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1. Introduction. Let A be an artin algebra over a commutative artin
ring R and let mod A be the category of finitely generated (right) A-modules.
A short exact sequence

(1) 0sAL5B% 00
in mod A induces a left exact sequence
(2) O—)TA(p—’qQTB@IQ)TC,
where 7 is the Auslander translate DTr (see Section 2 for the definitions of
D and Tr) and [ is a direct summand of the injective envelope of 7A.

The main aim of this paper is to study the circumstances in which this
left exact sequence is a short exact sequence of the form

(3) 0745 7B5 7C — 0.

We show that the condition for the map (), occurring in (2), to be
an epimorphism is that any map from A to a projective module factors
through f. Further, the map p is a monomorphism if and only if I = 0,
whereas r is a monomorphism if and only if I = I(7A) where, for any module
X (over any ring), I(X) denotes its injective envelope.

Let | be a positive integer. We shall say that the short exact sequence
(1) belongs to the class Fy if, for all indecomposable modules X with length
I(X) < I, every map ¢ : A — X factors through f. If g is irreducible,
then (1) is in Fj(4) (see [2]). Let & be the set of isomorphism classes of
indecomposable modules which are either a direct summand of the radical of
a projective module or a direct summand of the socle factor of an injective
module and let

L(A) = ?gil(X)—i—l < max{l(P) : P is indecomposable projective} < I(A).
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Our main result is the following theorem.

THEOREM 1. If the short exact sequence (1) belongs to the class Fp(ay,
and a fortiori, if (1) belongs to Fy(ay, and A has no projective direct sum-
mand, then the sequence (1) induces an exact sequence of the form (3).

This result (with g irreducible) is used in [5] in the course of proving
that, if A is an algebra over an algebraically closed field, and there is an
almost split sequence of the form

0-A—>B@®B®B -C—=0

in which neither B nor B’ is the zero module and B’ is not both projective
and injective, then A is wild. In the same paper, a class of short exact
sequences which belong to F;(,), but which do not have irreducible cokernel
term, is constructed and used in another proof.

Suppose now that g is irreducible and r = 7g (see Section 4) is a
monomorphism. In Section 4 we establish the remarkable fact that, in this
case, A has a simple top, that soc(coker 7g) = top A and that exactly one
of A and coker g is simple.

The reference [4] contains the material cited from the original references
[1], [2] and [3].

2. Construction and simple consequences. Let J be the radical of
A and denote by ¢ the natural transformation from idy,eq 4 to — ®4 (A/J).
Suppose that
X4y % z50
is a right exact sequence. We obtain an exact commutative diagram

x—t sy Y sy 0
bk

0 Es " >topX fo tole>t0pZ—>0
0 0 0

where p = kerty,. We may write
topX = Ey @ Fy
where Fjy = imtg.
It is easy to verify the following lemma.

LEMMA 2. Let o be a map from X to a semi-simple module Y. There is
a unique map o : top X — X such that o = txo and o factors through ¢ if
and only if po = 0.
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If X € mod A, we write mx : P(X) — X for a projective cover of X and
tx : §2(X) — P(X) for the kernel of 7x.

We can now use the notation above to obtain from the exact sequence
(1) an exact commutative diagram of the form

0 0 0

0 2(4) — Y pE)y e Q(B) ——= Q(C) —0

(t1,L2)

(4) 0— P(E) & P(F)— P(E) ® P(F) ® P(C) — P(C) —0

0 A B g C 0

0 0 0

in which F = E¢, F = Fy, P(A) = P(E)®P(F) and P(B) = P(F)®P(C).
Using similar notation to write the projective cover of £2(A) as a direct sum,
we get an exact commutative diagram of the form

0—=PU)ePV)X>PU)®P(V)®oP(EYpP—-P[E)®P—-0

0—> P(E) ® P(F) —> P(E) & P(F) & P(C) P(C) —=0
(5) w
0 A ! B g C 0
0 0 0

in which U=FE,, y), V=F, 4, P is a projective module, the left and right
hand columns are minimal projective presentations of A and C, respectively,
and the middle column is isomorphic to

0 0 0
(44)
6) PU)aP(V)sPE)sP 2% pE)g P(F)® P(C)

0
7T_/
7T”

— B — 0,
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where
(ﬂ'll 7T12) (7\',/,
P(V)e P -2225 P(F) & P(C) ) B o
is a minimal projective presentation of B.

