\in A$ and any $X\subset P,$

$$X \text{ is pairwise incompatible in } \langle P, \sqsubseteq \rangle \wedge a = \bigvee\nolimits^A \theta "X \Rightarrow \mu(a) = \sum_{p \in X} \inf(p).$$

It is then routine to check that μ is a countably additive strictly positive probability measure on A such that

$$\forall \zeta \in W \colon \forall a \in A_{\zeta} \colon \mu_{\zeta}(a) = \mu(\varrho_{\zeta}(a)). \blacksquare$$

Proof of Theorem 2. We will show that

$$\forall a \in A : \exists X \subset P : a = \bigvee^A \theta "X.$$

By (L4), it suffices to prove that the set A' of all $a \in A$ such that

$$\exists X \subset P : a = \bigvee^{A} \theta"X$$

is a complete subalgebra of A including $\bigcup_{\zeta \in W} \operatorname{Ran}(\varrho_{\zeta})$ as a subset.

Since, for any $\zeta \in W$ and any $a \in A_{\zeta} - \{0_{A_{\zeta}}\}$, that function p in Π such that $p(\eta) = \varrho_{\zeta\eta}(a)$ for all $\eta \in W$ ($\zeta \leq \eta$) is an element of P, we have $\bigcup_{\zeta \in W} \operatorname{Ran}(\varrho_{\zeta}) \subset A'$. It is obvious that A' is closed under the join operation \bigvee .

Showing that A' is closed under Boolean complementation requires two claims.

CLAIM 1. For any incompatible $p_1, p_2 \in P$, $\theta(p_1) \wedge \theta(p_2) = 0_A$.

Proof. If p_1 and p_2 are incompatible, then

$$\mu(\theta(p_1) \wedge \theta(p_2)) = \inf(p_1 \wedge p_2) = 0$$
 (by Lemma 4).

Hence $\theta(p_1) \wedge \theta(p_2) = 0_A$.

CLAIM 2. For any predense $X \subset P$, $\bigvee^A \theta^* X = 1_A$.

Proof. Let X be an arbitrary predense subset of P. Since there is a pairwise incompatible predense set $X' \subset P$ such that

$$\forall p' \in X' \colon \exists p \in X \colon p' \sqsubseteq p,$$

there is no loss of generality in assuming that X is pairwise incompatible to begin with. Then, by Claim 1, the elements $\theta(p)$ $(p \in X)$ are pairwise disjoint in A. So

$$\mu\left(\bigvee^{A}\theta^{"}X\right) = \sum_{p \in X} \mu(\theta(p)).$$

But

$$\sum_{p \in X} \mu(\theta(p)) = \sum_{p \in X} \inf(p) \ge 1 \quad \text{ (by Lemma 5(b))}.$$

Thus $\mu(\bigvee^A \theta^n X) \geq 1$, and we conclude that $\bigvee^A \theta^n X = 1_A$.

Proving that A' is also closed under the complement operation on the basis of Claims 1 and 2 is quite standard. Consider an arbitrary element $a = \bigvee^A \theta^n X$ $(X \subset P)$ of A'. If we put

$$Y = \{q \in P \mid q \text{ is incompatible with all } p \in X\}$$
 and $b = \bigvee^A \theta^* Y$,

then $a \wedge b = 0_A$ by Claim 1, and $a \vee b = \bigvee^A \theta^{"}(X \cup Y) = 1_A$ by Claim 2, so that $-a = b \in A'$.

REFERENCES

- [Bo] S. Bochner, Harmonic Analysis and the Theory of Probability, Univ. of California Press, 1955.
- [Fr] D. H. Fremlin, Measure Algebras, in: Handbook of Boolean Algebras, Vol. 3, J. D. Monk (ed.), Elsevier, Amsterdam, 1989, 877–980.
- [Je] T. Jech, Set Theory, Pure Appl. Math. 79, Academic Press, New York, 1978.
- [Ku] K. Kunen, Set Theory, Stud. Logic Found. Math. 102, North-Holland, Amsterdam, 1980.

Tsurukabuto 3-11 Nada Ku Kobe 657-8501 Japan E-mail: takaj@kobe-u.ac.jp

Received 14 October 1997