It is not hard to see that we may arrange (by using appropriate auto-
morphisms of projectives, if necessary) that the map m in diagram (5) can
be written in the form given by (6) and the map x in diagram (5) can be
written in the form

™ (o000

where we have written - for a map which we do not need to know.

Note that, if A is projective, we have P(U) & P(V) = 0. All our cal-
culations remain valid in this case and we shall only comment when it is
essential to do so.

Let P, -2 P — X be a minimal projective presentation of a module X €
mod A. The cokernel of the map p* induced by the functor * = hom,(—, A)
is called the transpose of X and denoted by Tr X (see [1]). If X is projective,
then Tr X = 0.

We apply the functor * = hom,(—, A) to diagram (5), and take cokernels
of the columns, to obtain an exact commutative diagram of the form

0 0 0
0 c* B* ! A*
0 P(C)* P(E)*®P(F)*&P(C)" — P(E)*&P(F)* —0

(8) =y

0 —> P(E)*®P* —> P(U)*®P(V)*@P(E)*®&P* X> P(U)*@P(V)* — 0

(1)
(a.8) (3)

TC ——=PU)*"@Tr B Tr A 0

0 0 0

The commutativity of the bottom right hand square of diagram (8) and the
forms given by (6) and (7) for the maps 71 and x imply v = v in (8).

The exactness of the bottom row of (8) implies that § is an epimorphism
if and only if 7y is. Since the right hand column of (8) is a minimal projective
presentation of Tr A (see [1]), it follows that /3 is an epimorphism if and only
if V=0.
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Similarly, § is an epimorphism if and only if « is. Since 7C has no pro-
jective direct summand, this implies that § is an epimorphism if and only if
U=0.

Application of the functor D = hompg(—, I(R/rad R)) to the bottom row
of (8) gives the left exact sequence

0 ra®) par W o

where I =DP(U)* = I(U), p= DJ, r= Df, etc. Hence the above discus-
sion establishes the following proposition.

PROPOSITION 3. The short exact sequence

05A-sB %050

in mod A induces a left exact sequence

057429 par o
where I is a direct summand of I(TA). The map p is a monomorphism if and
only if I =0 and the map r is a monomorphism if and only if I = I(TA).

REMARK. The maps p, ¢, r and ¢ in the exact sequence (2) depend on
the initial choice of projective presentations for A, B and C. However (up
to isomorphism) I does not.

3. Proof of Theorem 1. We establish first that the conditions I = 0
and I = I(TA) are equivalent to the conditions (C1) and (C2), respectively,
defined below.

(C1)  For every simple A-module S, every non-zero map s : A — I(S)/S
which does not factor through the natural epimorphism I(S) —
I1(S)/S factors through f.

(C2)  For every simple A-module S, no non-zero map s : A — I(S)/S
factors through f.

First we need the following lemma.
LEMMA 4. Suppose that there is an exact commutative diagram
0——=2(A)—“2>PA) 2> A——>0
lfn ifp if
0 Q———=P—"—=B 0
in which w4 is a projective cover and P is projective. An epimorphism

o: 2(A) — X, where X is semi-simple, factors through fq if and only if
there is an exact commutative diagram of the form




54 S. BRENNER

00— N(A) —“2>P(A) "2 > 4 0
na
0 PR (0) =y (5 ) V5 yi——

such that " factors through f.

Proof. Suppose first that o = foA for some A : 2 — Y. Since ¢ is
a monomorphism and I(X) is injective, there exists a map X' : P — I(X)
such that «\" = Ap. Then tN'v = 0 and so there exists X' : B — I(X)/X
such that N'v = w\”. Let o' = f,\" and ¢’ = fA\”. Then 140’ = tafy\ =
foN = fodp =op and ma0” = wafN' = fymN' = f,Nv = o'v. Hence we
have an exact commutative diagram of form (9) such that o” = f\".

Now suppose, conversely, that we have an exact commutative diagram
of form (9) and that ¢” = f\’. Then, since P is projective and v is an
epimorphism, there is a map X : P — I(X) such that 7\” = Nv. Since
Nv = )" = 0, there is a map A\ : 2 — X such that Ay = ). Now
fpNv = fprN' = mafN' = wac” = o'v and so fpN — o’ = (u for some
¢:P(A) — X. Since X is semi-simple and im ¢4 C rad P(A), it follows that
1taC = 0. Now folu = forN = wafpN = 140’ = op and so, since pu is a
monomorphism, we have foA = o as required.

LEMMA 5. The conditions I = 0 and I = I(TA) is equivalent to the
conditions (C1) and (C2), respectively.

Proof. Let S be a simple module and suppose that there is a non-zero
map s: A — I(S5)/S. This induces an exact commutative diagram of form
(9) with ¥ = S and ¢’ = s. Furthermore, 0 = 0 only if s = ¢” factors
through v : I(S) — I(S)/S. Now it follows from Lemma 2 that U = 0 if and
only if every map from 2(A) to a simple module factors through the map
(i1,v) of diagram (4). Similarly, V' =0 if and only if no map from 2(A4) to a
simple module factors through (i1,). Hence it follows from Lemma 4 that
the conditions (C1) and (C2) are equivalent to the statements U = 0 and
V =0, respectively. These, in turn, are equivalent to the conditions I = 0
and I = I(TA), respectively.

The map (:) is an epimorphism if and only if the map («, ) in the
bottom line of the commutative diagram (8) is a monomorphism. By the
Serpent Lemma and the construction of the top line of (8), this is the case if
and only if every map from A to a projective factors through f. Now, if (1)
is in F,(4), then every map from A to the socle factor of an injective module,
or to the radical of a projective module, factors through f. It follows that
I = 0 and, if A has no projective direct summand, the map r in (3) is an
epimorphism. This completes the proof of Theorem 1.
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4. Irreducible cokernels. If, in the short exact sequence (1), g is irre-
ducible, then [3, Proposition 2.2] the map 7 in the left exact sequence (2) is
also irreducible and we shall denote it by 7¢, although in the case where B
has a projective direct summand we shall have to be a little cautious with
this notation. (Of course, T¢g depends on the choice of projective presenta-
tions for B and C. However, it is well defined modulo rad®(rB, 7C).)

We shall make frequent use of the following easily proved lemma and its
dual.

LEMMA 6. Suppose h : K — L is an irreducible monomorphism. Then
coker h is simple if and only if I(K) = I(L). If cokerh is not simple, then
I(L) = I(K) & I(coker h).

THEOREM 7. Let

0sALBSC S0

be a short exact sequence in which g is irreducible. Suppose that Tg is a
monomorphism. Then A has simple top, top A = soc(coker 7g) and exactly
one of A and coker Tg is simple.

Proof. We use the notation introduced in Section 2.

Since g is irreducible, A is indecomposable [3].

Since r = 7g is a monomorphism, it follows from Proposition 3 that
V = 0. Since g is irreducible, it follows from the dual of Lemma 6 that
either A is not simple and £ = 0 or A is simple and F = 0.

Consider first the case in which A is not simple. Then, from diagram (8),
we see that P(TrC) = P* = P(Tr B) and hence I(7C) = I(7B). It follows
from Lemma 6 that coker 7g is simple. Write coker 7g = .S. Then the kernel
of the map f = D(7g) is DS. Now either A is projective and then P(U)* =
0="TrA, or (a, 8) is a monomorphism, which implies ker vy = ker 5 = DS.
In the first case, it follows from the Serpent Lemma applied to diagram (8)
that A* = P(F)* maps onto DS = ker(5) and so A = P(F) = P(S). In the
second case the right hand column of the diagram (8) induces (remember
that 11 = ) the exact sequence

(10) 0— A" — P(F)" — DS —0,

and it follows (since E = 0) that P(A) = P(F) = P(S) and so top A = S.

We now consider the case in which A = S is simple. Then P(F) = P(S)
and so, from diagram (8), P(TrC) = P(DS) & P(Tr B). This is equivalent
to I(tC) = I(7B) @ I(S) and it follows from Lemma 6 that coker 7g is not
simple and has socle S.

This completes the proof of the theorem.



56 S. BRENNER

REFERENCES

[1] M. Auslander and I. Reiten, Representation theory of artin algebras III: almost
split sequences, Comm. Algebra 3 (1975), 239-294.

[2] —, —, Representation theory of artin algebras IV: invariants given by almost split
sequences, ibid. 5 (1977), 443-518.
[3] —, —, Representation theory of artin algebras V: methods for computing almost split

sequences and irreducible morphisms, ibid. 5 (1977), 519-554.

[4] M. Auslander, I. Reiten and S. O. Smalg, Representation Theory of Artin Alge-
bras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995.

[65] S.Brenner and M. C. R. Butler, Wild subquivers of the Auslander—Reiten quiver
of a tame algebra, preprint, Liverpool, 1997.

Department of Mathematical Sciences
University of Liverpool

Liverpool, 1.69 3BX, U.K.

E-mail: sbrenner@liverpool.ac.uk

Received 3 November 1997;
revised 20 January 1998



